R744 HVAC Unit for NSB Flirt Trains
Total Page:16
File Type:pdf, Size:1020Kb
R744 HVAC unit for NSB Flirt trains Eirik Trygstad Master of Energy Use and Energy Planning Submission date: June 2017 Supervisor: Armin Hafner, EPT Co-supervisor: Trygve Eikevik, EPT Norwegian University of Science and Technology Department of Energy and Process Engineering i ii Abstract The vast majority of current air conditioning systems, for railway HVAC applications, utilize high global warming potential (GWP) hydrofluorocarbon (HFC) refrigerants in a vapor compression cycle. In Europe, the dominating refrigerants are R134a and R407C, constituting 75 and 25% of the total stock, respectively. Fluorinated greenhouse gases (GHG), such as HFCs, accounts for 2.5% of the overall GHG emissions, expressed in GWP (EU 2013), and are as a consequence being regulated at an increasing rate, through the revised F-Gas regulation of 2014, (EU) No 517/2014, that aims to reduce EU fluorinated GHG emissions by two thirds of the 2010 levels by 2030. Because of the legislations and incentives put into place, both at the national and international level, the demand for environmentally benign HVAC&R technology, with viability in terms of achieved system efficiency and cost, is high, and can be expected to increase in a range of sectors the forthcoming years. A review of current railway HVAC technology, gives strong indication that R744 (CO2) vapor compression units are one of the most viable candidates for the future, able to meet virtually all requirements with regard to environmental impact, safety, reliability and energy efficiency. A newly developed, energy efficient and environmentally friendly prototype R744 HVAC unit, will be tested onboard a commuter trainset, operated in the Oslo area, during a test campaign to be initiated late 2017. The goal of the test campaign is to evaluate the viability of the prototype in terms of being a replacement for the current standard R134a HVAC units, outfitted on the Norwegian railway operator NSB’s railway fleet. The prototype have the ability to operate in reversed mode, thus enabling delivery of heat to the passenger compartment through the ventilation air, down to an ambient temperature of -20℃. Moreover, the prototype utilize suction line heat exchangers, and offers ejector-supported fluid expansion during AC-mode operation, in order to minimize losses related to fluid expansion. Results from laboratory bench tests of the prototype, presented in this thesis, indicate that performance requirements can be met, provided an attentive approach, with regard to system design and control strategy, is applied. At the current stage of development, the prototype achieves a total cooling capacity of 18.6 kW, at the design summer conditions, specified in the European Standard for air conditioning of main line rolling-stock EN 13129. iii Sammendrag Den store majoriteten av dagens HVAC-enheter, om bord skinnegående materiell, benytter hydrofluorkarboner, med et høyt globalt oppvarmingspotensialet, som arbeidsmedium i dampkompresjonssystemer. I Europa, er de dominerende arbeidsmediene R134a og R407C, som utgjør henholdsvis 75 og 25% av den totale bestanden. Fluoriserte drivhusgasser, som hydrofluorkarboner, utgjør 2,5% av de totale drivhusgassutslippene, uttrykt som CO2 ekvivalenter (EU 2013). Følgelig blir de regulert i økende grad igjennom EU sitt reviderte F-gass direktiv, (EU) nr. 517/2014, som har som hensikt å redusere EU og samarbeidende nasjoners utslipp av fluoriserte drivhusgasser med to tre-deler innen 2030 sammenlignet med 2010. Som følge av lover og insentiver, implementert både på et nasjonal og et internasjonalt nivå, er etterspørselen etter miljøvennlig luftkondisjonerings- og kjøle-teknologi, som tilfredsstiller bransjens krav med tanke på energieffektivitet og investeringskostnader, høy og forventet å øke de kommende årene. En gjennomgang av dagen teknologi innenfor luftkondisjonering av skinnegående materiell, gir sterk indikasjon på at HVAC-enheter som benytter R744 (CO2) som arbeidsmedium, er en av de mest lovende alternativene for morgendagens luftkondisjoneringssystemer i jernbanesektoren, ettersom de imøtekommer alle krav med hensyn til miljø, passasjer- og drift- sikkerhet og energieffektivitet. En nyutviklet, energieffektiv og miljøvennlig prototype R744 HVAC-enhet, vil bli testet om bord et pendlertog driftet i Oslo-området, under en testkampanje som skal påbegynnes i utgangen av 2017. Målet med testkampanjen er å evaluere om prototypen kan være en passende kandidat til å erstatte dagens R134a HVAC-enheter, utstyrt på Norges Statsbaner (NSB) sin togflåte. Prototypen kan driftes i reversert modus ned til en utetemperatur på -20℃, og kan dermed dekke deler av togvognens oppvarmingsbehov igjennom oppvarming av ventilasjonsluft. Gjennom utnyttelse av sugegassvarmevekslere og ejektor, minimerer prototypen irreversible ekspansjonstap. I tillegg legger prototypens todelte utformingen til rette for evaluering av to forskjellige systemer. Resultater fra laboratorietester, presentert i denne oppgave, indikerer at nødvendige ytelseskrav kan oppnås, så fremt systemdesign og kontrollstrategi utføres på en gjennomført måte. iv På det nåværende utviklingsstadium yter prototypen en kjølekapasitet på 18.6 kW ved dimensjonerende sommerforhold, i henhold til Norsk Standard for luftkondisjonering av rullende materiell på hovedlinje NS-EN 13129. v Preface As this Master Thesis serves as the initial thesis of the pilot R744 HVAC unit project, I have invested a large amount of effort on obtaining sufficient information on the various implemented systems, in order to create detailed descriptions and illustrations, which will benefit future progress in the pilot project. As have been disclosed in the introduction of the thesis, I uncovered several issues related to the data recorded by the reference unit DAQ system, which ultimately led to a change in thesis objective. Thus, the DAQ system and related record-file signal description became of little relevance for the results presented in the Master Thesis. However, as I consider the system description beneficial for the future progress in the pilot project, I have included it as an appendix to the thesis. Parts of the literature presented in this thesis, have been extracted from an earlier project work I conducted during the autumn of 2016. I wish to thanks to my Academic Supervisor Armin Hafner and Krzysztof Banasiak for constructive advice through the course of the thesis work. In addition, I would like to thank Christian Zieger and Michael Damm from Faiveley Transport Leipzig GmbH & Co. KG and Håkon Endresen from NSB Matriell for answering my many questions via email. Moreover, I would like to extend my thanks to the department of Energy and Process Engineering at NTNU for assistance and a seemingly endless supply of coffee. Trondheim 11.06.2017 Eirik Trygstad vi Table of contents ABSTRACT ....................................................................................................................................................... III SAMMENDRAG ............................................................................................................................................... IV PREFACE .......................................................................................................................................................... VI TABLE OF CONTENTS ...................................................................................................................................... VII LIST OF FIGURES .............................................................................................................................................. IX LIST OF TABLES ............................................................................................................................................... XII NOMENCLATURE ........................................................................................................................................... XIII 1 INTRODUCTION ....................................................................................................................................... 1 1.1 INITIAL PURPOSE OF THE THESIS WORK ............................................................................................................... 1 1.2 BACKGROUND ............................................................................................................................................... 2 1.3 NORGES STATSBANER NSB .............................................................................................................................. 4 2 LITERATURE ............................................................................................................................................ 6 2.1 PASSENGER RAIL HVAC .................................................................................................................................. 6 2.1.1 Comfort parameters ........................................................................................................................ 7 2.1.2 Design conditions ............................................................................................................................ 8 2.1.3 Ventilation ....................................................................................................................................... 9 2.1.4 Cooling........................................................................................................................................... 11 2.1.5 Heating .........................................................................................................................................