World High Speed Rolling Stock 10Th September 2018

Total Page:16

File Type:pdf, Size:1020Kb

World High Speed Rolling Stock 10Th September 2018 World High Speed Rolling Stock 10th September 2018 Number Tractive Max.Tr. Max.Op. Weight of the Power weight Max.Axle Train Train Seats Owners or Year in Power Accelerati Signaling Country Class Train set Formula Features of train Effort Speed Speed Voltage train ratio Load length width Suppliers Observations Operators Service [kW] on[m/s2] systems sets [kN] [km/h] [km/h] [t] [kW/t] [t] [m] [mm] 1st class 2nd class Total M: Motor Coach, C: Concentrated Train Succeeded company is Current Loaded T: Trailer Coach, powered, sets For shown in case of original Maximum Maximum (planned) (Calculated For 3 classes train, 1st and 2nd classes are L: Locomotive, A: Articulated, currently Unloaded Loaded Passenger company disappeared. acceleration train speed operation from the data included in '1st class' MB: Motor Bogie, T: Tilting, used and car Some subsidary comapanies speed on this table) TB: Trailer Bogie D: Double Decker planned are neglected. "Railjet" 3kV(partially) 16+76, 316, 408, Siemens Taurus Austria TI ÖBB 1L7T C 60 2008- 6400 300 230 230 15kV16.7Hz 479 #VALUE! 22.5 204.78 2825 partially partially partially LZB/PZB,ZUB Siemens Locomotive: Class 1116, partially 1216 (OBB 1216) + 25kV50Hz 6+42 394 442 Siemens Viaggio Austria TI WestBahn 4010 2M4T 7 2011- 6000 200 200 15kV16.7Hz 296 17.9 150 2800 60 441 501 LZB/PZB,ZUB Stadler 3kV Czech NY CD CD 680 "Pendolino" 4M3T T 6 2003- 3920 200 230 200 15KV16.7Hz 385 9.5 14.75 184.4 2800 105 228 333 LS, LZB/PZB Alstom 25kV50Hz "ČD railjet" 3kV Siemens Taurus Czech TI CD 1L7T C 6 2014- 6400 300 230 230 15kV16.7Hz 479 12.4 21.5 204.78 2825 6+42 394 442 LZB/PZB,ZUB Siemens Locomotive: Class 1216 type (OBB 1216) + 25kV50Hz Siemens Viaggio Finland TI VR SM3 4M2T T 18 1995- 4000 163 0.5 220 220 25kV50Hz 328 11.5 14.3 159 3200 47 238(+2) 285(+2) EBICAB900 Alstom Broad gauge (1524) Karelian 3kV Broad gauge (1522 and 1520) Finland,Russia TI Sm6 4M3T T 4 2010- 5500 226 220 220 409(Loaded) 13.4 17 184.8 3200 42+6 304 352+2hp Alstom Railways 25kV50Hz Operated by RZD and VR. No.3001-3232 373 0.75kV SNCF 16 (No.3201-3232), BR 11 (No.3001-3022), SNCB 3 (No.3103-3108) France, 2L18T TVM/KVB,TBL, NY Eurostar e300 C, A 26 1993- 12200 300 300 3kV 752 15.0 17 394 2814 206 544 750 Alstom 7 sets are equipped for DC 1,5kV operation. (Belgium,) UK (+ 2MB) AWS/TPWS 26 sets: for Eurostar TGV-TSMT 25kV50Hz No.3101 exists, not operation. No.3102 for scrapping in 2015. No.3103/4 for scrapping in 2016. No.3015/6 were refurbished in 2015. 0.75kV No.3301-3314 373 2L14T TVM/KVB,TBL, France TI SNCF C, A 0 1993- 12200 300 300 3kV 665 16.8 17 320 2814 114 444 558 Alstom Built for Notrh of London,French domestic use TGV-TSMT (+ 2MB) AWS/TPWS 25kV50Hz one locomotive, No.3308, exists at National Train Museum in York 1.5kV TVM/KVB,TBL, 374 12 3kV No.4001-4010 UK TI Eurostar 8M8T 2015- 16000 320 300 17 400 2950 222 672 894 AWS/TPWS,ET Siemens e320 (17) 15kV16.7Hz Siemens Velaro D series. CS 25kV50Hz France, 1.5kV TVM/KVB, No. 4531-4540, owned by SNCF (Belgium,) NY Thalys Thalys PBA 2L8T C, A 9 1996- 8800 320 300 3kV 385 21.2 17 200 2904 120 257 377 TBL,ATB, Alstom Same series as TGV Réseau (tric.). 4531 (now 4551) is used for SNCF Netherlands 25kV50Hz ETCS 1.5kV TVM/KVB, No.4301-4346 France, 3kV TBL/TBL2, SNCF 6 (No.4341-4346), NS 4 (No.4321-4322,4331-4332) , SNCB 7 (Belgium,) TI Thalys Thalys PBKA 2L8T C, A 17 1996- 8800 320 300 385 21.2 17 200 2904 120 257 377 Alstom 15kV16.7Hz ATB,PZB/LZB, (No.4301-4307), Netherlands 25kV50Hz ETCS No.4321-4322-> DB -> NS No. 1-102 2L8T 1.5kV 110 240 350 No38 -> TGV Postal, No1 -> No38, No46 was abandoned after the accident at France TI SNCF TGV PSE (bic.) C, A 34 1981- 6400 300 300 385 15.5 17 200 2814 TVM/KVB Alstom (+ 2MB) 25KV50Hz 69 276 345 La Vavrette, No70 was abandoned after the accident at Voiron, No88 -> tri- current, No99 was abandoned, 1.5kV France, 2L8T 1981- No. 110-118, No118 <- bi-current set No88, No112, No114: SBB NY SNCF, SBB TGV PSE (tric.) C, A 0 6400 270 270 15kV16.7Hz 385 15.5 17 200 2814 110 248 358 TVM/KVB,ZUB Alstom Switzerland (+ 2MB) 2014 Operation finished in 2014. 25kV50Hz No.951-953 2L8T C, A 1981- 1.5kV France SNCF TGV Postal 0 6400 270 270 385 17 200 2904 N/A N/A N/A TVM/KVB Alstom 5 half sets are alternative for maintenance (+ 2MB) Postal 2015 25KV50Hz 2 additional half sets will come from PSE 38 No.301-405 1.5kV France NY SNCF TGV Atlantique 2L10T C, A 70 1989- 8800 300 300 435 18.6 17 237 2904 116 364 480 TVM/KVB Alstom Renovated to Lacroix 455 places(105+350) 25kV50Hz TVM430 is installed from No 386 to No 405 No.501-553, 19 (No.515-533) sets are converted to POS and Duplex Réseau, 1.5kV, France NY SNCF TGV Réseau (bic.) 2L8T C, A 26 1993- 8800 320 320 383 21.3 17 200 2904 118 257 375 TVM/KVB Alstom 3sets are added from Réseau tric (No551-553). No 502 was abandoned after 25kV50Hz the accident at Bierne. Renovating by Lacroix to 355 places(105+252) No.4501-4529, No.4551 1.5kV TVM/KVB,TBL, 3 sets (No.4507-4509) are converted to Réseau bi. France TI SNCF TGV Réseau (tric.) 2L8T C, A 27 1993- 8800 320 320 3kV 383 21.3 17 200 2904 118 257 375 Alstom SCMT No.4530 -> IRIS320, No.4551 <- No.4531 Thalys PBA 25kV50Hz 4507-30: suited for Belgium(TBL), 4501-06: suited for Italy(SCMT) 1.5kV France NY SNCF TGV Duplex 2L8T C, A, D 88 1996- 8800 320 320 390 20.4 17 200 2896 182 330 512 TVM/KVB Alstom No.201-289 25kV50Hz 1.5kV No.601-619 France NY SNCF TGV Réseau Duplex 2L8T C, A, D 19 2006- 8800 320 320 25kV50Hz 380 20.9 17 200 2896 182 330 512 TVM/KVB Alstom 613-615: tri-voltage(+15kV16.7Hz) (15kV16.7Hz) 1.5kV France, TVM/KVB,PZB/ No. 4401-4419 TI SNCF, SBB TGV POS 2L8T C, A, D 19 2006- 9280 320 320 15kV16.7Hz 423 20.6 17 200 2904 105 252 357 Alstom Switzerland LZB,SUB,ETCS 4406: SBB 25kV50Hz 1.5kV TVM/KVB,ETC France NY SNCF TGV Duplex Dasye 2L8T C, A, D 49 2009- 9280 320 320 390 21.5 17 200 2896 182 330 512 Alstom No.701-749 25kV50Hz S TGV Duplex 1.5kV TVM/KVB,PZB/ No.4701-4730 France TI SNCF RGV2N2 2L8T C, A, D 30 2011- 9280 320 320 15kV16.7Hz 390 21.5 17 200 2896 509 Alstom LZB, ETCS These train sets are operable in Germany. (tric.) 25kV50Hz TGV Duplex No.801-825 for first 25 sets. 15 sets are domestic use, 10 sets are operable 25 1.5kV TVM/KVB, France D. Gwennan SNCF RGV2N2 2L8T C, A, D 2013- 9280 320 320 390 21.5 17 200 2896 509 Alstom in Spain. (56) 25kV50Hz ETCS (bic.) Additional 40 sets were ordered. 23 1.5kV No,851-854 for first 4 sets. France D. Gwennan SNCF TGV Océane 2L8T C, A, D 2016- 9280 320 320 390 21.4 17 200 2896 158 398 556 TVM, ETCS Alstom (40) 25kV50Hz Additional 36 will be mid-2019. 1.5kV C, A TVM/KVB,TBL, France NY SNCF IRIS320 2L8T 1 1993- 8800 320 320 3kV 200 2904 N/A N/A N/A Alstom TGV Réseau (tric.) 4530 Inspection SCMT 25kV50Hz UIC High Speed 1/6 World High Speed Rolling Stock 10th September 2018 Number Tractive Max.Tr. Max.Op. Weight of the Power weight Max.Axle Train Train Seats Owners or Year in Power Accelerati Signaling Country Class Train set Formula Features of train Effort Speed Speed Voltage train ratio Load length width Suppliers Observations Operators Service [kW] on[m/s2] systems sets [kN] [km/h] [km/h] [t] [kW/t] [t] [m] [mm] 1st class 2nd class Total sets have 197/506 seats after modernisation (which is completed now); 1 Siemens Germany NY DB AG 401(ICE1) 2L12T C 59 1991- 9600 400 280 280 15kV16.7Hz 782 11.5 19.5 358 3020 197 506 703 LZB/PZB,ZUB was abandoned by Eschede accident. 19 sets also suited for traffic to Bombardier Switzerland (ZUB installed) Siemens Germany NY DB AG 402(ICE2) 1L7T C 44 1996- 4800 200 280 280 15kV16.7 Hz 410 10.9 19.5 205 3020 105 263 368 LZB/PZB Passenger car consists of 6 coaches and driving trailer. Bombardier Siemens Germany NY DB AG 403(ICE3) 4M4T 50 2000- 8000 300 330 300 15kV16.7 Hz 409 18.0 16 200 2950 98 331 429 LZB/PZB Last 13 delivered from 2005 (with 98/344 seats) Bombardier 1.5kV 4 sets belong to NS. Germany, DB AG, 406(ICE3M) DB 330 3kV LZB/PZB, Siemens NY 4M4T 11 2000- 8000 300 300 435 17.1 16 200 2950 93 326 419 For Frankfurt-Brussels/Amsterdam and Basle-Amsterdam.
Recommended publications
  • Mezinárodní Komparace Vysokorychlostních Tratí
    Masarykova univerzita Ekonomicko-správní fakulta Studijní obor: Hospodářská politika MEZINÁRODNÍ KOMPARACE VYSOKORYCHLOSTNÍCH TRATÍ International comparison of high-speed rails Diplomová práce Vedoucí diplomové práce: Autor: doc. Ing. Martin Kvizda, Ph.D. Bc. Barbora KUKLOVÁ Brno, 2018 MASARYKOVA UNIVERZITA Ekonomicko-správní fakulta ZADÁNÍ DIPLOMOVÉ PRÁCE Akademický rok: 2017/2018 Studentka: Bc. Barbora Kuklová Obor: Hospodářská politika Název práce: Mezinárodní komparace vysokorychlostích tratí Název práce anglicky: International comparison of high-speed rails Cíl práce, postup a použité metody: Cíl práce: Cílem práce je komparace systémů vysokorychlostní železniční dopravy ve vybra- ných zemích, následné určení, který z modelů se nejvíce blíží zamýšlené vysoko- rychlostní dopravě v České republice, a ze srovnání plynoucí soupis doporučení pro ČR. Pracovní postup: Předmětem práce bude vymezení, kategorizace a rozčlenění vysokorychlostních tratí dle jednotlivých zemí, ze kterých budou dle zadaných kritérií vybrány ty státy, kde model vysokorychlostních tratí alespoň částečně odpovídá zamýšlenému sys- tému v ČR. Následovat bude vlastní komparace vysokorychlostních tratí v těchto vybraných státech a aplikace na český dopravní systém. Struktura práce: 1. Úvod 2. Kategorizace a členění vysokorychlostních tratí a stanovení hodnotících kritérií 3. Výběr relevantních zemí 4. Komparace systémů ve vybraných zemích 5. Vyhodnocení výsledků a aplikace na Českou republiku 6. Závěr Rozsah grafických prací: Podle pokynů vedoucího práce Rozsah práce bez příloh: 60 – 80 stran Literatura: A handbook of transport economics / edited by André de Palma ... [et al.]. Edited by André De Palma. Cheltenham, UK: Edward Elgar, 2011. xviii, 904. ISBN 9781847202031. Analytical studies in transport economics. Edited by Andrew F. Daughety. 1st ed. Cambridge: Cambridge University Press, 1985. ix, 253. ISBN 9780521268103.
    [Show full text]
  • Pioneering the Application of High Speed Rail Express Trainsets in the United States
    Parsons Brinckerhoff 2010 William Barclay Parsons Fellowship Monograph 26 Pioneering the Application of High Speed Rail Express Trainsets in the United States Fellow: Francis P. Banko Professional Associate Principal Project Manager Lead Investigator: Jackson H. Xue Rail Vehicle Engineer December 2012 136763_Cover.indd 1 3/22/13 7:38 AM 136763_Cover.indd 1 3/22/13 7:38 AM Parsons Brinckerhoff 2010 William Barclay Parsons Fellowship Monograph 26 Pioneering the Application of High Speed Rail Express Trainsets in the United States Fellow: Francis P. Banko Professional Associate Principal Project Manager Lead Investigator: Jackson H. Xue Rail Vehicle Engineer December 2012 First Printing 2013 Copyright © 2013, Parsons Brinckerhoff Group Inc. All rights reserved. No part of this work may be reproduced or used in any form or by any means—graphic, electronic, mechanical (including photocopying), recording, taping, or information or retrieval systems—without permission of the pub- lisher. Published by: Parsons Brinckerhoff Group Inc. One Penn Plaza New York, New York 10119 Graphics Database: V212 CONTENTS FOREWORD XV PREFACE XVII PART 1: INTRODUCTION 1 CHAPTER 1 INTRODUCTION TO THE RESEARCH 3 1.1 Unprecedented Support for High Speed Rail in the U.S. ....................3 1.2 Pioneering the Application of High Speed Rail Express Trainsets in the U.S. .....4 1.3 Research Objectives . 6 1.4 William Barclay Parsons Fellowship Participants ...........................6 1.5 Host Manufacturers and Operators......................................7 1.6 A Snapshot in Time .................................................10 CHAPTER 2 HOST MANUFACTURERS AND OPERATORS, THEIR PRODUCTS AND SERVICES 11 2.1 Overview . 11 2.2 Introduction to Host HSR Manufacturers . 11 2.3 Introduction to Host HSR Operators and Regulatory Agencies .
    [Show full text]
  • Disposición 2198 Del BOE Núm. 50 De 2013
    BOLETÍN OFICIAL DEL ESTADO Núm. 50 Miércoles 27 de febrero de 2013 Sec. III. Pág. 15921 III. OTRAS DISPOSICIONES MINISTERIO DE EMPLEO Y SEGURIDAD SOCIAL 2198 Resolución de 8 de febrero de 2013, de la Dirección General de Empleo, por la que se registra y publica del acuerdo de incorporar como anexo I los acuerdos de desarrollo profesional de RENFE-Operadora, conforme establece la cláusula 4.ª del II Convenio colectivo. Visto el acta de 22 de enero de 2013 en la que se contiene el acuerdo de incorporar como anexo I los acuerdos alcanzados de desarrollo profesional de la empresa RENFE- Operadora, conforme establece la cláusula 4.ª del II Convenio colectivo publicado en el «BOE» de 18 de enero de 2013, (código de convenio n.º 90017022012008) que fue suscrita, de una parte por los designados por la Dirección de la empresa en representación de la misma, y de otra por el Comité General de Empresa, en representación de los trabajadores, y de conformidad con lo dispuesto en el artículo 90, apartados 2 y 3, de la Ley del Estatuto de los Trabajadores, Texto Refundido aprobado por Real Decreto Legislativo 1/1995, de 24 de marzo, y en el Real Decreto 713/2010, de 28 de mayo, sobre registro y depósito de convenios y acuerdos colectivos de trabajo, Esta Dirección General de Empleo resuelve: Primero. Ordenar la inscripción de la citada acta en el correspondiente Registro de convenios y acuerdos colectivos de trabajo con funcionamiento a través de medios electrónicos de este Centro directivo, con notificación a la Comisión Paritaria.
    [Show full text]
  • Bilevel Rail Car - Wikipedia
    Bilevel rail car - Wikipedia https://en.wikipedia.org/wiki/Bilevel_rail_car Bilevel rail car The bilevel car (American English) or double-decker train (British English and Canadian English) is a type of rail car that has two levels of passenger accommodation, as opposed to one, increasing passenger capacity (in example cases of up to 57% per car).[1] In some countries such vehicles are commonly referred to as dostos, derived from the German Doppelstockwagen. The use of double-decker carriages, where feasible, can resolve capacity problems on a railway, avoiding other options which have an associated infrastructure cost such as longer trains (which require longer station Double-deck rail car operated by Agence métropolitaine de transport platforms), more trains per hour (which the signalling or safety in Montreal, Quebec, Canada. The requirements may not allow) or adding extra tracks besides the existing Lucien-L'Allier station is in the back line. ground. Bilevel trains are claimed to be more energy efficient,[2] and may have a lower operating cost per passenger.[3] A bilevel car may carry about twice as many as a normal car, without requiring double the weight to pull or material to build. However, a bilevel train may take longer to exchange passengers at each station, since more people will enter and exit from each car. The increased dwell time makes them most popular on long-distance routes which make fewer stops (and may be popular with passengers for offering a better view).[1] Bilevel cars may not be usable in countries or older railway systems with Bombardier double-deck rail cars in low loading gauges.
    [Show full text]
  • Case of High-Speed Ground Transportation Systems
    MANAGING PROJECTS WITH STRONG TECHNOLOGICAL RUPTURE Case of High-Speed Ground Transportation Systems THESIS N° 2568 (2002) PRESENTED AT THE CIVIL ENGINEERING DEPARTMENT SWISS FEDERAL INSTITUTE OF TECHNOLOGY - LAUSANNE BY GUILLAUME DE TILIÈRE Civil Engineer, EPFL French nationality Approved by the proposition of the jury: Prof. F.L. Perret, thesis director Prof. M. Hirt, jury director Prof. D. Foray Prof. J.Ph. Deschamps Prof. M. Finger Prof. M. Bassand Lausanne, EPFL 2002 MANAGING PROJECTS WITH STRONG TECHNOLOGICAL RUPTURE Case of High-Speed Ground Transportation Systems THÈSE N° 2568 (2002) PRÉSENTÉE AU DÉPARTEMENT DE GÉNIE CIVIL ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE PAR GUILLAUME DE TILIÈRE Ingénieur Génie-Civil diplômé EPFL de nationalité française acceptée sur proposition du jury : Prof. F.L. Perret, directeur de thèse Prof. M. Hirt, rapporteur Prof. D. Foray, corapporteur Prof. J.Ph. Deschamps, corapporteur Prof. M. Finger, corapporteur Prof. M. Bassand, corapporteur Document approuvé lors de l’examen oral le 19.04.2002 Abstract 2 ACKNOWLEDGEMENTS I would like to extend my deep gratitude to Prof. Francis-Luc Perret, my Supervisory Committee Chairman, as well as to Prof. Dominique Foray for their enthusiasm, encouragements and guidance. I also express my gratitude to the members of my Committee, Prof. Jean-Philippe Deschamps, Prof. Mathias Finger, Prof. Michel Bassand and Prof. Manfred Hirt for their comments and remarks. They have contributed to making this multidisciplinary approach more pertinent. I would also like to extend my gratitude to our Research Institute, the LEM, the support of which has been very helpful. Concerning the exchange program at ITS -Berkeley (2000-2001), I would like to acknowledge the support of the Swiss National Science Foundation.
    [Show full text]
  • 1/2012 3 Svakheter Ved Stillesby-Utredningen
    FORJERNBANE Bli medlem! www.jernbane.no Foreløpig pris 13 milliarder – Innmeldt til Riksrevisjonen s. 10 – Anbefaler grønn vekst s. 6 www.jernbane.no FORJERNBANE Foreløpig pris 13 milliarder RIK ONSRUD slag for Eidsvoll st.-Sørli langs Vorma/Mjøsa har økt med t til 11,5 mrd. Enkeltsporstrekningen på Gardermobanen, er anslått til 1,5 mrd. uten at det gjøres noe med den dår- n eksterne KS2 rapporten regner det ikke som usannsyn- n få påplussinger. Rundt årsskiftet kom det fram at Jern- selsdepartementet holdt tilbake en alternativanalyse datert t en Østlig trasé Venjar-Sørli var så å si like god som en Østlandet er åpenbart et viktig prosjekt på vei mot et nytt nett. Men Norge er mer enn Østlandet. En 1. jernbane- omfatte Jærbanen, Vossebanen og Trønderbanen. Finan- ss og bør baseres på et bredt politisk forlik. Større statlige ygging bør også inngå. akke 2? øyhastighetsutredning har gitt ny kunnskap, men reiser . ommet fram til forholdsvis høye kostnader og klimagass- en. Dette skyldes i stor grad høy tunnelandel og at det er ig helstøping av tunnelene, noe som avviker Jernbanever- Det er også lagt til grunn doble tunnelløp overalt. For de som det også vil bli en del av, er det kanskje ikke nødven- måten i nasjonal transportplan for klimaeffekten gir langt nn det som ble brukt i Høyhastighetsutredningen. Klima- afikk i høyere luftlag er heller ikke tatt hensyn til, og det syn til sparte kostnader ved at tog overtar for fly, bil, buss. net med kostnader ved bygging av flere av stasjonene, men de billettinntekter. et har lagt til grunn to alternativer; 250 og 330 km/t.
    [Show full text]
  • Applicable Directivity Description of Railway Noise Sources
    THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Applicable Directivity Description of Railway Noise Sources XUETAO ZHANG Department of Civil and Environmental Engineering Division of Applied Acoustics, Vibroacoustic Group CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2010 Applicable Directivity Description of Railway Noise Sources XUETAO ZHANG ISBN 978-91-7385-416-0 © Xuetao Zhang, 2010 Doktorsavhandlingar vid Chalmers tekniska högskola Ny serie nr 3097 ISSN 0346-718X Department of Civil and Environmental Engineering Division of Applied Acoustics Chalmers University of Technology SE – 412 96 Göteborg Sweden Tel: +46 (0) 31-772 2200 Fax: +46 (0) 31-772 2212 Cover: 3D directivity pattern of a perpendicular dipole pair, viewed along the axis of the red dipole component which is 4 dB weaker than the blue one. Printed by Chalmers Reproservice Göteborg, Sweden, 2010 ii Applicable Directivity Description of Railway Noise Sources XUETAO ZHANG Department of Civil and Environmental Engineering Division of Applied Acoustics Chalmers University of Technology Abstract For a sound source, directivity is an important parameter to specify. This parameter also reflects the physical feature of the sound generation mechanism. For example, turbulence sound is of quadrupole directivity while fluid-structure interaction often produces a sound of dipole characteristic. Therefore, to reach a proper directivity description is in fact a process of understanding the sound source in a better way. However, in practice, this is often not a simple procedure. As for railway noise engineering, several noise types of different directivity characters are often mixed together, such as wheel and rail radiation, engine and cooling fan noise, scattered fluid sound around bogies and turbulent boundary layer noise along train side surfaces.
    [Show full text]
  • High Speed Rail and Sustainability High Speed Rail & Sustainability
    High Speed Rail and Sustainability High Speed Rail & Sustainability Report Paris, November 2011 2 High Speed Rail and Sustainability Author Aurélie Jehanno Co-authors Derek Palmer Ceri James This report has been produced by Systra with TRL and with the support of the Deutsche Bahn Environment Centre, for UIC, High Speed and Sustainable Development Departments. Project team: Aurélie Jehanno Derek Palmer Cen James Michel Leboeuf Iñaki Barrón Jean-Pierre Pradayrol Henning Schwarz Margrethe Sagevik Naoto Yanase Begoña Cabo 3 Table of contnts FOREWORD 1 MANAGEMENT SUMMARY 6 2 INTRODUCTION 7 3 HIGH SPEED RAIL – AT A GLANCE 9 4 HIGH SPEED RAIL IS A SUSTAINABLE MODE OF TRANSPORT 13 4.1 HSR has a lower impact on climate and environment than all other compatible transport modes 13 4.1.1 Energy consumption and GHG emissions 13 4.1.2 Air pollution 21 4.1.3 Noise and Vibration 22 4.1.4 Resource efficiency (material use) 27 4.1.5 Biodiversity 28 4.1.6 Visual insertion 29 4.1.7 Land use 30 4.2 HSR is the safest transport mode 31 4.3 HSR relieves roads and reduces congestion 32 5 HIGH SPEED RAIL IS AN ATTRACTIVE TRANSPORT MODE 38 5.1 HSR increases quality and productive time 38 5.2 HSR provides reliable and comfort mobility 39 5.3 HSR improves access to mobility 43 6 HIGH SPEED RAIL CONTRIBUTES TO SUSTAINABLE ECONOMIC DEVELOPMENT 47 6.1 HSR provides macro economic advantages despite its high investment costs 47 6.2 Rail and HSR has lower external costs than competitive modes 49 6.3 HSR contributes to local development 52 6.4 HSR provides green jobs 57
    [Show full text]
  • Avril by Talgo. the New Renfe High-Speed Train
    Report - New high-speed train Avril by Talgo: Renfe’s new high-speed, variable gauge train On 28 November the Minister of Pub- Renfe Viajeros has awarded Talgo the tender for the sup- lic Works, Íñigo de la Serna, officially -an ply and maintenance over 30 years of fifteen high-speed trains at a cost of €22.5 million for each composition and nounced the award of a tender for the Ra maintenance cost of €2.49 per kilometre travelled. supply of fifteen new high-speed trains to This involves a total amount of €786.47 million, which represents a 28% reduction on the tender price Patentes Talgo for an overall price, includ- and includes entire lifecycle, with secondary mainte- nance activities being reserved for Renfe Integria work- ing maintenance for thirty years, of €786.5 shops. The trains will make it possible to cope with grow- million. ing demand for high-speed services, which has increased by 60% since 2013, as well as the new lines currently under construction that will expand the network in the coming and Asfa Digital signalling systems, with ten of them years and also the process of Passenger service liberaliza- having the French TVM signalling system. The trains will tion that will entail new demands for operators from 2020. be able to run at a maximum speed of 330 km/h. The new Avril (expected to be classified as Renfe The trains Class 106 or Renfe Class 122) will be interoperable, light- weight units - the lightest on the market with 30% less The new Avril trains will be twelve car units, three mass than a standard train - and 25% more energy-effi- of them being business class, eight tourist class cars and cient than the previous high-speed series.
    [Show full text]
  • Sncf Dea France Clients After Sales and Disruption Procedures for Eurostar Bookings
    SNCF DEA FRANCE CLIENTS AFTER SALES AND DISRUPTION PROCEDURES FOR EUROSTAR BOOKINGS 1. Customer Wishes To Claim Compensation For Delay a) Stand-alone Eurostar reservations Either… The customer can claim a compensation voucher by completing the Eurostar compensation web-form on the Eurostar website at https://compensation.eurostar.com/?lang=EN#/ Or… The customer can claim monetary compensation by completing the Eurostar compensation web-form on the Eurostar website at https://prr.eurostar.com/?lang=en#/ What happens next… • The customer completes the web-form, including their 9-digit ticket number and 6-character booking reference. • Compensation is then arranged by Eurostar’s Business Support Centre. 1. Customer Wishes To Claim Compensation For Delay b) Eurostar & TGV combined reservations The customer will need to contact their point of sale, which would be a Travel Agent or Tour Operator which purchases Eurostar tickets via SNCF DEA. What happens next… • The Travel Agent or Tour Operator should send the compensation claim to SNCF DEA so that their customer service team can assess and provide an appropriate response. 1. Customer Wishes To Claim Compensation For Delay c) Groups If individuals within a group do not wish to claim separately, a representative of the group can send a claim on behalf of the entire group via email to Traveller Care at [email protected], including booking reference(s), scanned copies of the impacted tickets (where possible) and an RIB (Relevé d’Identité Bancaire) containing details of a bank account to which compensation for the entire group should be paid. The RIB should include IBAN numbers and BIC codes.
    [Show full text]
  • Rail Vehicles: the Resistance to the Movement and the Controllability
    S.Yu. Sapronova, V.P. Tkachenko, O.V. Fomin, I.I. Kulbovskiy, E.P. Zub RAIL VEHICLES: THE RESISTANCE TO THE MOVEMENT AND THE CONTROLLABILITY monograph Dnipro 2017 UDC 629.4.072:629.1.072 C 19 This monograph is recommended for printing by the Science Council of DUIT STATE UNIVERSITY OF INFRASTRUCTURE AND TECHNOLOGY (protocol No 1 dd 8.12.2017). Reviewers: Miamlin S.V. – doctor of Technical Sciences, Professor, Vice-Rector on Scientific Work of Dnipropetrovsk National University of Railway Transport named after academician V. Lazaryan Gorbunov M. I. – doctor of Technical Sciences, Professor, Head of Railway Transport, Automobile Transport and Lifting-Transporting Machines of Volodymyr Dahl East Ukrainian National University S.Yu. Sapronova, V.P. Tkachenko, O.V. Fomin, I.I. Kulbovskiy, E.P. Zub. C19 Rail Vehicles: The Resistance to the Movement and the Controllability: Monograph. Dnipro: Ukrmetalurginform STA, 2017. – 160 p. ISBN 978-966-921-163-7 The monograph substantiates the existence and determines the origin of the constituent element of the resistance to the movement within rail carriages; the constituent is determined by the control of the wheel pairs within the railway track. In this book, we suggest the method to analyze closed power circuit in mechanical power transmission applied to rolling stock. The method of mathematical modeling for two- point contact of the wheel with the rail has also been developed. The characteristics of the kinematic resistance to the movement for a number of types of rolling stock have been obtained. There are power factors which control the rail carriages and their analysis is very important, therefore we address to it in the book as well.
    [Show full text]
  • Railway Accident Investigation Report
    RA2007-8-I Railway Accident Investigation Report Train Derailment Accident between Urasa station and Nagaoka station of the Joetsu Shinkansen of the East Japan Railway Company November 30, 2007 Aircraft and Railway Accidents Investigation Commission i The objective of the investigation conducted by the Japan Transport Safety Board in accordance with the Act for Establishment of the Aircraft and Railway Accidents Investigation Commission to determine the causes of an accident and damage incidental to such an accident, thereby preventing future accidents and reducing damage. It is not the purpose of the investigation to apportion blame or liability. Norihiro Goto Chairman Aircraft and Railway Accidents Investigation Commission Note: This report is a translation of the Japanese original investigation report. The text in Japanese shall prevail in the interpretation of the report. ii Railway Accident Investigation Report Railway operator : East Japan Railway Company Accident type : Train derailment Date and time : About 17:56, October 23, 2004 Location : Around 206,207 m from the origin in Omiya Station, between Urasa station and Nagaoka station, Joetsu Shinkansen, Nagaoka City, Niigata Prefecture November 1, 2007 Adopted by the Aircraft and Railway Accidents Investigation Commission Chairman Norihiro Goto Member Yukio Kusuki Member Toshiko Nakagawa Member Akira Matsumoto Member Masayuki Miyamoto Member Norio Tomii Member Shinsuke Endoh Member Noboru Toyooka Member Yuki Shuto Member Akiko Matsuo iii Contents 1. PROCESS AND PROGRESS OF THE RAILWAY ACCIDENT INVESTIGATION 1 1.1. Summary of the Railway Accident 1 1.2. Outline of the Railway Accident Investigation 1 1.2.1. Organization of the Investigation 1 1.2.2. Implementation of the Investigation 2 1.2.3.
    [Show full text]