Linear Shaft Motor Vs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High Speed Linear Induction Motor Efficiency Optimization
Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 2005-06 High speed linear induction motor efficiency optimization Johnson, Andrew P. (Andrew Peter) http://hdl.handle.net/10945/11052 High Speed Linear Induction Motor Efficiency Optimization by Andrew P. Johnson B.S. Electrical Engineering SUNY Buffalo, 1994 Submitted to the Department of Ocean Engineering and the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Naval Engineer and Master of Science in Electrical Engineering and Computer Science at the Massachusetts Institute of Technology June 2005 ©Andrew P. Johnson, all rights reserved. MIT hereby grants the U.S. Government permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part. Signature of A uthor ................ ............................... D.epartment of Ocean Engineering May 7, 2005 Certified by. ..... ........James .... ... ....... ... L. Kirtley, Jr. Professor of Electrical Engineering // Thesis Supervisor Certified by......................•........... ...... ........................S•:• Timothy J. McCoy ssoci t Professor of Naval Construction and Engineering Thesis Reader Accepted by ................................................. Michael S. Triantafyllou /,--...- Chai -ommittee on Graduate Students - Depa fnO' cean Engineering Accepted by . .......... .... .....-............ .............. Arthur C. Smith Chairman, Committee on Graduate Students DISTRIBUTION -
Single-Phase Line Start Permanent Magnet Synchronous Motor with Skewed Stator*
POWER ELECTRONICS AND DRIVES Vol. 1(36), No. 2, 2016 DOI: 10.5277/PED160212 SINGLE-PHASE LINE START PERMANENT MAGNET SYNCHRONOUS MOTOR WITH SKEWED STATOR* MACIEJ GWOŹDZIEWICZ, JAN ZAWILAK Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland, e-mail: [email protected], [email protected] Abstract: The article deals with single-phase line start permanent magnet synchronous motor with skewed stator. Constructions of two physical motor models are presented. Results of the motors run- ning properties are analysed. Keywords: single-phase motor, permanent magnet, skew, vibration 1. INTRODUCTION Single-phase induction motors almost always have skewed rotors. It is a simple and effective solution in limitation of the motor vibration, noise and torque pulsation. In the case of line start permanent magnet synchronous motors skewed rotor is ex- tremely difficult to manufacture due to interior permanent magnets. Skewed stator is less complicated in comparison with skewed rotor [3], [4], [7], [8]. During many tests of single-phase line start permanent magnet synchronous motor physical models The authors noticed that vibration is one of the main drawbacks of these motors [1], [2]. It prompted them to construct and build a single-phase line start permanent magnet motor with skewed stator. 2. MOTOR CONSTRUCTION Two dimensional field-circuit models of the single-phase line start permanent magnet synchronous motor were applied in Maxwell software. The models are based on the mass production single-phase induction motor Seh 80-2B type: rated power Pn = 1.1 kW, rated voltage Un = 230 V, rated frequency fn = 50 Hz, number of pole * Manuscript received: September 7, 2016; accepted: December 7, 2016. -
United States Patent (19) 11 4,343,223 Hawke Et Al
United States Patent (19) 11 4,343,223 Hawke et al. 45) Aug. 10, 1982 54 MULTIPLESTAGE RAILGUN UCRL-52778, (7/6/79). Hawke. 75 Inventors: Ronald S. Hawke, Livermore; UCRL-82296, (10/2/79) Hawke et al. Jonathan K. Scudder, Pleasanton; Accel. Macropart, & Hypervel. EM Accelerator, Bar Kristian Aaland, Livermore, all of ber (3/72) Australian National Univ., Canberra ACT Calif. pp. 71,90–93. LA-8000-G (8/79) pp. 128, 135-137, 140, 144, 145 73) Assignee: The United States of America as (Marshall pp. 156-161 (Muller et al). represented by the United States Department of Energy, Washington, Primary Examiner-Sal Cangialosi D.C. Attorney, Agent, or Firm-L. E. Carnahan; Roger S. Gaither; Richard G. Besha . - (21) Appl. No.: 153,365 57 ABSTRACT 22 Filed: May 23, 1980 A multiple stage magnetic railgun accelerator (10) for 51) Int. Cl........................... F41F1/00; F41F 1/02; accelerating a projectile (15) by movement of a plasma F41F 7/00 arc (13) along the rails (11,12). The railgun (10) is di 52 U.S. Cl. ....................................... ... 89/8; 376/100; vided into a plurality of successive rail stages (10a-n) - 124/3 which are sequentially energized by separate energy 58) Field of Search .................... 89/8; 124/3; 310/12; sources (14a-n) as the projectile (15) moves through the 73/12; 376/100 bore (17) of the railgun (10). Propagation of energy from an energized rail stage back towards the breech 56) References Cited end (29) of the railgun (10) can be prevented by connec U.S. PATENT DOCUMENTS tion of the energy sources (14a-n) to the rails (11,12) 2,783,684 3/1957 Yoler ...r. -
Permanent Magnet DC Motors Catalog
Catalog DC05EN Permanent Magnet DC Motors Drives DirectPower Series DA-Series DirectPower Plus Series SC-Series PRO Series www.electrocraft.com www.electrocraft.com For over 60 years, ElectroCraft has been helping engineers translate innovative ideas into reality – one reliable motor at a time. As a global specialist in custom motor and motion technology, we provide the engineering capabilities and worldwide resources you need to succeed. This guide has been developed as a quick reference tool for ElectroCraft products. It is not intended to replace technical documentation or proper use of standards and codes in installation of product. Because of the variety of uses for the products described in this publication, those responsible for the application and use of this product must satisfy themselves that all necessary steps have been taken to ensure that each application and use meets all performance and safety requirements, including all applicable laws, regulations, codes and standards. Reproduction of the contents of this copyrighted publication, in whole or in part without written permission of ElectroCraft is prohibited. Designed by stilbruch · www.stilbruch.me ElectroCraft DirectPower™, DirectPower™ Plus, DA-Series, SC-Series & PRO Series Drives 2 Table of Contents Typical Applications . 3 Which PMDC Motor . 5 PMDC Drive Product Matrix . .6 DirectPower Series . 7 DP20 . 7 DP25 . 9 DP DP30 . 11 DirectPower Plus Series . 13 DPP240 . 13 DPP640 . 15 DPP DPP680 . 17 DPP700 . 19 DPP720 . 21 DA-Series. 23 DA43 . 23 DA DA47 . 25 SC-Series . .27 SCA-L . .27 SCA-S . .29 SC SCA-SS . 31 PRO Series . 33 PRO-A04V36 . 35 PRO-A08V48 . 37 PRO PRO-A10V80 . -
Magnetism Known to the Early Chinese in 12Th Century, and In
Magnetism Known to the early Chinese in 12th century, and in some detail by ancient Greeks who observed that certain stones “lodestones” attracted pieces of iron. Lodestones were found in the coastal area of “Magnesia” in Thessaly at the beginning of the modern era. The name of magnetism derives from magnesia. William Gilbert, physician to Elizabeth 1, made magnets by rubbing Fe against lodestones and was first to recognize the Earth was a large magnet and that lodestones always pointed north-south. Hence the use of magnetic compasses. Book “De Magnete” 1600. The English word "electricity" was first used in 1646 by Sir Thomas Browne, derived from Gilbert's 1600 New Latin electricus, meaning "like amber". Gilbert demonstrates a “lodestone” compass to ER 1. Painting by Auckland Hunt. John Mitchell (1750) found that like electric forces magnetic forces decrease with separation (conformed by Coulomb). Link between electricity and magnetism discovered by Hans Christian Oersted (1820) who noted a wire carrying an electric current affected a magnetic compass. Conformed by Andre Marie Ampere who shoes electric currents were source of magnetic phenomena. Force fields emanating from a bar magnet, showing Nth and Sth poles (credit: Justscience 2017) Showing magnetic force fields with Fe filings (Wikipedia.org.) Earth’s magnetic field (protects from damaging charged particles emanating from sun. (Credit: livescience.com) Magnetic field around wire carrying a current (stackexchnage.com) Right hand rule gives the right sign of the force (stackexchnage.com) Magnetic field generated by a solenoid (miniphyiscs.com) Van Allen radiation belts. Energetic charged particles travel along B lines Electric currents (moving charges) generate magnetic fields but can magnetic fields generate electric currents. -
Discrete and Continuous Model of Three-Phase Linear Induction Motors “Lims” Considering Attraction Force
energies Article Discrete and Continuous Model of Three-Phase Linear Induction Motors “LIMs” Considering Attraction Force Nicolás Toro-García 1 , Yeison A. Garcés-Gómez 2 and Fredy E. Hoyos 3,* 1 Department of Electrical and Electronics Engineering & Computer Sciences, Universidad Nacional de Colombia—Sede Manizales, Cra 27 No. 64 – 60, Manizales, Colombia; [email protected] 2 Unidad Académica de Formación en Ciencias Naturales y Matemáticas, Universidad Católica de Manizales, Cra 23 No. 60 – 63, Manizales, Colombia; [email protected] 3 Facultad de Ciencias—Escuela de Física, Universidad Nacional de Colombia—Sede Medellín, Carrera 65 No. 59A-110, 050034, Medellín, Colombia * Correspondence: [email protected]; Tel.: +57-4-4309000 Received: 18 December 2018; Accepted: 14 February 2019; Published: 18 February 2019 Abstract: A fifth-order dynamic continuous model of a linear induction motor (LIM), without considering “end effects” and considering attraction force, was developed. The attraction force is necessary in considering the dynamic analysis of the mechanically loaded linear induction motor. To obtain the circuit parameters of the LIM, a physical system was implemented in the laboratory with a Rapid Prototype System. The model was created by modifying the traditional three-phase model of a Y-connected rotary induction motor in a d–q stationary reference frame. The discrete-time LIM model was obtained through the continuous time model solution for its application in simulations or computational solutions in order to analyze nonlinear behaviors and for use in discrete time control systems. To obtain the solution, the continuous time model was divided into a current-fed linear induction motor third-order model, where the current inputs were considered as pseudo-inputs, and a second-order subsystem that only models the currents of the primary with voltages as inputs. -
Chapter # 2 Cylindrical Synchronous Generator and Motor 1
Benha University Electrical Engineering Department Faculty of Engineering at Shubra Electric Machines II Chapter # 2 Cylindrical Synchronous Generator and Motor 1. Introduction Synchronous machines are named by this name as their speed is directly related to the line frequency. Synchronous machines may be operated either as motor or generator. Synchronous generators are called alternators. Synchronous motors are used mainly for power factor correction when operate at no load. Synchronous machines are usually constructed with stationary stator (armature) windings that carrying the current and rotating rotor (field) winding that create the magnetic flux. This flux is produced by DC current from a separate source (e.g. DC shunt generator). 2. Types of Synchronous Generators The type of synchronous generators depends on the prime mover type as: a) Steam turbines: synchronous generators that driven by steam turbine are high speed machines and known as turbo alternators. The maximum rotor speed is 3600 rpm corresponding 60 Hz and two poles. b) Hydraulic turbines: synchronous generators that driven by water turbine are with speed varies from 50 to 500 rpm. The type of turbine to be used depends on the water head. For water head of 400m, Pelton wheel turbines are used. But for water head up to 350 m, Francis Turbines are used. For water head up to 50 m, Kaplan Turbines are used. 1 Chapter #2 Cylindrical Synchronous Machines Dr. Ahmed Mustafa Hussein Benha University Electrical Engineering Department Faculty of Engineering at Shubra Electric Machines II c) Diesel Engines: they are used as prime movers for synchronous generator of small ratings. For the type a) and c) the rotor shape is cylindrical as shown in Fig. -
DC Motor Workshop
DC Motor Annotated Handout American Physical Society A. What You Already Know Make a labeled drawing to show what you think is inside the motor. Write down how you think the motor works. Please do this independently. This important step forces students to create a preliminary mental model for the motor, which will be their starting point. Since they are writing it down, they can compare it with their answer to the same question at the end of the activity. B. Observing and Disassembling the Motor 1. Use the small screwdriver to take the motor apart by bending back the two metal tabs that hold the white plastic end-piece in place. Pull off this plastic end-piece, and then slide out the part that spins, which is called the armature. 2. Describe what you see. 3. How do you think the motor works? Discuss this question with the others in your group. C. Mounting the Armature 1. Use the diagram below to locate the commutator—the split ring around the motor shaft. This is the armature. Shaft Commutator Coil of wire (electromagnetic) 2. Look at the drawing on the next page and find the brushes—two short ends of bare wire that make a "V". The brushes will make electrical contact with the commutator, and gravity will hold them together. In addition the brushes will support one end of the armature and cradle it to prevent side- to-side movement. 1 3. Using the cup, the two rubber bands, the piece of bare wire, and the three pieces of insulated wire, mount the armature as in the diagram below. -
Electric Vehicle Modeling Utilizing DC Motor Equations
1 Electric Vehicle Modeling Utilizing DC Motor Equations Clay S. Hearn, Damon A. Weeks, Richard C. Thompson, and Dongmei Chen Abstract— This paper discusses modeling an electric utility vehicle powered by a separately wound DC motor. Many modeling techniques use steady state efficiency maps and torque- speed curves to describe the performance of electric motors, which can overlook transient response dynamics, current limits, and thermal limits that may affect the end vehicle performance. This paper discusses using bond-graph techniques to develop a causal model of an electric vehicle powered by a separately wound DC motor and development of the appropriate feed- forward and feed-back controllers required for route following. The causal model performance is compared to a PSAT model of the same electric vehicle, which uses motor torque-speed curve and efficiency map. Fig. 1. Columbia ParCar SUV-LN electric utility vehicle Index Terms—dc motors, PSAT, bond graphs, modeling, and for particular applications. The Center for Electromechanics electric vehicle has successfully used PSAT in the past to predict on-route energy usage of a plug-in hydrogen fuel cell shuttle bus. I. INTRODUCTION Tuned PSAT model predictions of energy consumption matched data collected from on-road testing to within 5% [1]. ll electric utility vehicles such as the Columbia ParCar PSAT is considered a forward looking model since a A SUV-LN, shown in Figure 1, are used in a wide variety controlled drive torque demand is used to control the vehicle of industrial and commercial applications where tools, following a particulate route. From the motor torque and equipment, and personnel need to be transported efficiently vehicle speed, quasistatic model techniques are used to track with zero emissions. -
Hybrid Synchronous Motor Electromagnetic Torque Research
MATEC Web of Conferences 19, 01026 (2014) DOI: 10.1051/matecconf/201419 01 026 C Owned by the authors, published by EDP Sciences, 2014 Hybrid synchronous motor electromagnetic torque research Elena E. Suvorkovaa, Lev K. Burulko National Research Tomsk Polytechnic University, 634050 Tomsk, Russia Abstract. Electromagnetic field distribution models in reluctance and permanent magnet parts were made by means of Elcut. Dependences of electromagnetic torque on torque angle were obtained. 1. Introduction Present-day position is inextricably connected with developing process in all components of electric drive: electrical machines, power semiconductors and converters on its base. One of the main electric motors development directions is expanding special motors’ construction range for applying in modern competitive object-orientated systems. Electric machines prospects of promotion lead to its non-traditional usage such as hybrid synchronous motor (HSM). HSM main principles of operation make it possible to use as executive engine in a number of production plants, such as artificial fiber production [1]. Electric drive projecting involves verification and regulation method choice which are determined by main electric machine characteristics. Thus main goals of this paper are hybrid synchronous motor air-gap magnetic field research and electromagnetic torque main parts determination. 2. Problem statement HSM is a machine with stator created on basis of serial asynchronous motor and rotor consisting on two parts. The main rotor part is a reluctance machine which is 70% of active rotor length [2], the other is synchronous permanent-magnet machine which is 30% [1]. Power is developed by reluctance machine as the cheapest and simple in design, and energy of constant magnets poles is used for increasing power and improving operational characteristics. -
Rita MBAYED Contribution to the Control of the Hybrid Excitation
Année 2012 UNIVERSITE DE CERGY PONTOISE THESE Présentée pour obtenir le grade de DOCTEUR DE L’UNIVERSITE DE CERGY PONTOISE Ecole doctorale: Sciences et Ingénierie Spécialité: Génie Electrique Soutenance publique prévue le 12 Décembre 2012 Par Rita MBAYED Contribution to the Control of the Hybrid Excitation Synchronous Machine for Embedded Applications JURY Rapporteurs : Prof. Gérard CHAMPENOIS Université de Poitiers Prof. Eric SEMAIL Ecole Nationale d'Arts et Métiers ParisTech Examinateurs : Prof. Francis LABRIQUE Université Catholique de Louvain Prof. Mohamed GABSI Ecole Normale Supérieure Cachan Dr. Vincent LANFRANCHI Université de Technologie de Compiègne Directeur de thèse : Prof. Eric MONMASSON Université de Cergy Pontoise Co-directeurs : Prof. GeorgesSALLOUM Université Libanaise Dr. Lionel VIDO Université de Cergy Pontoise Laboratoire SATIE - UCP/UMR 8029, 1 rue d’Eragny, 95031 Neuville sur Oise France The secret is comprised in three words: Work, finish, publish. Michael Faraday Ere many generations pass, our machinery will be driven by a power obtainable at any point of the universe. This idea is not novel. Men have been led to it long ago by instinct or reason; it has been expressed in many ways, and in many places, in the history of old and new. We find it in the delightful myth of Antheus, who derives power from the earth; we find it among the subtle speculations of one of your splendid mathematicians and in many hints and statements of thinkers of the present time. Throughout space there is energy. Is this energy static or kinetic? If static our hopes are in vain; if kinetic - and this we know it is, for certain - then it is a mere question of time when men will succeed in attaching their machinery to the very wheelwork of nature. -
Apermanent Magnet Synchronous Motor for an Electric Vehicle
TRITA-ETS-2004-04 ISSN 1650-674x ISRN KTH/R 0404-SE ISBN 91-7283-803-5 A PERMANENT MAGNET SYNCHRONOUS MOTOR FOR AN ELECTRIC VEHICLE - DESIGN ANALYSIS Yung-kang Chin Stockholm 2004 ELECTRICAL MACHINES AND POWER ELECTRONICS DEPARTMENT OF ELECTRICAL ENGINEERING ROYAL INSTITUTE OF TECHNOLOGY SWEDEN Submitted to the School of Computer Science, Electrical Engineering and Engineering Physics, KTH, in partial fulfilment of the requirements for the degree of Technical Licentiate. Copyright © Yung-kang Chin, Sweden, 2004 Printed in Sweden Universitetsservice US AB TRITA-ETS-2004-04 ISSN 1650-674x ISRN KTH/R 0404-SE ISBN 91-7283-803-5 PPrreeffaaccee This technical licentiate thesis deals with the design analysis of a permanent magnet synchronous motor for an electric vehicle. A thesis is a report that conveys the used theoretical approach and the experimental results on a specific problem in a specific area. A thesis could also develop a purely theoretical approach to a topic. It is my aim as the author to present these findings and theoretical approaches clearly and effectively with this concise report. Never Say Never! This is the phrase I have always referred to and it even appears on my screensaver. When I started my doctoral study at KTH, my plan was to write my doctoral dissertation directly without taking the licentiate examination. Well, as I am now writing the preface of my licentiate thesis, my thought has obviously changed through out the duration of the project work. A good friend of mine, who has a PhD degree in Physics himself, once told me that working on a doctoral degree is just like walking through a long dark tunnel.