Outlook for Technology and Manpower in Printing and Publishing

Total Page:16

File Type:pdf, Size:1020Kb

Outlook for Technology and Manpower in Printing and Publishing L l . 3 ! Outlook n i f for Technology and Manpower in Printing and Publishing Bulletin 1774 U.S. DEPARTMENT OF LABOR Bureau of Labor Statistics 1973 Dayton & Montgomery Ce. Public Library S E P 5 1973 am AAHj Bk Del ame un Elk Tokyo rnt 80 wf o if 6^4 BM toi B k rntW Tr rntW un fla Glass ask Rob 1/4 18 fla Mng s«£r Ale ila Roo •,tpnk Br ass Fin! ;5( 7 - "M Steak $hk assetf f 28 ’2 m 2 ayls Mk 15 '■> 16 Itrl font ^ayiy Cp [ I j w i a m \ V 8 I in * 9 I0G Beacn Ph 6 ojm tJom o a C its Reehv M 8 / V ■Goffil Gr ' i la w San 16 m k Beeline F ijorest 0 m : ; g * N 3ektn Co ▼ rm iq h ?Js ch . Bently Lb Forum R y ra tv erk Bio Fost Grnt JHp.' f erklin Fotomat est Prd Frnkln El SmTeC etz Lab Franz Br Sunset rW Bev Car, £rasr Mt Sunsb Sir le v M q t rn red HeJ SupDIr St 's buper El Fup EquH Orm Mtge As inc m m ice Mtgl Wsn sppfrsih hia Kid risfhs R AAtg W wt l ® 5 . flPWrFfa Bn Id Sc roze F«H *T 14 MtaTr wt Synfwh " , 4 fstlntl Bk Son ullr 10 I 6 1/a 17 Vi Mostek Syr China £ MlstN Cinn Chip undg Sy 10 4»'? Motion In ? P a 22 Va Sys Cap 8 J/4 1st Mary! Evan 75 unk Sd 251 19i a Mot Club Szabo Fd IstNH Gd n Inc urrs Caf 37 14^4 Moxie In ?‘4 TDA Ind P4 1st OklaB Aire a inf h Nw AH a len id In $ Crf 191 a> 22 \r Rt? ks I Pd !Brks $< a Bro hd 13 1 Bwn * *■ * Bnwmr*; Brunos u% B uckb v Buckey* Bldg3idg ;>v* r Bldrsk r o o s s v wsir* k ,i Ricks3 u tn ?.»»»v.l ki*Ti-> to HuFet M f '/a 10V 72 177/ 001/ Swesl StaSt Ienn Digitized for FRASER http://fraser.stlouisfed.org/ Federal Reserve Bank of St. Louis Digitized for FRASER http://fraser.stlouisfed.org/ Federal Reserve Bank of St. Louis Outlook for Technology and Manpower in Printing and Publishing Bulletin 1774 U.S. DEPARTMENT OF LABOR Peter J. Brennan, Secretary BUREAU OF LABOR STATISTICS Ben Burdetsky, Deputy Commissioner 1973 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402, GPO Bookstores, or BLS Regional Offices listed on inside back cover. Price 75 cents domestic postpaid or 50 cents over-the-counter. Make checks payable to Superintendent of Documents. Microfiche edition available from National Technical Information Service, Springfield, Va. 22151, at 95 cents a set. Make checks for microfiche payable to NTIS. Digitized for FRASER http://fraser.stlouisfed.org/ Federal Reserve Bank of St. Louis Digitized for FRASER http://fraser.stlouisfed.org/ Federal Reserve Bank of St. Louis Preface This bulletin describes changes in technology in the printing and publishing industry, a major industry employing over 1 million workers. The study focuses on the impact of new technology on productivity, employment, and occupational requirements, and describes methods of adjustment. It is one of a series of reports prepared to meet the requirements of the Manpower Development and Training Act of 1962, which lirects the Secretary of Labor to establish techniques and methods for detecting in advance the potential manpower effect of automation, technological change, and other innovations that may result in changes in the structure of production. This type of advance information could be of great assistance to management and union leaders, educators, government officials, economists, and others in planning policies to cushion the effects of change. Information for the study was obtained by members of the BLS staff during field visits to newspapers and commercial printing establishments where new technology was introduced and from experts in industry, labor, and government. Information also was obtained from secondary source materials, particularly trade and technical journals. The study includes firsthand information on the impact on production and manpower of electronic computers, phototypesetting equipment, web-offset printing, and other innovations at the nine printing firms which participated in the study. The report also discusses the outlook for future diffusion of new printing technology and describes measures undertaken to maintain job security at survey plants and elsewhere. The Bureau of Labor Statistics is grateful to the many individuals who provided useful information and reviewed the draft of the report. We also wish to thank the Harris-Intertype Corporation for providing us with photographs. The bulletin was prepared in the Division of Technological Studies, Office of Productivity and Technology, by Robert V. Critchlow and Arthur S. Herman, under the direct supervision of Richard W. Riche and the general direction of John J. Macut, Division Chief. iii Digitized for FRASER http://fraser.stlouisfed.org/ Federal Reserve Bank of St. Louis Digitized for FRASER http://fraser.stlouisfed.org/ Federal Reserve Bank of St. Louis Contents Page Introduction ........................................................................................................................................................................ 1 H ighlights.............................................................................................................................................................................. 2 Chapter 1. The printing industry’s importance in the economy .................................................................................. 4 Definition of the industry .......................................................................................................................................... 4 E m ploym ent................................................................................................................................................................. 4 Production and p roductivity....................................................................................................................................... 5 Capital spending .......................................................................................................................................................... 5 Research and developm ent.......................................................................................................................................... 5 Chapter 2. Key technological changes ............................................................................................................................. 7 Composing r o o m .......................................................................................................................................................... 7 Platemaking ....................................................................................................................................................................10 Press operations ............................................................................................................................................................. 12 M ailroom ...........................................................................................................................................................................13 Chapter 3. Introducing new technology at survey pla n ts ....................................................................................................15 Planning .................................................... 15 Installation....................................................................................................................................................................... 15 Costs and benefits ..........................................................................................................................................................15 Chapter 4. Employment trends and occupational ch a n g e s................................................................................................18 Employment trends .......................................................................................................................................................18 Impact on occupations and sk ills...................................................................................................................................18 Chapter 5. Training for new technology ................................ 27 Union training ................................................................................................................................................................ 27 Industry trade associations............................................................................................................................................ 27 Manufacturer and user train in g ......................................................................................................................................27 Entry level train in g ..........................................................................................................................................................27 Training at survey p la n ts ................................................. • . ........................................................................................28 Chapter 6 . Adjustment of workers to technological change ........................................................................................... 30 Contract provisions relating to technological ch a n g e ................................................................................................... 30 Manpower planning in survey p l a n t s ............................................................................................................................ 31 Chapter 7. Outlook for technology and m anpow er.............................................................. 3 4 Outlook for technology ................................................................................................................................................3
Recommended publications
  • Printing Technology (Offset, Flexo, Gravure, Screen, Digital, 3D Printing)
    Printing Technology (Offset, Flexo, Gravure, Screen, Digital, 3D Printing) (Noncontact Printing ,Commercial Printing, Gravure Printing, Letterpress Printing, Offset Printing, Screen Printing, Offset Lithography, Lanography ,Flexography, Rotogravure, Digital Printing,3D Printing, 3D Printing Machinery, Blanket Cylinder, Plate Cylinder, Impression Cylinder, Web Offset Machines, printing press) Introduction Printing is a process of producing copies of text and pictures. Modern technology is radically changing the way publications are printed, inventoried and distributed. There are a wide variety of technologies that are used to print stuff. The main industrial printing processes are: Offset Lithography, Flexography, Digital Printing (Inkjet & Xerography), Gravure, Screen Printing. 3D printing which is also referred as additive printing technology that enables manufacturers to develop objects using a digital file and variety www.entrepreneurindia.co of printing materials. Global market for 3D printing material includes polymers, metals and ceramics. In addition, 3D printing offers a wide array of applications in various industries, namely consumer products, industrial products, defense & aerospace, automotive, healthcare, education & research and others. In India, the market for printing technology is at its nascent stage however offers huge growth opportunities in the coming years. Digital printing is now taking much more share, particularly in graphics (i.e. non- packaging applications). www.entrepreneurindia.co Digital's share of the whole market doubles in constant value terms from 9.5% to 19.7% and 3D printing market is estimated to garner $8.6 billion in coming years. The print technology in use is also changing. Digital printing is now taking much more share, particularly in graphics (i.e. non-packaging applications). Digital's share of the whole market doubles in constant value terms from 9.5% in 2008 to 19.7% by 2018, when packaging is excluded this share is 23.5% in 2012 to 38.1% by 2018.
    [Show full text]
  • Other Printing Methods
    FLEXO vs. OTHER PRINTING METHODS Web: www.luminite.com Phone: 888-545-2270 As the printing industry moves forward into 2020 and beyond, let’s take a fresh look at the technology available, how flexo has changed to meet consumer demand, and how 5 other popular printing methods compare. CONTENTS ● A History of Flexo Printing ● How Flexo Printing Works ● How Litho Printing Works ● How Digital Printing Works ● How Gravure Printing Works ● How Offset Printing Works ● What is Screen Printing? ● Corrugated Printing Considerations ● Flexo Hybrid Presses ● Ready to Get Started with Flexo? 2 A History of Flexo Printing The basic process of flexography dates back to the late 19th century. It was not nearly as refined, precise, or versatile as the flexo process today -- and can be best described as a high-tech method of rubber stamping. Printing capabilities were limited to very basic materials and designs, with other printing methods greatly outshining flexo. Over the past few decades flexo technology has continuously evolved. This is largely thanks to the integration of Direct Laser Engraving technology, advancements in image carrier materials, and in press technologies. These innovations, among others, have led to increased quality and precision in flexo products. These technological improvements have positioned flexography at the helm of consumer product and flexible packaging printing. Flexo is growing in popularity in a variety of other industries, too, including medical and pharmaceutical; school, home, and office products; and even publishing. How Flexo Printing Works Flexo typically utilizes an elastomer or polymer image carrier such as sleeves, cylinders, and plates. The image carrier is engraved or imaged to create the design for the final desired product.
    [Show full text]
  • Relief Printing Letterpress Machines
    DRAFT SYLLABUS FOR PRESS WORK - I Name of the Course: Diploma in Printing Technology Course Code: Semester: Third Duration: 16 Weeks Maximum Marks: 100 Teaching Scheme Examination Scheme Theory: 3 hrs/week Internal Examination: 20 Tutorial: 1 hr/week Assignment & Attendance: 10 Practical: 6 hrs/week End Semester Exam:70 Credit: 3 Aim: Getting the output through a printing machine is the most important operation for completing the print production. This subject known as Presswork - I is one of the key subject to make a clear and sound knowledge in some of the major print production systems and supplies. This will enable the students to make judgement about the aspect of printing, particularly the selection of a particular process to choose for a specific print production. Objective: The students will be able to (i) understand the basic and clear classification of all kinds of printing processes; (ii) understand the details divisions and subdivisions of letterpress printing machines, their applications and uses, characteristics and identifications of their products- merits and demerits of various letterpress machines; (iii) understand the principal mechanism of various letterpress and sheet-fed machines, their constructional differences in the printing unit and operational features; (iv) understanding the various feeding and delivery mechanism in printing machines; (v) appreciate the relational aspects of various materials used in presswork. Pre -Requisite: Elementary knowledge of Basic Printing & Production Contents: Group-A Hrs/unit Marks Unit 1 Relief Printing 10 10 1.1 Classifications of various relief printing machines, their applications and uses, characteristics of the products. 1.2 Details of divisions and subdivisions of letterpress printing machines, their applications and uses, characteristics and identifications of their products- merits and demerits of various letterpress machines General unit wise division of a printing machine.
    [Show full text]
  • Aspects of Flexographic Print Quality and Relationship to Some Printing Parameters
    Faculty of Technology and Science Chemical Engineering Johanna Johnson Aspects of Flexographic Print Quality and Relationship to some Printing Parameters DISSERTATION Karlstad University Studies 2008:28 Johanna Johnson Aspects of Flexographic Print Quality and Relationship to some Printing Parameters Karlstad University Studies 2008:28 Johanna Johnson. Aspects of Flexographic Print Quality and Relationship to some Printing Parameters DISSERTATION Karlstad University Studies 2008:28 ISSN 1403-8099 ISBN 978-91-7063-187-0 © The Author Distribution: Faculty of Technology and Science Chemical Engineering 651 88 Karlstad 054-700 10 00 www.kau.se Printed at: Universitetstryckeriet, Karlstad 2008 Abstract Flexographic printing is a common printing method in the packaging field. The printing method is characterized primarily by the flexible printing plate and the low viscosity inks which make it suitable for use on almost any substrate. The object of this study was to obtain further knowledge of some important mechanisms of flexographic printing and how they influence the print quality. The thesis deals with printing primarily on board and liner but also on newsprint with water-borne ink using a full- scale flexographic central impression (CI) printing press. Several printing trials have been performed with a focus on the chemical interaction between the ink and substrate and the physical contact between the ink- covered printing plate and the substrate. Multicolour printing exposes the substrate to water from the water- containing ink. The emphasis was to investigate the relation between print quality and water-uptake of the paper surface with heat and water. Printing trials was carried out on substrates possessing a hydrophobic, and also a rather hydrophilic surface using a regular commercial water-borne ink.
    [Show full text]
  • Introduction to Printing Technologies
    Edited with the trial version of Foxit Advanced PDF Editor To remove this notice, visit: www.foxitsoftware.com/shopping Introduction to Printing Technologies Study Material for Students : Introduction to Printing Technologies CAREER OPPORTUNITIES IN MEDIA WORLD Mass communication and Journalism is institutionalized and source specific. Itfunctions through well-organized professionals and has an ever increasing interlace. Mass media has a global availability and it has converted the whole world in to a global village. A qualified journalism professional can take up a job of educating, entertaining, informing, persuading, interpreting, and guiding. Working in print media offers the opportunities to be a news reporter, news presenter, an editor, a feature writer, a photojournalist, etc. Electronic media offers great opportunities of being a news reporter, news editor, newsreader, programme host, interviewer, cameraman,Edited with theproducer, trial version of Foxit Advanced PDF Editor director, etc. To remove this notice, visit: www.foxitsoftware.com/shopping Other titles of Mass Communication and Journalism professionals are script writer, production assistant, technical director, floor manager, lighting director, scenic director, coordinator, creative director, advertiser, media planner, media consultant, public relation officer, counselor, front office executive, event manager and others. 2 : Introduction to Printing Technologies INTRODUCTION The book introduces the students to fundamentals of printing. Today printing technology is a part of our everyday life. It is all around us. T h e history and origin of printing technology are also discussed in the book. Students of mass communication will also learn about t h e different types of printing and typography in this book. The book will also make a comparison between Traditional Printing Vs Modern Typography.
    [Show full text]
  • Glossary of Flexographic Printing Terms
    GLOSSARY OF FLEXOGRAPHIC PRINTING TERMS AA: Authors Alterations, changes other than corrections, made by a client after the proofing process has begun. AA's are usually charged to a client as billable time. Abrasion: Process of wearing away the surface of a material by friction. Abrasion marks: Marks on a photographic print or film appearing as streaks or scratches, caused by the condition of the developer. Can be partially removed by swabbing with alcohol. Abrasion resistance: Ability to withstand the effects of repeated rubbing and scuffing. Also called scuff or rub resistance. Abrasion test: A test designed to determine the ability to withstand the effects of rubbing and scuffing. Abrasiveness: That property of a substance that causes it to wear or scratch other surfaces. Absorption: In paper, the property which causes it to take up liquids or vapors in contact with it. In optics, the partial suppression of light through a transparent or translucent material. Acceptance sampling or inspection: The evaluation of a definite lot of material or product that is already in existence to determine its acceptability within quality standards. Accelerate: In flexographic printing, as by the addition of a faster drying solvent or by increasing the temperature or volume of hot air applied to the printed surface. Electrical - To speed rewind shafts during flying splices, and in taking up web slackness. Accordion Fold: Bindery term, two or more parallel folds which open like an accordion. Acetone: A very active solvent used in packaging gravure inks; the fastest drying solvent in the ketone family. Activator: A chemistry used on exposed photographic paper or film emulsion to develop the image.
    [Show full text]
  • Graphic File Preparation for Letterpress Printing ©2016
    GRAPHIC FILE PREPARATION FOR LETTERPRESS PRINTING ©2016, Smart Set, Inc. COMMON GRAPHIC FILE FORMATS Vector Formats .ai (Adobe Illustrator) Native Illustrator file format. Best format for importing into Adobe InDesign. Illustrators’s native code is pdf, so saving files in .ai contains the portability of pdf files, but retaining all the editing capabilities of Illustrator. (AI files must be opened in the version of Illustrator that they were created in (or higher). .pdf (Adobe Portable Document Format) A vector format which embeds font and raster graphics within a self-con- tained document that can be viewed and printed (but not edited) in Adobe’s Reader freeware. All pre-press systems are in the process of transitioning from PostScript workflows to PDF workflows. Because of the ability to em- bed all associated fonts and graphics, pdf documents can be generated from most graphics software packages and can be utilized cross-platform and without having all versions of different software packages. Many large printers will now only accept pdf files for output. .eps (Encapsulated PostScript) Before Adobe created the pdf format, PostScript allowed files to be created in a device-independent format, eps files printed on a 300 dpi laser printer came out 300 dpi, the same file printed to an imagesetter would come out at 2540 dpi. PostScript files are straight code files, an Encapsulated PostScript includes a 72 dpi raster preview so that you can see what you’re working with in a layout program such as Quark XPress or InDesign. COMMON GRAPHIC FILE FORMATS Raster Formats .tiff (Tagged Image File Format) Tiffs are binary images best for raster graphics.
    [Show full text]
  • Letterform Anatomy
    Letterform Anatomy Guidelines: Baseline: a real or imaginary horizontal line upon which the base of each capital rests; Waistline (meanline): a real or imaginary line that marks the height of the body of a small lowercase letter (often is the same as the x-height); x; Capline (cap height): a real or imaginary horizontal line that runs along the tops of the capital letters; Ascender line: a real or imaginary line that marks the proper height for the tall lowercase letters of a typeface like b, d, f, h, k, and i; for some typefaces, this line is the same as the cap height; b, d, f, h, i, j, k, l, t Descender line: a real or imaginary line that marks the proper length for the lowercase g, j, p, q, and y of a typeface; g, j, p, q, y 2. Ascenders and Descenders Ascender: A stroke on a lowercase character that extends above the meanline; Descender: A stroke on a lowercase character that falls below the baseline; X-height: a real or imaginary line that shows how tall to make the lowercase letters of a typeface; the distance from the baseline to the meanline. It marks the proper optical height for the lowercase letter x. Typically, this is the height of lowercase letters and is most easily measured on the lowercase x; Although X-height is not a unit of measurement, it is significant because it conveys the visual impact of the type size. In other words, typefaces of the same point size may appear smaller or larger because of the difference in their x-heights.
    [Show full text]
  • Flexible Packaging Printing Processes Overview Slide 2 2009 Consumer Packaging Solutions for Barrier Performance Course
    2009 Consumer Packaging Solutions for Barrier Performance Course FlexibleFlexible PackagingPackaging PrintingPrinting ProcessesProcesses OverviewOverview Presented by: Warren E. Durling Associate Research Fellow The Clorox Company (GLAD) 2009 Consumer Packaging Solutions For Barrier Performance Course Flexible Packaging Printing Processes Overview Slide 2 2009 Consumer Packaging Solutions For Barrier Performance Course The Basics of Flexible Packaging Printing DEFINITION: Applying ink to a substrate to produce an image or text PRINTING METHODS: Flexography and Rotogravure the two most widely utilized methods for Flexible Packaging FOCUS: Design to Substrate; the “process” described Structures and Print location Understanding Ink Substrate Surface Preparation Methods and Equipment in detail Reproduction Basics; line and process printing Flexible Packaging Printing Processes Overview Slide 3 2009 Consumer Packaging Solutions For Barrier Performance Course Design to Substrate Preproduction Design Creation Ink Management Substrate Image Preparation Color Separation Management Press Make Ready Cylinder or Plate Making Press Cleaning and Maintenance PrintingPrinting Converting Flexible Packaging Printing Processes Overview Slide 4 2009 Consumer Packaging Solutions For Barrier Performance Course SURFACE Printing Flexible Packaging Printing Processes Overview Slide 5 2009 Consumer Packaging Solutions For Barrier Performance Course REVERSE Printing 2 Layer Structures Flexible Packaging Printing Processes Overview Slide 6 2009 Consumer Packaging
    [Show full text]
  • Electrical Equipment; Parts Thereof; Sound Recorders and Reproducers, Television Image and Sound Recorders and Reproducers, and Parts and Accessories of Such Articles
    SECTION-XVI 692 CHAPTER-84 SECTION XVI MACHINERY AND MECHANICAL APPLIANCES; ELECTRICAL EQUIPMENT; PARTS THEREOF; SOUND RECORDERS AND REPRODUCERS, TELEVISION IMAGE AND SOUND RECORDERS AND REPRODUCERS, AND PARTS AND ACCESSORIES OF SUCH ARTICLES NOTES : 1. This Section does not cover : (a) transmission or conveyor belts or belting, of plastics of Chapter 39, or of vulcanised rubber (heading 4010), or other articles of a kind used in machinery or mechanical or electrical appliances or for other technical uses, of vulcanised rubber other than hard rubber (heading 4016); (b) articles of leather or of composition leather (heading 4205) or of furskin (heading 4303), of a kind used in machinery or mechanical appliances or for other technical uses; (c) bobbins, spools, cops, cones, cores, reels or similar supports, of any material (for example, Chapter 39, 40, 44 or 48 or Section XV); (d) perforated cards for Jacquard or similar machines (for example, Chapter 39 or 48 or Section XV); (e) transmission or conveyor belts or belting of textile material ( heading 5910) or other articles of textile material for technical uses (heading 5911); (f) precious or semi-precious stones (natural, synthetic or reconstructed) of headings 7102 to 7104, or articles wholly of such stones of heading 7116 except unmounted worked sapphires and diamonds for styli (heading 8522); (g) parts of general use, as defined in Note 2 to Section XV, of base metal (Section XV), or similar goods of plastics (Chapter 39); (h) drill pipe (heading 7304); (ij) endless belts of metal wire
    [Show full text]
  • Printing Press Operations
    Property Risk Consulting Guidelines PRC.17.18.1 A Publication of AXA XL Risk Consulting PRINTING PRESS OPERATIONS INTRODUCTION Printing has progressed from the Gutenberg press, which required three minutes per impression, to today’s multicolor, two-sided, continuous presses that operate well in excess of 2000 ft/min (610 m/min). There are four major printing processes: lithography, letterpress, gravure and silk-screening. A lithography offset press prints from a level or plane surface; a letterpress prints from a raised surface; a gravure press prints from a depressed or sunken surface; and silk-screening prints by pushing ink through fabric. From the 6th Annual Report to the Congress of the United States: Printing Industry report, Figure 1 shows 1994 industry market share. PROCESSES AND HAZARDS The hazards of printing presses include the transfer and use of flammable inks; solvent recovery and pollution control devices; hydraulic and lubrication oil systems; gas or oil-fired dryers; electrostatic buildup from high press speeds; paper dust; and paper storage near presses. This section discusses common printing processes and their hazards. Loss prevention and control guidelines address construction features, flammable and combustible liquids handling, protection of the press area, electrical features, drying, and the disposal of solvent vapors. 50 47 45 40 35 30 28 25 19 20 Percent (%) Percent 15 10 5 3 3 0 Lithographic Letterpress Gravure Silk-screen Other Figure 1. Market share by process. 100 Constitution Plaza, Hartford, Connecticut 06103 Copyright 2020, AXA XL Risk Consulting Global Asset Protection Services, LLC, AXA Matrix Risk Consultants S.A. and their affiliates (“AXA XL Risk Consulting”) provide loss prevention and risk assessment reports and other risk consulting services, as requested.
    [Show full text]
  • Laser Printer - Wikipedia, the Free Encyclopedia
    Laser printer - Wikipedia, the free encyclopedia http://en. rvi kipedia.org/r,vi ki/Laser_pri nter Laser printer From Wikipedia, the free encyclopedia A laser printer is a common type of computer printer that rapidly produces high quality text and graphics on plain paper. As with digital photocopiers and multifunction printers (MFPs), Iaser printers employ a xerographic printing process but differ from analog photocopiers in that the image is produced by the direct scanning of a laser beam across the printer's photoreceptor. Overview A laser beam projects an image of the page to be printed onto an electrically charged rotating drum coated with selenium. Photoconductivity removes charge from the areas exposed to light. Dry ink (toner) particles are then electrostatically picked up by the drum's charged areas. The drum then prints the image onto paper by direct contact and heat, which fuses the ink to the paper. HP I-aserJet 4200 series printer Laser printers have many significant advantages over other types of printers. Unlike impact printers, laser printer speed can vary widely, and depends on many factors, including the graphic intensity of the job being processed. The fastest models can print over 200 monochrome pages per minute (12,000 pages per hour). The fastest color laser printers can print over 100 pages per minute (6000 pages per hour). Very high-speed laser printers are used for mass mailings of personalized documents, such as credit card or utility bills, and are competing with lithography in some commercial applications. The cost of this technology depends on a combination of factors, including the cost of paper, toner, and infrequent HP LaserJet printer drum replacement, as well as the replacement of other 1200 consumables such as the fuser assembly and transfer assembly.
    [Show full text]