Prediction of High-Speed Train Noise on Swedish Tracks

Total Page:16

File Type:pdf, Size:1020Kb

Prediction of High-Speed Train Noise on Swedish Tracks Prediction of high-speed train noise on Swedish tracks Xuetao Zhang SP Technical Research Institute of Sweden Research SP Technical Energy Technology SP Report 2010:75 2 Prediction of high-speed train noise on Swedish tracks Xuetao Zhang Abstract Aiming at applying the Nord2000 propagation model to predict high speed train noise in Sweden, the noise emission data of X2 trains has been studied. By using the Imagine source model for rolling noise (i.e. the roughness-transfer-function method), it becomes possible to empirically estimate the aerodynamic noise based on the collected inclusive noise emission data. The sound power level per meter train has been determined for each noise type/component (i.e. the rail/track and wheel radiation and the aerodynamic noise) and for the speed range of interest (150-300 km/h). The calculation method is described and the horizontal directivity for each noise type/component is provided. Key words: X2 train noise, high speed train noise, aerodynamic noise, pantograph noise, aero-noise around bogie area, sound power level, horizontal directivity, roughness and transfer function SP Sveriges Tekniska Forskningsinstitut SP Technical Research Institute of Sweden SP Report 2010:75 ISBN 978-91-86622-18-3 ISSN 0284-5172 Borås 2010 4 Contents Abstract 3 Contents 4 Preface 5 Summary 6 1 Introduction 7 2 X2 train noise and the model prediction 8 3 Method to determine input data 16 3.1 Rolling noise 16 3.2 Aerodynamic noise 16 4 Input data for prediction of X2 train noise 18 4.1 Estimation of X2 train pantograph noise 18 4.2 Revised model prediction of X2 train noise 20 4.3 Input data 26 5 Discussion 32 Reference 33 Annex A Methods to determine the sound power level of a traffic noise source 34 A.1 Determination of L from the L of a train pass by 34 WA Aeq,Tp A.2 To determine LWA from the SEL of a train pass by 39 A.3 To calculate the LpF max of a train pass by 39 Annex B The horizontal directivity of railway noise 41 B.1 Directivity function 41 B.2 Normalization 42 Annex C Input data for higher speeds 44 5 Preface This project is founded by the Swedish Transport Administration (Trafikverket), with the contract nr TRV 2010/57212. Dr. Hans Jonasson provides his valuable comments. The cover picture is provided by Bombardier. All the above supports are gratefully acknowledged. Borås 2010-09-30 Xuetao Zhang 6 Summary The Imagine model has successfully been applied on Swedish X2 trains to predict rolling noise. By subtracting this predicted rolling noise contribution from the collected total noise emission data, it becomes possible to estimate the contribution of the aerodynamic noise from the bogie areas as well as from the pantograph(s). Thus, a complete model of the noise emission of X2 trains at high speed was elaborated capable of predicting the overall noise level in one-third octave frequency bands of interest within the speed range 150-300 km/h. The model assumes certain roughness levels and transfer functions but it can later be used to incorporate new values on these parameters. 7 1 Introduction In this project, the input data, the sound power level per meter of the X2 train type, will be worked out. The relevant methods will also be described. In traffic noise engineering, the quantities of sound pressure level ( L p ), (for a certain time interval T) the equivalent (continuous) sound pressure level ( Leq, T ), the sound exposure level (SEL), the maximum sound pressure level using time-weighting F ( L pF max ) and the corresponding sound power level ( LW ) are frequently used. The first four quantities can be measured directly, whereas the sound power level can in principle be derived from one of these measured quantities. As proposed by the European Harmonoise project, the sound power level is to be used in describing the noise emission of rail bound vehicles. Therefore, the method to determine the sound power level using one of the measured quantities is described in Annex A. In Annex B, the relevant horizontal directivity is provided. Moreover, in the model calculations, the sound propagation is handled using the Nord2000 propagation model, which was proved during the European Harmonoise project to be accurate, in particular for cases little affected by meteorological conditions. Aiming at estimating noise impact from high speed trains on Swedish tracks, the noise emission data of X2 trains was studied as shown in section 2. The measured SEL data of X2 trains presented in SP Rapport 1994:25, the SEL values predicted by using the Nord2000 source model and by using the Imagine source model are compared. Based on the positive results shown in section 2, the way to work out the input data was then proposed in section 3 and the input data was given in section 4. Some detailed discussion was presented in section 5. 8 2 X2 train noise and the model prediction Presently, the X2 train is, together with the Arlanda Express X3 train, the existing high speed train type in Sweden, which can reach 200 km/h. In the near future, the Gröna Tåg (Green Train), developed based on the Regina train type, is expected to achieve a top service speed of 250 km/h [1]. In this section, SEL values of the noise emission data of X2 trains have been studied. SEL values of X2 trains are calculated using the method shown in Annex A. The different input data, the sound power level per meter of the train type, for a given speed and on a track equipped with BV50 rail, for the Imagine source model (based on the description of roughness and transfer function) and for the Nord2000 source model (based on the measured data presented in SP Rapport 1994:25), have been tested respectively. The resulted SEL values were presented in Fig. 1(a) and 1(b). For single values of the A-weighted SEL levels, the Imagine-source-model results show the speed dependence of 20,9*log10(v), compared with 24*log10(v) showing by the Nord2000-source-model results. (The corresponding speed exponent of the sound power level is then 30,9 for the Imagine results and 34 for the Nord2000 results.) The Imagine-source-model results are for the rolling noise only, whereas the Nord2000-source-model results are for the inclusive noise emission. Except for low and middle frequencies where noise types other than rolling noise have a strong influence, the Imagine-source-model results are in general about 0,5-1 dB higher than the Nord2000-source-model results (Fig. 3). This small difference is not critical and can easily be explained by the difference between the real and assumed roughness levels. Moreover, as in the Nord2000-source-model the contribution of the aerodynamic noise is included, then the resulted SEL values are of a speed dependence higher than that when considering rolling noise only. In Fig. 2, the collected SEL data presented in SP Rapport 1994:25 [2] are shown. Comparing Fig. 1(a) and Fig. 2, it is clear that the Imagine source model correctly describes the shift of the peak level of rolling noise in frequency domain when train speed varies. This feature is important when working in spectrum for estimating aero-noise contribution. Since rolling noise is not important below about 500 Hz, it is obvious that other noise types need to properly be dealt with in order to have a good noise prediction not only in the single value of the total A-weighted noise exposure level but also in its spectrum components. For high speed trains, the low-frequency noise components are mainly contributed by aerodynamic noise. In Fig. 3, the predicted SEL values by using the two source models were compared with the collected SEL data of the noise emission from X2 trains. It can be seen that, the Imagine source model and the Nord2000 source model agree well for rolling noise. Moreover, it seems that aerodynamic noise is important up to 500 Hz below 200 km/h, whereas it will also influence 1 kHz or even higher when above 200 km/h. 9 SEL for X2 trains, predicted by the Imagine model 100 90 80 70 60 dB 50 100 km/h (92,7 dBA) 150 km/h (96,6 dBA) 40 200 km/h (99,6 dBA) 250 km/h (101,8 dBA) 30 300 km/h (103,4 dBA) 350 km/h (104,4 dBA) 20 400 km/h (105,3 dBA) 2 3 4 10 10 10 Frequence (Hz) (a) SEL for X2 trains, predicted by the Nord2000 model 100 90 80 70 60 dB 50 100 km/h (92,1 dBA) 150 km/h (95,9 dBA) 40 200 km/h (98,8 dBA) 250 km/h (101,3 dBA) 30 300 km/h (103,3 dBA) 350 km/h (105,2 dBA) 20 400 km/h (106,8 dBA) 2 3 4 10 10 10 Frequence (Hz) (b) Fig. 1. The SEL values (the A-weighting is included) of the noise emission from X2 trains at representative speeds, in one-third octave bands of 25-10000 Hz, predicted (a) by using the Imagine source model (rolling noise only) and (b) by using the Nord2000 source model (including all noise types). 10 SEL data for X2 trains, SP Rapport 1994:25 95 90 85 70 km/h (90,1 dB) 130 km/h (95,4 dB) 80 140 km/h (94,7 dB) 160 km/h (97,2 dB) 170 km/h (97,6 dB) 75 180 km/h (98,8 dB) 190 km/h (98,2 dB) 200 km/h (98,4 dB) 70 2 3 10 10 Frequence (Hz) (a) SEL data for X2 trains, SP Rapport 1994:25 95 90 85 80 210 km/h (98,9 dB) 220 km/h (98,6 dB) 230 km/h (100,2 dB) 240 km/h (99,3 dB) 75 250 km/h (101,1 dB) 260 km/h (102,2 dB) 270 km/h (103,2 dB) 70 2 3 10 10 Frequence (Hz) (b) Fig.
Recommended publications
  • HO Scale Price List 2019
    GAUGEMASTER HO Scale price list 2019 Prices correct at time of going to press and are subject to change at any time Post free option is available for orders above a value of £15 to mainland UK addresses*. Non-mainland UK orders are posted at cost. Orders to non-EC destinations are VAT free. *Except orders containing one or more items above a length of 600mm and below a total order value of £25. Order conforming to this exception will be charged carriage at cost (not to exceed £4.95) Gaugemaster Controls Ltd Gaugemaster House Ford Road Arundel West Sussex BN18 0BN Tel - (01903) 884321 Fax - (01903) 884377 [email protected] [email protected] [email protected] Printed: 06/09/2019 KEY TO PRICE LISTS The following legends appear at the front of the Product Name for certain entries: * : New Item not yet available # : Not in production, stock available #D# : Discontinued, few remaining #P# : New Item, limited availability www.gaugemaster.com Registered in England No: 2714470. Registered Office: Gaugemaster House, Ford Road, Arundel, West Sussex, BN18 0BN. Directors: R K Taylor, D J Taylor. Bankers: Royal Bank of Scotland PLC, South Street, Chichester, West Sussex, England. Sort Code: 16-16-20 Account No: 11318851 VAT reg: 587 8089 71 1 Contents Atlas 3 Magazines/Books 38 Atlas O 5 Marklin 38 Bachmann 5 Marklin Club 42 Busch 5 Mehano 43 Cararama 8 Merten 43 Dapol 9 Model Power 43 Dapol Kits 9 Modelcraft 43 DCC Concepts 9 MRC 44 Deluxe Materials 11 myWorld 44 DM Toys 11 Noch 44 Electrotren 11 Oxford Diecast 53 Faller 12
    [Show full text]
  • DOT/FRA/ORD-09/07 April 2009
    DRAFT DOT/FRA/ORD-09/07 April 2009 Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED April 2009 Final Report April 2009 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS The Aerodynamic Effects of Passing Trains to Surrounding Objects and People BB049/RR93 6. AUTHOR(S) Harvey Shui-Hong Lee 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER U.S. Department of Transportation Research and Special Programs Administration DOT-VNTSC-FRA-04-05 John A. Volpe National Transportation Systems Center Cambridge, MA 02142-1093 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER U.S. Department of Transportation Federal Railroad Administration DOT/FRA/ORD/09-07 Office of Research and Development 1200 New Jersey Ave., SE Washington, D.C. 20590 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.
    [Show full text]
  • University of Southampton Research Repository Eprints Soton
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON Faculty of Engineering and the Environment Aeronautics, Astronautics and Computational Engineering Aerodynamic Noise of High-speed Train Bogies by Jianyue Zhu Thesis for the degree of Doctor of Philosophy June 2015 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF ENGINEERING AND THE ENVIRONMENT Aeronautics, Astronautics and Computational Engineering Thesis for the degree of Doctor of Philosophy AERODYNAMIC NOISE OF HIGH-SPEED TRAIN BOGIES Jianyue Zhu For high-speed trains, aerodynamic noise becomes significant when their speeds exceed 300 km/h and can become predominant at higher speeds. Since the environmental requirements for railway operations will become tighter in the future, it is necessary to understand the aerodynamic noise generation and radiation mechanism from high- speed trains by studying the flow-induced noise characteristics to reduce such environmental impacts.
    [Show full text]
  • Technical and Safety Analysis Report
    HIGH SPEED RAIL ASSESSMENT, PHASE II Norwegian National Rail Administration Technical and Safety Analysis Report JBV 900017 February 2011 HSR Assessment Norway, Phase II Technical and Safety Analysis Page 1 of (270) Preparation- and review documentation: Review documentation: Rev. Prepared by Checked by Approved by Status 1.0 DEF/18.02.2011 RFL, KJ GI Final List of versions: Revision Rev. Description revision Author chapters Nr. Date Version 1 18.02.2011 1.0 Delivery final version DEF, RFL 2 3 4 HSR Assessment Norway, Phase II Technical and Safety Analysis Page 2 of (270) Table of contents List of tables ..................................................................................................................8 List of figures...............................................................................................................11 List of abbreviations ...................................................................................................16 1 Subject – Technical solutions..............................................................................18 1.0 Introduction ...........................................................................................................18 1.0.1 Brief description of scenarios....................................................................................19 1.0.2 World high speed rail (HSR) overview......................................................................20 1.0.2.1 Infrastructure...........................................................................................................
    [Show full text]
  • Rapport Relatif À L'état Actionnaire
    RÉPUBLIQUE FRANÇAISE ANNEXE AU PROJET DE LOI DE FINANCES POUR 2016 RAPPORT RELATIF À L’ÉTAT ACTIONNAIRE Les faits marquants intervenus depuis la publication du rapport de l’État actionnaire en juillet 2015 7 octobre 2015 Renault : arrivée à échéance des premières options souscrites par l'État dans le cadre de sa montée au capital Depuis sa montée au capital de Renault annoncée le 8 avril 2015, l’État détient des options de vente à prix fixe sur 14 millions de titres Renault et a cédé des options d’achat à prix fixe sur 14 millions de titres Renault. Les échéances de celles-ci sont échelonnées linéairement entre le 7 octobre et le 28 décembre 2015. Les modalités de dénouement à échéance de ces options, en titres ou en numéraire, sont déterminées par l’État. Celui-ci a décidé de procéder à un dénouement des premières échéances de ces options en numéraire. L’ État confirme son intention de revenir à terme au niveau de participation antérieur à son acquisition de 4,73 % du capital de Renault en avril 2015. 5 et 6 octobre 2015 Organisation du troisième State holding dialogue à Paris L’Agence des participations de l’État a organisé une rencontre internationale de professionnels de l’actionnariat public : les dirigeants de plus de dix organisations de gestion de participations publiques, européennes, ont échangé autour de leurs expériences nationales et des bonnes pratiques en termes de gouvernance et de dialogue stratégique avec les entreprises. 16 septembre 2015 Clôture de l’opération de cession de titres ENGIE Conformément à l’arrêté en date du 12 juin 2015 fixant le prix et les modalités de cession d’actions de la société GDF Suez (ENGIE), l’État, via l’Agence des participations de l’État, a engagé le 16 juin 2015 une cession au fil de l’eau de titres GDF Suez (Engie).
    [Show full text]
  • New York State Technical & Economic Maglev Evaluation
    4 NEW YORK STATE TECHNICAL & ECONOMIC MAGLEV EVALUATION New York State Energy Research and Development Authority The New York State Energy Research and Development Authority (Energy Authority) is responsible for the development and use of safe, dependable, renewable and economic energy sources and conservation technologies. It sponsors energy research, development and demonstration (RD&D) projects and financing programs designed to help utilities and other private companies fund certain energy-related projects. The Energy Authority is a public benefit corporation which was created in 1975 by the New York State Legislature. In working toward these goals, the Energy Authority sponsors research, development and demonstration projects in two major program areas: Energy Efficiency and Economic Development, and Energy Resources and Environmental Research. Under its financing program, the Energy Authority is authorized to issue tax-exempt bonds to finance certain electric or gas facilities and special energy projects for private companies. The Energy Authority also has res~nsibility for constructing and then operating facilities for the disposal of low-level radioactive wastes produced in New YoA State. The generators of these wastes ultimately will bear the costs of the instruction of these facilities. A 13-member board of directors governs the Energy Authority, with William D. Cotter, Commissioner of the State Energy Office, serving as Chairman of the Board and Chief Executive Officer. Irvin L. White, President of the Energy Authority, manages its programs, staff and facilities. The Energy Authority derives its basic RD&D revenues from an assessment levied on the intrastate sales of New York State’s investor-owned electric and gas utilities.
    [Show full text]
  • World High Speed Rolling Stock 15Th January 2020
    World High Speed Rolling Stock 15th January 2020 Seats Number Number Number total total number Tractive Max. Max.Op. Weight of the Power weight Max.Axle Trainset Trainset Country Owner or Trainset Number of cars to add Number Year in Power Acceleratio Number of Signaling Photograph Suppliers Class Features of number of cars Effort Speed Speed Voltage trainset ratio Load length width Observations /Region Operator Formula of presence in a over expected Service [kW] n[m/s2] over 250 kph systems trainsets of cars (over200kph) [kN] [km/h] [km/h] [t] [kW/t] [t] [m] [mm] 1st class 2nd class Total trainset 200 kph Succeeded company is shown in case of M: Motor Car, C: Concentrated Trainsets Current Loaded T: Trailer Car, powered, For original company currently Maximum Maximum (planned) (Calculated For 3 classes, 1st and 2nd classes are disappeared. L: Locomotive, A: Articulated, Unloaded Loaded Passenger used and acceleration speed operation from the data included in '1st class' Some subsidary MB: Motor Bogie, T: Tilting, car comapanies are TB: Trailer Bogie D: Double Decker planned speed on this table) neglected. "Railjet" 3kV(partially) 16+76, 316, 408, Siemens Taurus LZB/PZB,ZUB,ET Austria TI ÖBB Siemens 1L7T C 60 60 8 60 480 480 60 2008- 6400 300 230 230 0 15kV16.7Hz 446 #VALUE! 22.5 206 2825 partially partially partially Locomotive: Class 1116, partially 1216 (OBB 1216) + CS 25kV50Hz 6+42 394 442 Siemens Viaggio Austria TI WestBahn Stadler 4010 2M4T 7 7 6 42 7 2011- 6000 200 200 0 15kV16.7Hz 296 17.9 150 2800 60 441 501 LZB/PZB,ZUB No.301-405 1.5kV France NY SNCF Alstom TGV Atlantique 2L10T C, A 28 54 12 54 648 648 28 1989- 8800 300 300 54 435 18.6 17 237 2904 116 364 480 TVM/KVB Renovated to Lacroix 455 places(105+350) 25kV50Hz TVM430 is installed from No 386 to No 405 France, 1.5kV TVM/KVB, No.
    [Show full text]
  • Anticiper Et Profiter Des Ruptures
    Cycle MOISSON-DESROCHES Promotion 2015 Anticiper et profiter des ruptures Emmanuel BOIS, Alstom Jimmy BRUN, Ministère de l'Ecologie, du Développement durable et de l'Energie Didier CARAMELLO, SNCF Gares&Connnexions Frédéric CYR, UTP (Transdev) Table des matières I. Entretiens avec des sachants du ferroviaire et du monde économique : le diagnostic des membres du groupe est-il partagé ? ..................................................................................................... 6 A. Aucune rupture technologique forte n’est à attendre du ferroviaire ......................................... 8 B. Le ferroviaire doit savoir s’adapter aux nouveaux besoins des usagers ................................... 8 C. Une rupture de pratique du ferroviaire à rechercher : l’inscription d’une offre globale de mobilité connectée .......................................................................................................................... 10 D. La nécessaire réduction des coûts de production du service ferroviaire ................................. 12 E. Le besoin de structurer une filière forte, innovante et tournée vers l’extérieur ...................... 14 II. Principaux enseignements tirés du questionnaire envoyé à la filière ......................................... 16 A. Les principales innovations passées dans le domaine de la mobilité et celles porteuses d’avenir (questions n°3 et n°4) ....................................................................................................... 17 B. Les faiblesses du ferroviaire français
    [Show full text]
  • Kraftförsörjningsanläggningar
    Verksamhetssystemet Gäller för Version Standard BV koncern 2.0 BVS 543.19300 Giltigt från Giltigt till Antal bilagor 2010-02-05 Tills vidare 1 Diarienummer Ansvarig enhet Fastställd av F 09-16151/EL30 Leveransdivisionen/Anläggning Leif Lindmark, LAKf Handläggare Ersätter Hongbo Jiang, XTBE Nils Rohlsson, LAKfÖf Kraftförsörjningsanläggningar Elektriska krav på fordon med avseende på kompatibilitet med infrastrukturen och andra fordon 1 (6) Verksamhetssystemet – BVMall 1000.3 Dokumentmall, version 3.0 Verksamhetssystemet Innehållsförteckning 1 Syfte.............................................................................................................................3 2 Omfattning ...................................................................................................................3 3 Definitioner och förkortningar ......................................................................................3 3.1 Definitioner.....................................................................................................................3 3.2 Förkortningar ..................................................................................................................3 4 Ansvar ..........................................................................................................................4 5 Elektriska krav på fordon med avseende på kompatibilitet med infrastrukturen och andra fordon .................................................................................5 6 Hjälpmedel och referenser ...........................................................................................6
    [Show full text]
  • 144000410.Pdf
    MINISTÈRE DES FINANCES ET DES COMPTES PUBLICS MINISTÈRE DE L'ÉCONOMIE, DU REDRESSEMENT PRODUCTIF ET DU NUMÉRIQUE BanQUe pUBliQUe D’inVeStiSSeMent S SerViceS 2014 TRANSport aUtreS inDUStrieS el ÉNERGIE U ann L’ÉtAT apport r ACTIONNAIRE inFRAStrUCTUreS De TRANSport SerViceS FINANCIERS iMMoBilier l’État actionnairel’État • aÉRONAUtiQUe-DÉFenSe MÉDiaS APE AGENCE DES PARTICIPATIONS DE L’ÉTAT L’ÉtAT ACTIONNAIRE RAPPORT ANNUEL 2014 APE AGENCE DES PARTICIPATIONS DE L’ÉTAT PRÉFACE © A. Salesse - SG - SG Ricard © P. Michel Sapin Arnaud Montebourg ministre des Finances ministre de l’Économie, et des Comptes publics du Redressement productif et du Numérique oté d’un large portefeuille de participations, notre pays dispose d’un patrimoine sur lequel nous avons le devoir de veiller tout en mettant en œuvre une stratégie économique, financière, industrielle et sociale exemplaire qui contribue D au développement de la France et au renforcement de ses positions stratégiques. Fort de cette conviction, le Gouvernement a souhaité clarifier la stratégie de l’État actionnaire et lui fixer un cap. Adoptées en Conseil des ministres le 15 janvier dernier, des lignes directrices permettent désormais de donner un cadre aux opérations sur capital décidées par l’État et mises en œuvre par l’Agence des participations de l’État (APE), 10 ans après la création de cette Agence. Les opérations récentes de l’Etat, comme la recomposition du capital d’Airbus Group, l’ajustement des niveaux de participations dans Safran, d’Aéroports de Paris et de GDF Suez, s’inscrivent pleinement dans cette stratégie. Ces cessions se sont traduites par des recettes de 4,8 Md€ mobilisées pour réaliser de nouveaux investissements et désendetter l’État.
    [Show full text]
  • Anexo 1. Material Rodante De Alta Velocidad En El Mundo
    El transporte aéreo como fuente de inspiración para el ferrocarril ANEXO 1. MATERIAL RODANTE DE ALTA VELOCIDAD EN EL MUNDO Fuente: Union Internationale des Chemins de fer – UIC World High Speed Rolling Stock 1st November 2013 Number Tractive Max.Tr. Max.Op. Weight of the Power weight Max.Axle Train Train Seats Owners or Year in Power Acceleratio Signaling Country Class Train set Formula Features of train Effort Speed Speed Voltage train ratio Load length width Suppliers Observations Operators Service [kW] n[m/s2] systems sets [kN] [km/h] [km/h] [t] [kW/t] [t] [m] [mm] 1st class 2nd class Total M: Motor Coach, C: Concentrated Train Succeeded company is Current Loaded T: Trailer Coach, powered, sets Maximum For shown in case of original Maximum (planned) (Calculated For 3 classes train, 1st and 2nd classes L: Locomotive, A: Articulated, currentl acceleratio Unloaded Loaded Passenger company disappeared. train speed operation from the data are included in '1st class' MB: Motor Bogie, T: Tilting, y used n car Some subsidary comapanies speed on this table) TB: Trailer Bogie D: Double Decker and are neglected. planned 3kV 51 Austria TI ÖBB "Railjet" 1L7T C 2008- 6400 300 250 200 15kV16.7Hz 479 12,5 21,5 205,4 2825 16+76 316 408 LZB/PZB,ZUB Siemens Locomotive: Class 1216 (+18) 25kV50Hz 3kV Czech NY CD 680 4M3T T 7 2003- 3920 200 230 200 15KV16.7Hz 385 9,5 184.4 2800 105 228 333 LS, LZB/PZB Alstom 25kV50Hz Finland TI VR 4M2T T 18 1995- 4000 163 0,5 220 220 25kV50Hz 328 11,5 14.3 159 3200 47 238(+2) 285(+2) EBICAB900 Alstom Broad gauge (1524)
    [Show full text]
  • Market Strategies for International High-Speed Passenger Train Operators
    Faculteit Toegepaste Economische Wetenschappen Strategieën voor internationale hogesnelheidsspoorvervoerders in de Europese reizigersvervoersmarkt Proefschrift voorgelegd voor het behalen van de graad van doctor in de toegepaste economische wetenschappen aan de universiteit Antwerpen te verdedigen door: Jacobus Everdina Maria Jozef Doomernik Openbare verdediging: Maandag 3 juli 2017, 17.00u Hof van Liere, Universiteit Antwerpen Doctoraatscommissie Prof. dr. Ann Verhetsel (president), Universiteit Antwerpen Prof. dr. Eddy van de Voorde (supervisor), Universiteit Antwerpen Prof. dr. Thierry Vanelslander (supervisor), Universiteit Antwerpen Prof. dr. Koen Vandenbempt, Universiteit Antwerpen Prof. ing. Pierluigi Coppola, Università di Roma “Tor Vergata” Dr. Florent Laroche, Université Lumière de Lyon 2 Prof. dr. Matthias Finger, Ecole Polytechnique Fédérale Lausanne Copyright 2017, J.E.M.J. Doomernik All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanically, by photocopying, by recording, or otherwise, without prior permission of the author. Samenvatting High-speed rail systemen zijn momenteel een geaccepteerde manier van reizen in verschillende landen in de wereld. In de afgelopen decennia hebben high-speed railsystemen zich gestaag ontwikkeld, voornamelijk in Azië en Europa, maar er zijn ook initiatieven te vinden in de Verenigde Staten, Zuid-Amerika, het Midden-Oosten en Afrika. Eén van de beleidsdoelstellingen van de Europese Commissie om een duurzame toekomst op te bouwen was om de spoorwegsector te revitaliseren. De liberalisering van de spoorwegsector heeft geleid tot een splitsing tussen nationale infrastructuurbeheerders en spoorwegondernemingen. Een nieuw Europees wettelijk kader is ingevoerd om de nationale netwerken open te stellen voor andere operatoren en om de opbouw van een pan-Europese high-speed railnetwerk op basis van de reeds door de nationale regeringen genomen initiatieven te ondersteunen.
    [Show full text]