Premium Efficiency Motor Selection and Application Guide

Total Page:16

File Type:pdf, Size:1020Kb

Premium Efficiency Motor Selection and Application Guide ADVANCED MANUFACTURING OFFICE PREMIUM EFFICIENCY MOTOR SELECTION AND APPLICATION GUIDE A HANDBOOK FOR INDUSTRY DISCLAIMER This publication was prepared by the Washington State University Energy Program for the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. Neither the United States, the U.S. Department of Energy, the Copper Development Association, the Washington State University Energy Program, the National Electrical Manufacturers Association, nor any of their contractors, subcontractors, or employees makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process described in this guidebook. In addition, no endorsement is implied by the use of examples, figures, or courtesy photos. PREMIUM EFFICIENCY MOTOR SELECTION AND APPLICATION GUIDE ACKNOWLEDGMENTS The Premium Efficiency Motor Selection and Application Guide and its companion publication, Continuous Energy Improvement in Motor-Driven Systems, have been developed by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) with support from the Copper Development Association (CDA). The authors extend thanks to the EERE Advanced Manufacturing Office (AMO) and to Rolf Butters, Scott Hutchins, and Paul Scheihing for their support and guidance. Thanks are also due to Prakash Rao of Lawrence Berkeley National Laboratory (LBNL), Rolf Butters (AMO and Vestal Tutterow of PPC for reviewing and providing publication comments. The primary authors of this publication are Gilbert A. McCoy and John G. Douglass of the Washington State University (WSU) Energy Program. Helpful reviews and comments were provided by Rob Penney of WSU; Vestal Tutterow of Project Performance Corporation, and Richard deFay, Project Manager, Sustainable Energy with CDA. Technical editing, design, and publishing were provided by DOE’s National Renewable Energy Laboratory (NREL). DOE, CDA, WSU, and NREL thank the staff at the many organizations that generously contributed information and/or review for this publication. Contributions of the following participants are especially appreciated. • Dale Basso, Motors Manager, WEG Electric Corporation • Bruce Benkhart, Director, Applied Proactive Technologies • Thomas Bishop, PE, Senior Technical Support Specialist, Electrical Apparatus Service Association • Rob Boteler, Director of Marketing, Nidec Motor Corporation • Dave Brender, National Program Manager, Electrical Applications, Copper Development Association • Wally Brithinee, Brithinee Electric • Kitt Butler, Director, Motors and Drives, Advanced Energy • John Caroff, Marketing Manager for Low Voltage Motors, Siemens Industry, Inc. • Ken Gettman, National Electrical Manufacturers Association • Willian Hoyt, Industry Director, National Electrical Manufacturers Association • John Malinowski, Senior Product Manager, AC Motors, Baldor Electric Company • Howard Penrose, Engineering and Reliability Services, Dreisilker Electric Motors. Cover photo from iStock 23169039 PREMIUM EFFICIENCY MOTOR SELECTION AND APPLICATION GUIDE | i CONTENTS GLOSSARY . vii LIST OF ACRONYMS . x CHAPTER 1 INTRODUCTION...............................................................................1-1 Industrial Motor Population, Energy Consumption, and Uses.......................................1-2 Annual Electric Motor Sales Volume and Energy Savings Potential .................................1-4 When to Buy Premium Efficiency Motors .........................................................1-7 References .....................................................................................1-9 CHAPTER 2 PREMIUM EFFICIENCY MOTOR PERFORMANCE ............................................ 2-1 Overview of U.S. Motor Minimum Efficiency Performance Standards . 2-2 European and IEC Motor Efficiency Standards.................................................2-6 European MEPS: Efficiency Standard Levels and Implementation Timeline......................... 2-7 Motor Losses and Loss Reduction Techniques ...................................................2-8 Determining and Comparing Motor Efficiencies ................................................. 2-10 Efficiency Definitions ....................................................................... 2-10 Motor Efficiency Testing Standards ...........................................................2-12 Testing Equipment Accuracy Limitations......................................................2-13 NEMA Motor Nameplate Labeling Standards .................................................2-13 MotorMaster+ Motor Price and Performance Database ........................................2-15 References ....................................................................................2-16 CHAPTER 3 EVALUATING MOTOR ENERGY EFFICIENCY OPPORTUNITIES ............................. 3-1 Understanding Your Utility Rate Schedule .......................................................3-2 Determining Motor Load .......................................................................3-3 Using Input Power Measurements . 3-3 Using Line Current Measurements ...........................................................3-4 The Slip Method ............................................................................3-4 Determining Operating Hours ..................................................................3-4 Estimating the Performance of Old Standard Efficiency Motors ...................................3-5 Calculating Annual Energy and Demand Savings ................................................3-6 Understanding Motor Purchase Prices .......................................................... 3-7 Assessing Cost-Effectiveness ................................................................... 3-7 Making the Right Choice ....................................................................3-11 References ....................................................................................3-12 ii | PREMIUM EFFICIENCY MOTOR SELECTION AND APPLICATION GUIDE CHAPTER 4 PREMIUM EFFICIENCY MOTOR APPLICATION CONSIDERATIONS . .4-1 New Motor Purchases ..........................................................................4-2 Motor Failure and Repair/Replace Decision-Making ..............................................4-3 Motor Repair Best Practices ....................................................................4-7 Immediate Replacement of Operable Standard Efficiency Motors ................................4-8 Oversized and Underloaded Motors ............................................................4-9 Efficiency Gains and Motor Operating Speed ...................................................4-10 Motor Efficiency at Full and Part Load ......................................................... 4-14 Use MotorMaster+ to Conduct Analyses of Motor Repair or Oversized Motor Replacement Opportunities .................................................. 4-14 References ................................................................................... 4-15 CHAPTER 5 MOTOR PERFORMANCE UNDER USUAL AND ABNORMAL OPERATING CONDITIONS ..................................................... 5-1 Overvoltage Operation ........................................................................5-2 Undervoltage Operation .......................................................................5-3 Phase Voltage Unbalance ......................................................................5-4 Load Shedding ................................................................................5-6 Motor Interactions with Electronic Adjustable Speed Drives ......................................5-6 Voltage Overshoot ............................................................................. 5-7 Bearing Currents ...............................................................................5-8 References ................................................................................... 5-10 CHAPTER 6 MOTOR CHOICES: EXTERNAL ENVIRONMENT AND APPLICATION CONSIDERATIONS......................................................6-1 Motor Enclosures ..............................................................................6-2 Motor Efficiency Versus Speed and Enclosure Type ..............................................6-4 Motor Insulation Systems ......................................................................6-4 Service Factor .................................................................................6-6 Motor Speed, Slip, and Torque Relationships ....................................................6-7 Severe Duty and IEEE 841 Motors ...............................................................6-8 Inverter-Duty Motors ...........................................................................6-9 Inverter-Duty Motor Design Features ........................................................ 6-10 Guidance for Selecting Motors Controlled by an ASD ......................................... 6-10 References ................................................................................... 6-12 PREMIUM EFFICIENCY MOTOR SELECTION AND APPLICATION GUIDE | iii CHAPTER 7 ADVANCED MOTOR TECHNOLOGIES ....................................................... 7-1 Copper Rotor Motors........................................................................... 7-2 Permanent Magnet Motors ..................................................................... 7-3 Switched Reluctance Motors...................................................................
Recommended publications
  • Locomotive Dedication Ceremony
    The American Society of Mechanical Engineers REGIONAL MECHANICAL ENGINEERING HERITAGE COLLECTION LOCOMOTIVE DEDICATION CEREMONY Kenefick Park • Omaha, Nebraska June 7, 1994 Locomotives 4023 and 6900 are examples of the world’s largest motive power in the steam and diesel eras. These locomotives are on permanent display at Kenefick Park, which was established in 1989 in honor of noted former Union Pacific chairman, John C. Kenefick. The 4023 was one of twenty-five famous “Big Boy” type simple articulated locomotives Locomotive 4023 was a feature display lauded in the industry and press as the highest horsepower, heaviest and longest steam at the Omaha Shops locomotives ever built, developing seven thousand horsepower at their seventy miles until being moved to per hour design speed. Kenefick Park. 2 World’s largest The Big Boy type was designed at the Omaha headquarters of Union Pacific under the single unit diesel personal direction of the road’s noted mechanical head, Otto Jabelmann. The original locomotives required four axle trucks to distribute twenty locomotives of this type were built by American Locomotive Company in their heavy weight and Schenectady, New York, in the fall of 1941. They were built in preparation for the nation’s keep within track probable entry into World War II because no proven diesel freight locomotive was yet loading limits. in production. These 4-8-8-4 type locomotives were specifically designed to haul fast, heavy eastbound freight trains between Ogden, Utah, and Green River, Wyoming, over the 1.14 percent eastbound grade. The 4023 was one of five additional units built in 1944 under govern- ment authority in preparation for a twenty-five percent increase in traffic due to the shift from European to Pacific war operations.
    [Show full text]
  • ROUND the BEND TEAM Being Through Our Efforts
    Round the bend Farm A CENTER FOR RESTORATIVE COMMUNITY 1 LETTER FROM THE It’s been an AMAZING monarch year for us here at RTB. We even offered CO-VISIONARIES a monarch class in July Desa & Nia Van Laarhoven and we’ve been hatching & Geoff Kinder some at RTB to increase s fall descends on Round the Bend Farm their odds. (RTB), vivid colors mark the passage of time. Autumn’s return grounds us amid Aeach day’s frenetic news cycles. It reminds us of the deeper cycle that connects us all to the earth and to each other. And yet one news story, from late September, has done the same. More than 7.5 million people came together in cities and villages across the planet to call in unison for an environmentally just and sustainable world. This is a story that speaks to RTB’s mission and purpose and demonstrates the concept of Restorative Community that’s so central to our existence. You can see it in the image that juxtaposed September’s global crowds with the prior year’s solitary Swedish protester. You can hear it in the words spoken by an Indigenous Brazilian teen to 250,000 people lining the streets of New York City. Restorative Community is a force multiplier for our own personal commitments to justice, health and peace. It nurtures and supports us as individuals, unites and strengthens us as a movement and harnesses our differences in service of our common goals. In community, we respect, enjoy and learn from each other. As you page through this year’s annual report, we hope you experience the same! We’re This past year, we continued to expand our inspired and encouraged by what we’ve Restorative Community at RTB, more than accomplished this year and we’re honored to doubling the number of people who visited serve our community in ever new ways.
    [Show full text]
  • Methods for Rapid Estimation of Motor Input Power in Hvac Assessments
    METHODS FOR RAPID ESTIMATION OF MOTOR INPUT POWER IN HVAC ASSESSMENTS A Thesis by KEVIN DAVID CHRISTMAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2010 Major Subject: Mechanical Engineering METHODS FOR RAPID ESTIMATION OF MOTOR INPUT POWER IN HVAC ASSESSMENTS A Thesis by KEVIN DAVID CHRISTMAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, David E. Claridge Committee Members, Charles Culp Michael Pate Head of Department, Dennis O'Neal May 2010 Major Subject: Mechanical Engineering iii ABSTRACT Methods for Rapid Estimation of Motor Input Power in HVAC Assessments. (May 2010) Kevin David Christman, B.S.E., Walla Walla University Chair of Advisory Committee: Dr. David E. Claridge In preliminary building energy assessments, it is often desired to estimate a motor's input power. Motor power estimates in this context should be rapid, safe, and noninvasive. Existing methods for motor input power estimation, such as direct measurement (wattmeter), Current Method, and Slip Method were evaluated. If installed equipment displays input power or average current, then using such readings are preferred. If installed equipment does not display input power or current, the application of wattmeters or current clamps is too time-consuming and invasive for the preliminary energy audit. In that case, if a shaft speed measurement is readily available, then the Slip Method is a satisfactory method for estimating motor input power.
    [Show full text]
  • Engineering Info
    Engineering Info To Find Given Formula 1. Basic Geometry Circumference of a circle Diameter Circumference = 3.1416 x diameter Diameter of a circle Circumference Diameter = Circumference / 3.1416 2. Motion Ratio High Speed & Low Speed Ratio = RPM High RPM Low RPM Feet per Minute of Belt RPM = FPM and Pulley Diameter .262 x diameter in inches Belt Speed Feet per Minute RPM & Pulley Diameter FPM = .262 x RPM x diameter in inches Ratio Teeth of Pinion & Teeth of Gear Ratio = Teeth of Gear Teeth of Pinion Ratio Two Sprockets or Pulley Diameters Ratio = Diameter Driven Diameter Driver 3. Force - Work - Torque Force (F) Torque & Diameter F = Torque x 2 Diameter Torque (T) Force & Diameter T = ( F x Diameter) / 2 Diameter (Dia.) Torque & Force Diameter = (2 x T) / F Work Force & Distance Work = Force x Distance Chain Pull Torque & Diameter Pull = (T x 2) / Diameter 4. Power Chain Pull Horsepower & Speed (FPM) Pull = (33,000 x HP)/ Speed Horsepower Force & Speed (FPM) HP = (Force x Speed) / 33,000 Horsepower RPM & Torque (#in.) HP = (Torque x RPM) / 63025 Horsepower RPM & Torque (#ft.) HP = (Torque x RPM) / 5250 Torque HP & RPM T #in. = (63025 x HP) / RPM Torque HP & RPM T #ft. = (5250 x HP) / RPM 5. Inertia Accelerating Torque (#ft.) WK2, RMP, Time T = WK2 x RPM 308 x Time Accelerating Time (Sec.) Torque, WK2, RPM t = WK2 x RPM 308 x Torque WK2 at motor WK2 at Load, Ratio WK2 Motor = WK2 Ratio2 6. Gearing Gearset Centers Pd Gear & Pd Pinion Centers = ( PdG + PdP ) / 2 Pitch Diameter No. of Teeth & Diametral Pitch Pd = Teeth / DP Pitch Diameter No.
    [Show full text]
  • History of a Forgotten Engine Alex Cannella, News Editor
    POWER PLAY History of a Forgotten Engine Alex Cannella, News Editor In 2017, there’s more variety to be found un- der the hood of a car than ever. Electric, hybrid and internal combustion engines all sit next to a range of trans- mission types, creating an ever-increasingly complex evolu- tionary web of technology choices for what we put into our automobiles. But every evolutionary tree has a few dead end branches that ended up never going anywhere. One such branch has an interesting and somewhat storied history, but it’s a history that’s been largely forgotten outside of columns describing quirky engineering marvels like this one. The sleeve-valve engine was an invention that came at the turn of the 20th century and saw scattered use between its inception and World War II. But afterwards, it fell into obscurity, outpaced (By Andy Dingley (scanner) - Scan from The Autocar (Ninth edition, circa 1919) Autocar Handbook, London: Iliffe & Sons., pp. p. 38,fig. 21, Public Domain, by the poppet valves we use in engines today that, ironically, https://commons.wikimedia.org/w/index.php?curid=8771152) it was initially developed to replace. Back when the sleeve-valve engine was first developed, through the economic downturn, and by the time the econ- the poppet valves in internal combustion engines were ex- omy was looking up again, poppet valve engines had caught tremely noisy contraptions, a concern that likely sounds fa- up to the sleeve-valve and were quickly becoming just as miliar to anyone in the automotive industry today. Charles quiet and efficient.
    [Show full text]
  • Understanding Permanent Magnet Motor Operation and Optimized Filter Solutions
    Understanding Permanent Magnet Motor Operation and Optimized Filter Solutions June 15, 2016 Todd Shudarek, Principal Engineer MTE Corporation N83 W13330 Leon Road Menomonee Falls WI 53154 www.mtecorp.com Abstract Recent trends indicate the use of permanent magnet (PM) motors because of its energy savings over induction motors. PM motors offer energy savings, higher power densities, and improved control. The upfront cost of a PM motor may be higher than an induction motor, but the total cost of ownership may be lower. However, a PM motor system brings design challenges in terms of selecting the best variable frequency drive (VFD) as well as a filter to protect the motor. A PM motor requires the use of a VFD to start and operate. The best VFDs will need to operate at higher switching frequencies to meet the higher fundamental frequencies of the PM motors. In turn, the PM motor will need to be protected from power distortion, harmonics, and overheating. While a traditional filter is de-rated to meet the higher frequencies, this paper will demonstrate that, by nature of the operation of a PM motor, an appropriately design filter that operates for higher switching and fundamental frequencies will reduce the size, weight, and cost of the system. Introduction special considerations when specifying a filter for a PM motor system, specifically the use of Historically induction motors have been used in higher switching frequencies and filters. a variety of industrial applications. Recent trends indicate a shift toward permanent magnet (PM) motors which offer up to 20% energy savings, Induction Motor Operation higher power densities, and improved control.
    [Show full text]
  • The Fundamentals of Ac Electric Induction Motor Design and Application
    THE FUNDAMENTALS OF AC ELECTRIC INDUCTION MOTOR DESIGN AND APPLICATION by Edward J. Thornton Electrical Consultant E. I. du Pont de Nemours Houston, Texas and J. Kirk Armintor Senior Account Sales Engineer Rockwell Automation The Woodlands, Texas Edward J. (Ed) Thornton is an Electrical Electrical Mechanical Consultant in the Electrical Technology Coupling System Field System Consulting Group in Engineering at DuPont, in Houston, Texas. His specialty is the design, operation, and maintenance of electric power distribution systems and large motor installations. He has 20 years E , I T , w of consulting experience with DuPont. Mr. Thornton received his B.S. degree Figure 1. Block Representation of Energy Conversion for Motors. (Electrical Engineering, 1978) from Virginia Polytechnic Institute and State University. The coupling magnetic field is key to the operation of electrical He is a registered Professional Engineer in the State of Texas. apparatus such as induction motors. The fundamental laws associated with the relationship between electricity and magnetism were derived from experiments conducted by several key scientists J. Kirk Armintor is a Senior Account in the 1800s. Sales Engineer in the Rockwell Automation Houston District Office, in The Woodlands, Basic Design and Theory of Operation Texas. He has 32 years’ experience with The alternating current (AC) induction motor is one of the most motor applications in the petroleum, rugged and most widely used machines in industry. There are two chemical, paper, and pipeline industries. major components of an AC induction motor. The stationary or He has authored technical papers on motor static component is the stator. The rotating component is the rotor.
    [Show full text]
  • Axial Field Permanent Magnet Machines with High Overload Capability for Transient Actuation Applications
    THE UNIVERSITY OF SHEFFIELD Axial field permanent magnet machines with high overload capability for transient actuation applications By Jiangnan Gong A Thesis submitted for the degree of Doctor of Philosophy Department of Electronic and Electrical Engineering The University of Sheffield. JANUARY 2018 ABSTRACT This thesis describes the design, construction and testing of an axial field permanent magnet machine for an aero-engine variable guide vane actuation system. The electrical machine is used in combination with a leadscrew unit that results in a minimum torque specification of 50Nm up to a maximum speed of 500rpm. The combination of the geometry of the space envelope available and the modest maximum speed lends itself to the consideration of an axial field permanent magnet machines. The relative merits of three topologies of double-sided permanent magnet axial field machines are discussed, viz. a slotless toroidal wound machine, a slotted toroidal machine and a yokeless axial field machine with separate tooth modules. Representative designs are established and analysed with three-dimensional finite element method, each of these 3 topologies are established on the basis of a transient winding current density of 30A/mm2. Having established three designs and compared their performance at the rated 50Nm point, further overload capability is compared in which the merits of the slotless machine is illustrated. Specifically, this type of axial field machine retains a linear torque versus current characteristic up to higher torques than the other two topologies, which are increasingly affected by magnetic saturation. Having selected a slotless machine as the preferred design, further design optimization was performed, including detailed assessment of transient performance.
    [Show full text]
  • Funding On-Farm Anaerobic Digestion September 2012
    Funding On-Farm Anaerobic Digestion September 2012 naerobic digestion of on-farm manure resources offers Some examples of programs where federal and state agencies livestock and poultry producers (farm operators) a unique provide grant funding for the construction and operation of Aopportunity to increase on-farm revenue. As energy costs anaerobic digesters include the U.S. Department of Agriculture become a larger part of the farm operation budget, farm operators (USDA) Rural Energy for America Program (REAP) and Ohio’s are increasingly looking to energy efficiency and renewable energy State Energy Program. In some cases, federal-level funding projects as a viable option for increasing farm revenues. One such sources (i.e., American Recovery and Reinvestment Act of 2009, option is anaerobic digestion of animal manure, a waste resource or ARRA) provide states with grant money that is administered at that has considerable potential for generating clean, renewable, the state level. For additional information on funding programs domestic energy. available for anaerobic digesters, see the fact sheet Funding Programs for Developing Anaerobic Digestion Systems (http:// One of the biggest obstacles to widespread adoption of on-farm www.epa.gov/agstar/documents/agstar_federal_incentives.pdf), anaerobic digestion has been its cost. Anaerobic digesters require and also the AgSTAR Funding database, Funding On-Farm Biogas significant amounts of up-front capital costs (expenditures), in Recovery Systems: A Guide to Federal and State Resources (http://
    [Show full text]
  • Business/NGO Partnerships -- What's the Payback?
    Business/NGO Partnerships -- What’s the Payback? By Roger Cowe Ethical Corporation April 2004 Here’s a look at some high profile cases of business/NGO partnerships and the strategic benefits and challenges for both sides. When Greenpeace shared a platform with Shell at the Johannesburg Summit, the contrast with the classic notion of business/NGO confrontation could not have been starker. A decade earlier, one of the oil giant’s redundant platforms (such as Brent Spar) would have been the only kind to have interested the campaign group. Johannesburg was the Partnership summit. It was built on the premise that governments cannot achieve sustainability on their own, that businesses can be part of the solution, and that NGOs have at least as good an idea what the solution is as anybody else. The business world is also formally engaged in pursuing the UN’s Millennium Development Goals. The joint call by Greenpeace and the World Business Council for Sustainable Development for action on climate change symbolized the growing feeling on both sides that NGOs working with businesses can often achieve more than by attacking from the outside. Many campaigners are still suspicious, and even those working with business reserve the right to criticize. But many partnerships were launched in Johannesburg; many more have flowered since -- from BAT on biodiversity to Coca- Cola on HIV/Aids. The attractions are obvious, but so are the dangers. Most significant, perhaps, is the danger that the concept is used simply to get businesses to stump up money, which is more like taxation than partnership.
    [Show full text]
  • Design of 42V/3000W PERMANENT MAGNET SYNCHRONOUS GENERATOR ______
    Electronics Mechanics Computers The Ohio State University Mechatronic Systems Program Design of 42V/3000W PERMANENT MAGNET SYNCHRONOUS GENERATOR _________________________________ By Guruprasad Mahalingam , M.S. Student Prof. Ali Keyhani Mechatronics System Laboratory DEPARTMENT OF ELECTRICAL ENGINEERING THE OHIO STATE UNIVERSITY [email protected] Phone: 614-292-4430 December, 2000 120 Acknowledgments I wish to thank my adviser, Professor Ali Keyhani, for his insight, support and guidance which made this work possible. This work was supported in part by the Delphi Automotive Systems, The National Science Foundation: Grant ESC 9722844, 9625662, Department of Electrical Engg., The Ohio State University. I also wish to thank Ford Motor Company, TRW, AEP which support the work at Mechatronics Systems Lab. I wish to acknowledge Mongkol Konghirun, Coy Brian Studer whose earlier work in the field was a ready reference to my work. My sincere thanks to Dr. Tomy Sebastian, Delphi Saginaw Steering Systems for his support, advice, and interest in my research; Mr. Philippe Wendling from Magsoft Corporation for his technical assistance. 121 CHAPTER 1 Machine Design - Introduction And Basics 1.1 Background Transforming the classical mechanical and hydraulic systems into electric systems to provide better performance and customer satisfaction is the current trend in the automotive industry Eg. electric power steering systems, electric brakes etc.. The penalty is the increase in demand for electrical power. It is estimated that the steady state power requirement in the typical luxury class vehicle would rise from the current level of 1500 W to about 3000 W and to about 7000 W for a hybrid electric vehicle by the year 2005 [16,17,2].
    [Show full text]
  • Advancing Motivation Feedforward Control of Permanent Magnetic Linear Oscillating Synchronous Motor for High Tracking Precision
    actuators Article Advancing Motivation Feedforward Control of Permanent Magnetic Linear Oscillating Synchronous Motor for High Tracking Precision Zongxia Jiao 1,2,3, Yuan Cao 1, Liang Yan 1,2,3,*, Xinglu Li 1,3, Lu Zhang 1,2,3 and Yang Li 1,3 1 School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China; [email protected] (Z.J.); [email protected] (Y.C.); [email protected] (X.L.); [email protected] (L.Z.); [email protected] (Y.L.) 2 Ningbo Institute of Technology, Beihang University, Ningbo 315800, China 3 Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing 100191, China * Correspondence: [email protected] Abstract: Linear motors have promising application to industrial manufacture because of their direct motion and thrust output. A permanent magnetic linear oscillating synchronous motor (PMLOSM) provides reciprocating motion which can drive a piston pump directly having advantages of high frequency, high reliability, and easy commercial manufacture. Hence, researching the tracking perfor- mance of PMLOSM is of great importance to realizing its popularization and application. Traditional PI control cannot fulfill the requirement of high tracking precision, and PMLOSM performance has high phase lag because of high control stiffness. In this paper, an advancing motivation feedforward control (AMFC), which is a combination of advancing motivation signal and PI control signal, is proposed to obtain high tracking precision of PMLOSM. The PMLOSM inserted with AMFC can provide accurate trajectory tracking at a high frequency. Compared with single PI control, AMFC can reduce the phase lag from −18 to −2.7 degrees, which shows great promotion of the tracking Citation: Jiao, Z.; Cao, Y.; Yan, L.; Li, precision of PMLOSM.
    [Show full text]