Coagulation Simplified…

Total Page:16

File Type:pdf, Size:1020Kb

Coagulation Simplified… Coagulation Simplified… Published by ACKNOWLEDGEMENTS CONTENTS We gratefully acknowledge the support and funding provided by the Ontario Ministry of Health 1. The Basics of Coagulation and Clot Breakdown . 4–7 and Long-Term Care. 2. Routine Coagulation Tests . 8–17 Special thanks to the following people and organizations who provided their expertise in Evaluating coagulation in the laboratory . 8 reviewing the content of this handbook: Sample collection for coagulation testing . 9 Prothrombin Time (PT) . 10 L Gini Bourner (QMP-LS Hematology Committee) International Normalized Ratio (INR) . 11 L Dr. Jeannie Callum Activated Partial Thromboplastin Time (APTT) . 12 L Dr. Allison Collins Thrombin Time (TT) . 13 Fibrinogen . 14 L Dr. William Geerts D-dimer . 15 L Dr. Alejandro Lazo-Langner Anti-Xa assay . 16 L Dr. Ruth Padmore (QMP-LS Hematology Committee) Summary . 17 L Anne Raby (QMP-LS Hematology Committee) 3. Anticoagulant Drugs . 18–25 L Dr. Margaret Rand Unfractionated Heparin (UFH) . 18 L Dr. Alan Tinmouth Low Molecular Weight Heparins (LMWHs) . 19 Fondaparinux . 20 Warfarin . 21 Thanks also to: Direct Thrombin Inhibitors (DTI) . 23 L Dale Roddick, photographer, Sunnybrook Health Sciences Centre Direct Xa Inhibitors . 25 L Reena Manohar, graphic artist, Sunnybrook Health Sciences Centre 4. Evaluating Abnormal Coagulation Tests . 26–29 L The ECAT Foundation Prolonged PT / INR with normal APTT . 26 CLOT-ED Images used or modified with permission from Prolonged APTT with normal PT / INR . 27 the ECAT Foundation, The Netherlands. Prolonged APTT and PT / INR . 28 Prolonged Thrombin Time (TT) with normal or prolonged APTT and PT / INR . 29 March 2013 5. Approach to the Evaluation of the Bleeding Patient . 30–35 General Disclaimer: 6. Diagnosis and Emergency Management of While the advice and information in this handbook are believed to be true and accurate at Common Bleeding Disorders . 36–45 the time of publishing, neither the authors nor the publishers accept any legal responsibility von Willebrand disease (VWD) . 36 or liability for any errors or omissions in the information provided, or for any of the Disorders of platelet function . 38 recommendations made. Any decision involving patient care must be based on the judgement Hemophilia A and B (Factor VIII and IX deficiency) . 40 of the attending physician according to the needs and condition of each individual patient. Factor XI deficiency . 43 Key References . 45 2 3 t 1. THE BASICS OF COAGULATION AND CLOT BREAKDOWN o l C Lesley Black & Rita Selby n & w n o o i d t k a l a u e r g B a o C . Hemostasis is a complex process in which multiple components of the blood clotting system 2. Secondary hemostasis = activation of coagulation factors and generation 1 are activated in response to vessel injury to control bleeding. of thrombin: Hemostasis is composed of four major events: Initiation of coagulation 1. Primary hemostasis L Tissue factor (TF) is released from injured tissue cells, endothelial cells and monocytes. 2. Secondary hemostasis L TF and Factor VIIa form the TF / Factor VIIa complex. 3. Fibrin clot formation and stabilization L TF / Factor VIIa activates a small amount of Factor IX and X to generate a small amount 4. Inhibition of coagulation of thrombin. L Factor XII (and other “contact” factors) play a minor role in the activation of Factor XI. 1. Primary hemostasis = vasoconstriction and platelet plug formation: L The key component of primary hemostasis is the platelet. Amplification phase L Primary hemostasis is triggered by injury to the vessel wall, exposing subendothelial L Thrombin activates Factor V to Va, Factor VIII to VIIIa and activates more platelets. collagen. L Thrombin also activates FXI to FXIa. L Vasoconstriction occurs at the site of injury to reduce blood flow. L Adhesion: von Willebrand factor GPllb / llla Propagation phase adheres platelets to exposed L Additional Factor Xa is produced when TF / Factor VIIa complex activates Factor IX. The subendothelial collagen via Dense granules the platelet receptor Platelet resultant Factor IXa along with Factor VIIIa forms the tenase complex which then converts glycoprotein Ib / IX (GPIb / IX). more Factor X to Xa. Platelets also adhere directly to Alpha granules L Factor Xa and Va along with calcium and a phospholipid (PL) surface (activated platelets) collagen by other receptors. GPlb / IX Endothelium form the prothrombinase complex which converts prothrombin (Factor II) to large amounts Collagen VWF Injury site L Aggregation: Platelets aggregate collagen exposed of thrombin (Factor IIa). with each other with the help of fibrinogen that binds to activated glycoprotein IIb-IIIa (GPIIb / IIIa), 3. Fibrin clot formation and stabilization: forming a platelet plug. Platelet L Thrombin converts fibrinogen to fibrin monomers which polymerize to form a soluble clot. aggregates also provide the Thrombin then activates Factor XIII which cross-links the fibrin monomers and stabilizes phospholipid surface necessary the clot. for coagulation factor activation. GPllb / IIIa Activated Fibrinogen Platelet Collagen GPlb / IX VWF 4 5 t o l C 1. THE BASICS OF COAGULATION AND CLOT BREAKDOWN n & w n o o i d t k a l a u e r g B a o C . Secondary hemostasis, fibrin clot formation and stabilization: 4. Inhibition of coagulation = inhibition of thrombin generation and fibrin 1 clot breakdown (fibrinolysis) Contact Factors (HMWK, Prekallikrein) Inhibition of thrombin generation INITIATION L At the same time that a clot is being formed, the clotting process also starts to shut itself FXII FXIIa Tissue off to limit the extent of the thrombus formed. Factor PROPAGATION FVIIa L Thrombin binds to the membrane receptor thrombomodulin and activates Protein C to FXI FXIa Activated Protein C (APC). 2+ TF - VIIa complex Ca L APC combines with its cofactor Protein S which then inhibits Factors Va and VIIIa, slowing FIX FIXa down the coagulation process. 2+ FVIII FVIIIa Ca +PL L Thrombin bound to thrombomodulin becomes inactive and can no longer activate procoagulant factors or platelets. FX FXa 2+ L The endogenous anticoagulant, antithrombin inhibits the activity of thrombin as well FV FVa Ca +PL as several of the other activated factors, primarily Factor Xa. Prothrombin Thrombin (FII) (FIIa) Fibrinolysis AMPLIFICATION L Tissue plasminogen activator (t-PA) converts plasminogen to plasmin which breaks down cross-linked fibrin to several fibrin degradation products, the smallest of which is D-dimer. Fibrinogen Soluble Fibrin L Thrombin activatable fibrinolysis inhibitor (TAFI) prevents the formation of plasmin. L Anti-plasmin and plasminogen activator inhibitor-1 (PAI-1) inhibit plasmin and t-PA Fibrin Clot Formation FXIIIa respectively. and Stabilization Insoluble Plasminogen Antiplasmin TAFI cross-linked !brin tPA PAI - 1 Plasmin Fibrin(ogen) Fibrin Clot Degradation Products D-dimers 6 7 2. ROUTINE COAGULATION TESTS Elena Brnjac & Rita Selby Sodium Citrate Tube Evaluating coagulation in the laboratory Sample collection for coagulation testing (Blue Top) L In the coagulation laboratory, the coagulation factors are divided into: L To assess coagulation “in vitro,” the laboratory measures the time • Extrinsic pathway factors (Factor VII) taken to form a clot. s t L s Blood is collected into a blue top tube containing sodium citrate e e T • Intrinsic pathway factors (Factors XII, XI, IX, VIII) n n i t anticoagulant (which chelates calcium) to prevent blood clotting o i u t o • Common Pathway factors (Factors X, V, II, Fibrinogen) a l R in the tube during transport. u . 2 g a o ATTENTION C L Memorizing which factors belong to the extrinsic, intrinsic and common pathways Sodium Citrate Tube Coagulation testing respectively will make evaluating the causes of abnormal coagulation tests easier. (Blue Top) MUST only be sent in a sodium citrate Centrifugation (blue top) tube. Intrinsic Pathway Extrinsic Pathway ! XII XI VII IX Tissue Factor L Plasma (the liquid component of blood that contains the clotting VIII factors) is then separated from the platelets (phospholipid source) APTT X PT Intrinsic Extrinsic by centrifugation. + Common V Pathway + L Common II Common Later we will see how adding back phospholipids and calcium is important in standardizing routine coagulation tests. Fibrinogen Fibrin Clot L Some common problems that may result in spurious coagulation Plasma test results are: Buy C oat • Blood collected into incorrect type of tube (not a sodium citrate Red L Here is another picture to help with memorizing the coagulation cascade without the tube) Cells Roman numerals: • Incorrect plasma to citrate ratio (e.g. underfilling of tube or 8 5 patient’s hematocrit > 0.55 L/L) 12 11 9 10 2 1 • Heparin contamination of sample (e.g. incorrect order of sample Thrombin Fibrinogen PTT collection or sample collected from central lines) • Clotting in tube from traumatic venipuncture or inadequate 7 mixing INR • Hemodilution of sample • The common pathway factors can be memorized by thinking of the denominations of dollars in Canada: factors 10, 5, 2 and 1 • The PT/INR pathway starts with factor 7 and includes the common pathway factors • The APTT pathway starts from the left at factor 12, counts backwards to factor 8 (skipping factor 10) and includes the common pathway factors 8 9 2. ROUTINE COAGULATION TESTS Prothrombin Time (PT) International Normalized Ratio (INR) L The PT is used to assess deficiencies or Extrinsic L The International Normalized Ratio (INR) was developed to standardize the PT to allow inhibitors of the extrinsic pathway Pathway for monitoring of oral vitamin K antagonist therapy (e.g. warfarin) across different labs. s t factors (Factor VII) and common L s The PT time in seconds is used to calculate the INR. e e T n n pathway factors (Factors X, V, II, VII i t L o i u Each lot of PT reagent needs to have an International Sensitivity Index (ISI) determined / t o Fibrinogen). a l R u Common assigned, which indicates how sensitive the reagent is to deficiencies in the Vitamin K .
Recommended publications
  • MYH9-Related Platelet Disorders
    Reprinted with permission from Thieme Medical Publishers (Semin Thromb Hemost 2009;35:189-203) Homepage at www.thieme.com MYH9-Related Platelet Disorders Karina Althaus, M.D.,1 and Andreas Greinacher, M.D.1 ABSTRACT Myosin heavy chain 9 (MYH9)-related platelet disorders belong to the group of inherited thrombocytopenias. The MYH9 gene encodes the nonmuscle myosin heavy chain IIA (NMMHC-IIA), a cytoskeletal contractile protein. Several mutations in the MYH9 gene lead to premature release of platelets from the bone marrow, macro- thrombocytopenia, and cytoplasmic inclusion bodies within leukocytes. Four overlapping syndromes, known as May-Hegglin anomaly, Epstein syndrome, Fechtner syndrome, and Sebastian platelet syndrome, describe different clinical manifestations of MYH9 gene mutations. Macrothrombocytopenia is present in all affected individuals, whereas only some develop additional clinical manifestations such as renal failure, hearing loss, and presenile cataracts. The bleeding tendency is usually moderate, with menorrhagia and easy bruising being most frequent. The biggest risk for the individual is inappropriate treatment due to misdiagnosis of chronic autoimmune thrombocytopenia. To date, 31 mutations of the MYH9 gene leading to macrothrombocytopenia have been identified, of which the upstream mutations up to amino acid 1400 are more likely associated with syndromic manifestations than the downstream mutations. This review provides a short history of MYH9-related disorders, summarizes the clinical and laboratory character- istics, describes a diagnostic algorithm, presents recent results of animal models, and discusses aspects of therapeutic management. KEYWORDS: MYH9 gene, nonmuscle myosin IIA, May-Hegglin anomaly, Epstein syndrome, Fechtner syndrome, Sebastian platelet syndrome, macrothrombocytopenia The correct diagnosis of hereditary chronic as isolated platelet count reductions or as part of thrombocytopenias is important for planning appropri- more complex clinical syndromes.
    [Show full text]
  • Section 8: Hematology CHAPTER 47: ANEMIA
    Section 8: Hematology CHAPTER 47: ANEMIA Q.1. A 56-year-old man presents with symptoms of severe dyspnea on exertion and fatigue. His laboratory values are as follows: Hemoglobin 6.0 g/dL (normal: 12–15 g/dL) Hematocrit 18% (normal: 36%–46%) RBC count 2 million/L (normal: 4–5.2 million/L) Reticulocyte count 3% (normal: 0.5%–1.5%) Which of the following caused this man’s anemia? A. Decreased red cell production B. Increased red cell destruction C. Acute blood loss (hemorrhage) D. There is insufficient information to make a determination Answer: A. This man presents with anemia and an elevated reticulocyte count which seems to suggest a hemolytic process. His reticulocyte count, however, has not been corrected for the degree of anemia he displays. This can be done by calculating his corrected reticulocyte count ([3% × (18%/45%)] = 1.2%), which is less than 2 and thus suggestive of a hypoproliferative process (decreased red cell production). Q.2. A 25-year-old man with pancytopenia undergoes bone marrow aspiration and biopsy, which reveals profound hypocellularity and virtual absence of hematopoietic cells. Cytogenetic analysis of the bone marrow does not reveal any abnormalities. Despite red blood cell and platelet transfusions, his pancytopenia worsens. Histocompatibility testing of his only sister fails to reveal a match. What would be the most appropriate course of therapy? A. Antithymocyte globulin, cyclosporine, and prednisone B. Prednisone alone C. Supportive therapy with chronic blood and platelet transfusions only D. Methotrexate and prednisone E. Bone marrow transplant Answer: A. Although supportive care with transfusions is necessary for treating this patient with aplastic anemia, most cases are not self-limited.
    [Show full text]
  • Common Laboratory Values
    AmericAn AcAdemy of PediAtric dentistry Reference Manual 2006-2007 Resource Section 251 Common LaboratoryCommon Values Laboratory Values CBC Test Normal value Function Significance Hemoglobin 12-18 g/100 mL Measures oxygen carrying capacity of blood Low: hemorrhage, anemia High: polycythemia Hematocrit 35%-50% Measures relative volume of cells and plasma in Low: hemorrhage, anemia blood High: polycythemia, dehydration Red blood cell 4-6 million/mm3 Measures oxygen-carrying capacity of blood Low: hemorrhage, anemia High: polycythemia, heart disease, pulmonary disease White blood cell Measures host defense against inflammatory agents Low: aplastic anemia, drug toxicity, Infant 8,000-15,000/mm3 specific infections 4-7 y 6,000-15,000/mm3 High: inflammation, trauma, 8-18 y 4,500-13,500/mm3 toxicity, leukemia Differential Count Test Normal value Significance Neutrophils 54%-62% Increase in bacterial infections, hemorrhage, diabetic acidosis Lymphocytes 25%-30% Viral and bacterial infection, acute and chronic lymphocytic leukemia, antigen reaction Eosinophils 1%-3% Increase in parasitic and allergic conditions, blood dyscrasias, pernicious anemia Basophils 1% Increase in types of blood dyscrasias Monocytes 0%-9% Hodgkin’s disease, lipid storage disease, recovery from severe infections, monocytic leukemia Absolute Neutrophil Count (ANC) Calculation Normal value Significance (% Polymorphonuclear Leukocytes + % Bands)×Total White Cell Count >1500 <1000 Patient at increased risk for 100 infection; defer elective dental care Bleeding Screen Test
    [Show full text]
  • Prolonged Partial Thromboplastin Time Without Bleeding History; Fletcher Factor Deficiency
    Prolonged Partial Thromboplastin Time Without Bleeding History; Fletcher Factor Deficiency Celalettin ÜSTÜN*, Anand JILLELLA*, Linda HENDRIKS*, Mary JONAH**, Ferdane KUTLAR*, Russell BURGESS*, Abdullah KUTLAR* * Section of Hematology Oncology, Department of Medicine, Medical College of Georgia, ** Department of Pathology, Medical College of Georgia, Augusta, USA ABSTRACT A 67-year-old patient was admitted to the hospital to perform an esophagogastrectomy because a lesion at the lower esophagus was strongly suspicious for cancer. Her medical history and her family his- tory were negative for bleeding tendency or thrombosis. Her activated partial thromboplastin time (aPTT) was prolonged (44 s) whereas her prothrombin time (PT) was normal (11 s) presurgery. Mixing of her plasma with normal plasma corrected her prolonged aPTT (27.9 s). Prolonged incubation shortened the patient’s aPTT (36.3 s). Fletcher factor activity was found to be 50%. The patient underwent an esopha- gogastrectomy without bleeding complications under spinal anesthesia. Fletcher factor deficiency, a ra- re disorder, should be considered in patients who have no history of bleeding tendency with a prolonged aPTT. Surgical interventions are safe in these patients. Key Words: aPTT, Surgery, Fletcher factor, Prekallikrein. Turk J Haematol 2002;19(3): 417-419 Received: 20.06.2001 Accepted: 28.07.2001 INTRODUCTION unt[2]. Hematologists are frequently consulted for preoperative coagulation abnormalities. Preoperative evaluation of hemostasis is cru- cial to assess the risk of per-and peri-operative Prolonged aPTT is not an uncommon abnor- bleeding. The most effective screening method is mality encountered during preoperative evaluati- to obtain a thorough history of bleeding[1]. on. It may indicate the presence of antiphospholi- Preoperative screening tests mostly include acti- pid antibodies or a factor deficiency in the intrinsic vated partial thromboplastin time (aPTT), proth- and/or common pathways of blood coagulation.
    [Show full text]
  • Diagnosis of Inherited Platelet Disorders on a Blood Smear
    Journal of Clinical Medicine Article Diagnosis of Inherited Platelet Disorders on a Blood Smear Carlo Zaninetti 1,2,3 and Andreas Greinacher 1,* 1 Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany; [email protected] 2 University of Pavia, and IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy 3 PhD Program of Experimental Medicine, University of Pavia, 27100 Pavia, Italy * Correspondence: [email protected]; Tel.: +49-3834-865482; Fax: +49-3834-865489 Received: 19 January 2020; Accepted: 12 February 2020; Published: 17 February 2020 Abstract: Inherited platelet disorders (IPDs) are rare diseases featured by low platelet count and defective platelet function. Patients have variable bleeding diathesis and sometimes additional features that can be congenital or acquired. Identification of an IPD is desirable to avoid misdiagnosis of immune thrombocytopenia and the use of improper treatments. Diagnostic tools include platelet function studies and genetic testing. The latter can be challenging as the correlation of its outcomes with phenotype is not easy. The immune-morphological evaluation of blood smears (by light- and immunofluorescence microscopy) represents a reliable method to phenotype subjects with suspected IPD. It is relatively cheap, not excessively time-consuming and applicable to shipped samples. In some forms, it can provide a diagnosis by itself, as for MYH9-RD, or in addition to other first-line tests as aggregometry or flow cytometry. In regard to genetic testing, it can guide specific sequencing. Since only minimal amounts of blood are needed for the preparation of blood smears, it can be used to characterize thrombocytopenia in pediatric patients and even newborns further.
    [Show full text]
  • Gri Trombosit Sendromu
    Cukurova Medical Journal Cukurova Med J 2017;42(2):360-362 ÇUKUROVA ÜNİVERSİTESİ TIP FAKÜLTESİ DERGİSİ DOI: 10.17826/cutf.322967 OLGU SUNUMU / CASE REPORT Gray platelet syndrome Gri trombosit sendromu Fatima Ayaz1, Saeed Bin Ayaz2, Sunila Tashfeen2, Muhammad Furrukh1 1Benazir Bhutto Hospital, Rawalpindi, Punjab, Pakistan 2Combined Military Hospital, Okara, Punjab, Pakistan Cukurova Medical Journal 2017;42(2):360-362 Abstract Öz Gray platelet syndrome (GPS) is an autosomal recessive Gri trombosit (platelet) sendromu (GPS), trombositopeni disorder characterized by thrombocytopenia and defective ve ışık mikroskopunda soluk görünen kusurlu platelets that appear pale on light microscope. Patients trombositlerle karakterize, otozomal resesif geçişli bir present with easy bruisability, nose bleeds, menorrhagia hastalıktır. Hastalarda kolay morarma, burun kanaması, and prolonged bleeding. There is no specific treatment for menoraji ve uzun kanamalar görülmektedir. GPS için GPS and the management includes anticipating risks and spesifik bir tedavi bulunmamaktadır dolayısı ile hastalığa preventing bleeding by avoiding drugs that impair platelet karşı, riskleri öngörmek ve kanamanın önlenmesi function. We present here report of a case who presented için trombosit fonksiyonunu bozan ilaçlardan kaçınmak with repeated episodes of abnormal bleeding and was gerekmektedir. Bu olgu sunumunda, tekrarlayan anormal found to have GPS. kanama atakları olan ve GPS bulgusu bulunan bir vaka sunulmaktadır. Key words: Bleeding disorder, gray platelet syndrome, Anahtar
    [Show full text]
  • Platelet Function Disorders
    TREATMENT OF HEMOPHILIA APRIL 2008 • NO 19 PLATELET FUNCTION DISORDERS Second Edition Anjali A. Sharathkumar Amy Shapiro Indiana Hemophilia and Thrombosis Center Indianapolis, U.S.A. Published by the World Federation of Hemophilia (WFH), 1999; revised 2008. © World Federation of Hemophilia, 2008 The WFH encourages redistribution of its publications for educational purposes by not-for-profit hemophilia organizations. In order to obtain permission to reprint, redistribute, or translate this publication, please contact the Communications Department at the address below. This publication is accessible from the World Federation of Hemophilia’s website at www.wfh.org. Additional copies are also available from the WFH at: World Federation of Hemophilia 1425 René Lévesque Boulevard West, Suite 1010 Montréal, Québec H3G 1T7 CANADA Tel. : (514) 875-7944 Fax : (514) 875-8916 E-mail: [email protected] Internet: www.wfh.org The Treatment of Hemophilia series is intended to provide general information on the treatment and management of hemophilia. The World Federation of Hemophilia does not engage in the practice of medicine and under no circumstances recommends particular treatment for specific individuals. Dose schedules and other treatment regimes are continually revised and new side effects recognized. WFH makes no representation, express or implied, that drug doses or other treatment recommendations in this publication are correct. For these reasons it is strongly recommended that individuals seek the advice of a medical adviser and/or consult printed instructions provided by the pharmaceutical company before administering any of the drugs referred to in this monograph. Statements and opinions expressed here do not necessarily represent the opinions, policies, or recommendations of the World Federation of Hemophilia, its Executive Committee, or its staff.
    [Show full text]
  • Severity of Anaemia Has Corresponding Effects on Coagulation Parameters of Sickle Cell Disease Patients
    diseases Article Severity of Anaemia Has Corresponding Effects on Coagulation Parameters of Sickle Cell Disease Patients Samuel Antwi-Baffour 1,* , Ransford Kyeremeh 1 and Lawrence Annison 2 1 Department of Medical Laboratory Sciences, School of Allied Health Sciences, College of Health Sciences, University of Ghana, P.O. Box KB 143 Accra, Ghana; [email protected] 2 Department of Medical Laboratory Sciences, School of Allied Health Sciences, Narh-Bita College, P.O. Box Co1061 Tema, Ghana; [email protected] * Correspondence: s.antwi-baff[email protected] Received: 31 July 2019; Accepted: 18 October 2019; Published: 17 December 2019 Abstract: Sickle cell disease (SCD) is an inherited condition characterized by chronic haemolytic anaemia. SCD is associated with moderate to severe anaemia, hypercoagulable state and inconsistent platelet count and function. However, studies have yielded conflicting results with regards to the effect of anaemia on coagulation in SCD. The purpose of this study was to determine the effect of anaemia severity on selected coagulation parameters of SCD patients. Four millilitres of venous blood samples were taken from the participants (SCD and non-SCD patients) and used for analysis of full blood count and coagulation parameters. Data was analysed using SPSS version-16. From the results, it was seen that individuals with SCD had a prolonged mean PT, APTT and high platelet count compared to the controls. There was also significant difference in the mean PT (p = 0.039), APTT (p = 0.041) and platelet count (p = 0.010) in HbSS participants with severe anaemia. Mean APTT also showed significant difference (p = 0.044) with severe anaemia in HbSC participants.
    [Show full text]
  • Blood and Immunity
    Chapter Ten BLOOD AND IMMUNITY Chapter Contents 10 Pretest Clinical Aspects of Immunity Blood Chapter Review Immunity Case Studies Word Parts Pertaining to Blood and Immunity Crossword Puzzle Clinical Aspects of Blood Objectives After study of this chapter you should be able to: 1. Describe the composition of the blood plasma. 7. Identify and use roots pertaining to blood 2. Describe and give the functions of the three types of chemistry. blood cells. 8. List and describe the major disorders of the blood. 3. Label pictures of the blood cells. 9. List and describe the major disorders of the 4. Explain the basis of blood types. immune system. 5. Define immunity and list the possible sources of 10. Describe the major tests used to study blood. immunity. 11. Interpret abbreviations used in blood studies. 6. Identify and use roots and suffixes pertaining to the 12. Analyse several case studies involving the blood. blood and immunity. Pretest 1. The scientific name for red blood cells 5. Substances produced by immune cells that is . counteract microorganisms and other foreign 2. The scientific name for white blood cells materials are called . is . 6. A deficiency of hemoglobin results in the disorder 3. Platelets, or thrombocytes, are involved in called . 7. A neoplasm involving overgrowth of white blood 4. The white blood cells active in adaptive immunity cells is called . are the . 225 226 ♦ PART THREE / Body Systems Other 1% Proteins 8% Plasma 55% Water 91% Whole blood Leukocytes and platelets Formed 0.9% elements 45% Erythrocytes 10 99.1% Figure 10-1 Composition of whole blood.
    [Show full text]
  • The Preoperative Bleeding Time Test: Assessing Its Clinical Usefulness
    The preoperative bleeding time test: assessing its clinical usefulness AMY S. GEWIRTZ, MD; KANDICE KOTTKE-MARCHANT MD, PHD; MICHAEL L. MILLER, DO HE BLEEDING TIME is the The bleeding time test can aid in the diagnostic most commonly used evaluation of patients with clinical hemorrhagic disorders or test in the in vivo evalu- a history of bleeding. However, its low positive predictive ation of primary hemo- value in predicting perioperative bleeding should force one to T stasis. Although this test is known abandon it as a routine preoperative screening test. for its role in the evaluation of pa- tients suspected of having von INa'iiV Ji J Many methodologic factors affect the bleeding Willebrand's disease or abnormal time, including the length, depth, orientation, and location platelet function, it is quite often of the incision and whether a blood pressure cuff is used. The routinely ordered as part of preop- bleeding time also varies with age, sex, blood group, medica- erative screening to predict periop- tion use, skin characteristics, and diet. A prolonged bleed- erative bleeding in patients with ing time itself is nonspecific and is not pathognomonic of a no previous clinical signs of a single disease entity. Many studies have shown no associa- bleeding disorder. Physicians tion between a prolonged preoperative bleeding time and in- should be familiar with factors that creased perioperative blood loss. Even though a prolonged affect the standardization, reliabil- preoperative bleeding time usually lacks clinical significance, ity and specificity of the bleeding it often leads to additional laboratory tests, postponement of time test, as well as the pitfalls of surgery, increased length of stay, and possibly inappropriate using it to predict clinically signifi- treatment.
    [Show full text]
  • Hemophilia Update 2015
    J. Martin Johnston, MD Pediatric Project ECHO 7 December 2018 Objectives Review history and physical exam as they relate to a potential bleeding disorder Discuss step-wise laboratory evaluation: screening labs and follow-ups Review some common congenital and acquired bleeding disorders, and their management Objectives Review history and physical exam as they relate to a potential bleeding disorder Discuss step-wise laboratory evaluation: screening labs and follow-ups Review some common congenital and acquired bleeding disorders, and their management Objectives Review history and physical exam as they relate to a potential bleeding disorder Discuss step-wise laboratory evaluation: screening labs and follow-ups Review some common congenital and acquired bleeding disorders, and their management The chief complaint “Easy” bruising Nosebleeds Petechiae Menorrhagia Bleeding after Circumcision Tonsillectomy/adenoidectomy, tooth extraction Mild (head) trauma The problem…. • Everyone bleeds. • All bleeding eventually stops. The bleeding history Birth/neonatal Tooth eruption/shedding Bruising Nosebleeds Surgeries? (don’t forget circumcision!) Orthopedic hx (traumas, joints) Menstruation Family history How much bleeding is too much? Neonatal ICH, needle/heel sticks, post-circumcision How much bleeding is too much? Neonatal ICH, needle/heel sticks, post-circumcision Infant Petechiae, chest/back/buttock bruising Consider NAT How much bleeding is too much? Neonatal ICH, needle/heel sticks, post-circumcision Infant
    [Show full text]
  • Hemostasis and Thrombosis
    PROCEDURES FOR HEMOSTASIS AND THROMBOSIS A Clinical Test Compendium PROCEDURES FOR HEMOSTASIS AND THROMBOSIS: A CLINICAL TEST COMPENDIUM Test No. Test Name Profile Includes Specimen Requirements Bleeding Profiles and Screening Tests 117199 aPTT Mixing Studies aPTT; aPTT 1:1 mix normal plasma (NP); aPTT 1:1 mix saline; aPTT 2 mL citrated plasma, frozen 1:1 mix, incubated; aPTT 1:1 mix NP, incubated control 116004 Abnormal Bleeding Profile PT; aPTT; thrombin time; platelet count 5 mL EDTA whole blood, one tube citrated whole blood (unopened), and 2 mL citrated plasma, frozen Minimum: 5 mL EDTA whole blood, one tube citrated whole blood (unopened), and 1 mL citrated plasma, frozen 503541 Bleeding Diathesis With Normal α2-Antiplasmin assay; euglobulin lysis time; factor VIII activity; 7 mL (1mL in each of 7 tubes) platelet-poor aPTT/PT Profile (Esoterix) factor VIII chromogenic; factor IX activity; factor XI activity; factor citrated plasma, frozen XIII activity; fibrinogen activity; PAI-1 activity with reflex to PAI-1 antigen and tPA; von Willebrand factor activity; von Willebrand factor antigen 336572 Menorrhagia Profile PT; aPTT; factor IX activity; factor VIII activity; factor XI activity; 3 mL citrated plasma, frozen von Willebrand factor activity; von Willebrand factor antigen Minimum: 2 mL citrated plasma, frozen 117866 Prolonged Protime Profile Factor II activity; factor V activity; factor VII activity; factor 3 mL citrated plasma, frozen X activity; fibrinogen activity; dilute prothrombin time Minimum: 2 mL citrated plasma, frozen
    [Show full text]