MYH9-Related Platelet Disorders
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
HESN CROI Poster
HIV-Exposed Seronegative MSM express antiproteases with novel antiviral activity Laura Romas1,2, Klara Hasselrot3, Carolina Hererra4, Garrett Westmacott5, Francis Plummer5,1, T. Blake Ball2,1, Kristina Broliden3, Adam Burgener2,1,3 1. Dept. of Med. Microbiology, University of Manitoba, CAN 2. National HIV and Retrovirology Laboratory, JC Wilt Infectioius Disease Research Centre, Public Health Agency of Canada; Poster #287 3. Dept. of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, SWE; 4. Imperial College of London, UK; 5. National Microbiology Laboratory, Public Health Agency of Canada, CAN INTRODUCTION RESULTS SUMMARY •The risk of HIV acquisition through the rectum is signicantly higher than other sites of mucosal exposure, which contributes to disproportionate rates of infection A in at-risk men who have sex with men (MSM) practicing unprotected receptive 1 anal intercourse (URAI). •HIV susceptibility at the rectal mucosa a result of a thin columnar epithlia, pres- ence of activated T cells within the submucosa, and a tighly associated lymphatic Antprotease 2 Antprotease 1 system for easy viral disseminatio(Reviewed in 1). •However, the immunobiology of rectal mucosa, and factors which aect HIV sus- ceptibility are not well understood and represents a major barrier to the develop- ment of prevention technologies. Our recent proteomic analysis of rectal mucosa secretions suggests that this uid contains hundreds of innate factors important for host defense, and is immunologically distinct from other mucosal compart- ments and sites of HIV exposure1. •Study of HIV-Exposed Seronegative (HESN) individuals have shown altered mu- cosal immune responses in cervical, salivary and foreskin secretions associated with reduced HIV-susceptibility2-4. -
Alport Syndrome of the European Dialysis Population Suffers from AS [26], and Simi- Lar Figures Have Been Found in Other Series
DOCTOR OF MEDICAL SCIENCE Patients with AS constitute 2.3% (11/476) of the renal transplant population at the Mayo Clinic [24], and 1.3% of 1,000 consecutive kidney transplant patients from Sweden [25]. Approximately 0.56% Alport syndrome of the European dialysis population suffers from AS [26], and simi- lar figures have been found in other series. AS accounts for 18% of Molecular genetic aspects the patients undergoing dialysis or having received a kidney graft in 2003 in French Polynesia [27]. A common founder mutation was in Jens Michael Hertz this area. In Denmark, the percentage of patients with AS among all patients starting treatment for ESRD ranges from 0 to 1.21% (mean: 0.42%) in a twelve year period from 1990 to 2001 (Danish National This review has been accepted as a thesis together with nine previously pub- Registry. Report on Dialysis and Transplantation in Denmark 2001). lished papers by the University of Aarhus, February 5, 2009, and defended on This is probably an underestimate due to the difficulties of establish- May 15, 2009. ing the diagnosis. Department of Clinical Genetics, Aarhus University Hospital, and Faculty of Health Sciences, Aarhus University, Denmark. 1.3 CLINICAL FEATURES OF X-LINKED AS Correspondence: Klinisk Genetisk Afdeling, Århus Sygehus, Århus Univer- 1.3.1 Renal features sitetshospital, Nørrebrogade 44, 8000 Århus C, Denmark. AS in its classic form is a hereditary nephropathy associated with E-mail: [email protected] sensorineural hearing loss and ocular manifestations. The charac- Official opponents: Lisbeth Tranebjærg, Allan Meldgaard Lund, and Torben teristic renal features in AS are persistent microscopic hematuria ap- F. -
Serum Albumin OS=Homo Sapiens
Protein Name Cluster of Glial fibrillary acidic protein OS=Homo sapiens GN=GFAP PE=1 SV=1 (P14136) Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 Cluster of Isoform 3 of Plectin OS=Homo sapiens GN=PLEC (Q15149-3) Cluster of Hemoglobin subunit beta OS=Homo sapiens GN=HBB PE=1 SV=2 (P68871) Vimentin OS=Homo sapiens GN=VIM PE=1 SV=4 Cluster of Tubulin beta-3 chain OS=Homo sapiens GN=TUBB3 PE=1 SV=2 (Q13509) Cluster of Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 (P60709) Cluster of Tubulin alpha-1B chain OS=Homo sapiens GN=TUBA1B PE=1 SV=1 (P68363) Cluster of Isoform 2 of Spectrin alpha chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTAN1 (Q13813-2) Hemoglobin subunit alpha OS=Homo sapiens GN=HBA1 PE=1 SV=2 Cluster of Spectrin beta chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTBN1 PE=1 SV=2 (Q01082) Cluster of Pyruvate kinase isozymes M1/M2 OS=Homo sapiens GN=PKM PE=1 SV=4 (P14618) Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 Clathrin heavy chain 1 OS=Homo sapiens GN=CLTC PE=1 SV=5 Filamin-A OS=Homo sapiens GN=FLNA PE=1 SV=4 Cytoplasmic dynein 1 heavy chain 1 OS=Homo sapiens GN=DYNC1H1 PE=1 SV=5 Cluster of ATPase, Na+/K+ transporting, alpha 2 (+) polypeptide OS=Homo sapiens GN=ATP1A2 PE=3 SV=1 (B1AKY9) Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens GN=DPYSL2 PE=1 SV=1 Cluster of Alpha-actinin-1 OS=Homo sapiens GN=ACTN1 PE=1 SV=2 (P12814) 60 kDa heat shock protein, mitochondrial OS=Homo -
Hematology Test Requisition
GENETICS AND GENOMICS DIAGNOSTIC LABORATORY Mailing Address: For local courier service and/or inquiries, please contact 513-636-4474 • Fax: 513-636-4373 3333 Burnet Avenue, Room R1042 www.cincinnatichildrens.org/moleculargenetics • Email: [email protected] Cincinnati, OH 45229 HEMATOLOGY TEST REQUISITION All Information Must Be Completed Before Sample Can Be Processed PATIENT INFORMATION ETHNIC/RACIAL BACKGROUND (Choose All) Patient Name: _____________________, ___________________, ________ European American (White) African-American (Black) Last First MI Native American or Alaskan Asian-American Address: _____________________________________________________ Pacific Islander Ashkenazi Jewish ancestry _____________________________________________________ Latino-Hispanic _____________________________________________ Home Phone: _________________________________________________ (specify country/region of origin) MR# __________________ Date of Birth ________ /________ / ________ Other ____________________________________________________ (specify country/region of origin) Sex: Male Female BILLING INFORMATION REFERRING PHYSICIAN o REFERRING INSTITUTION Physician Name (print): _________________________________________ Institution: ____________________________________________________ Address: ____________________________________________________ Address: _____________________________________________________ Phone: ( _______ ) _______________ Fax: ( _______ ) _______________ City/State/Zip: _________________________________________________ -
MYH9 Related Disorder.Pdf
MYH9 related disorder What is it? o MYH9 is a mild platelet bleeding disorder which can be diagnosed from childhood to old age. o It was first described by a German physician Richard May in 1909 and subsequently by a Swiss physician Robert Hegglin in 1945. o MYH9 was originally described as four distinct clinical conditions: Epstein syndrome, May‐ Hegglin anomaly, Sebastian syndrome and Fechtner syndrome. Since the discovery that each of these conditions has the same genetic basis, they are now referred to as one condition: MYH9‐related disorder. Some of the individual syndromes have other features such as cataracts, hearing problems and kidney problems. o MYH9 encodes for a protein, myosin‐9, a key component of a protein complex called myosin IIA, which is important in cell movement and maintaining cell shape. o Mutations in the MYH9 gene cause a mild reduction in the number of platelets (thrombocytopenia) and increased platelet size. Who suffers? o MYH9 affects males and females of all age in approximately equal numbers. o The condition is inherited in an autosomal dominant pattern, which means that just one copy of the altered gene, inherited from the mother or father is sufficient to cause the disorder. o Approximately 30% of cases result from new mutations, in patients with no family history of the disorder What are the symptoms? o Patients with MYH9 disorder may experience nose bleeding, easy bruising, bleeding from gums, heavy or prolonged menstrual bleeding (menorrhagia), bleeding after childbirth, abnormal bleeding after surgery or dental work, and gastrointestinal bleeding. o Patients with MYH9 have additional defects which vary between patients: ‐ hearing loss (from birth to late adulthood); ‐ kidney disease which can lead to end‐stage kidney failure (from early adulthood); ‐ cataracts (from early adulthood: less common). -
Diagnosis of Inherited Platelet Disorders on a Blood Smear
Journal of Clinical Medicine Article Diagnosis of Inherited Platelet Disorders on a Blood Smear Carlo Zaninetti 1,2,3 and Andreas Greinacher 1,* 1 Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany; [email protected] 2 University of Pavia, and IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy 3 PhD Program of Experimental Medicine, University of Pavia, 27100 Pavia, Italy * Correspondence: [email protected]; Tel.: +49-3834-865482; Fax: +49-3834-865489 Received: 19 January 2020; Accepted: 12 February 2020; Published: 17 February 2020 Abstract: Inherited platelet disorders (IPDs) are rare diseases featured by low platelet count and defective platelet function. Patients have variable bleeding diathesis and sometimes additional features that can be congenital or acquired. Identification of an IPD is desirable to avoid misdiagnosis of immune thrombocytopenia and the use of improper treatments. Diagnostic tools include platelet function studies and genetic testing. The latter can be challenging as the correlation of its outcomes with phenotype is not easy. The immune-morphological evaluation of blood smears (by light- and immunofluorescence microscopy) represents a reliable method to phenotype subjects with suspected IPD. It is relatively cheap, not excessively time-consuming and applicable to shipped samples. In some forms, it can provide a diagnosis by itself, as for MYH9-RD, or in addition to other first-line tests as aggregometry or flow cytometry. In regard to genetic testing, it can guide specific sequencing. Since only minimal amounts of blood are needed for the preparation of blood smears, it can be used to characterize thrombocytopenia in pediatric patients and even newborns further. -
Gri Trombosit Sendromu
Cukurova Medical Journal Cukurova Med J 2017;42(2):360-362 ÇUKUROVA ÜNİVERSİTESİ TIP FAKÜLTESİ DERGİSİ DOI: 10.17826/cutf.322967 OLGU SUNUMU / CASE REPORT Gray platelet syndrome Gri trombosit sendromu Fatima Ayaz1, Saeed Bin Ayaz2, Sunila Tashfeen2, Muhammad Furrukh1 1Benazir Bhutto Hospital, Rawalpindi, Punjab, Pakistan 2Combined Military Hospital, Okara, Punjab, Pakistan Cukurova Medical Journal 2017;42(2):360-362 Abstract Öz Gray platelet syndrome (GPS) is an autosomal recessive Gri trombosit (platelet) sendromu (GPS), trombositopeni disorder characterized by thrombocytopenia and defective ve ışık mikroskopunda soluk görünen kusurlu platelets that appear pale on light microscope. Patients trombositlerle karakterize, otozomal resesif geçişli bir present with easy bruisability, nose bleeds, menorrhagia hastalıktır. Hastalarda kolay morarma, burun kanaması, and prolonged bleeding. There is no specific treatment for menoraji ve uzun kanamalar görülmektedir. GPS için GPS and the management includes anticipating risks and spesifik bir tedavi bulunmamaktadır dolayısı ile hastalığa preventing bleeding by avoiding drugs that impair platelet karşı, riskleri öngörmek ve kanamanın önlenmesi function. We present here report of a case who presented için trombosit fonksiyonunu bozan ilaçlardan kaçınmak with repeated episodes of abnormal bleeding and was gerekmektedir. Bu olgu sunumunda, tekrarlayan anormal found to have GPS. kanama atakları olan ve GPS bulgusu bulunan bir vaka sunulmaktadır. Key words: Bleeding disorder, gray platelet syndrome, Anahtar -
Deconstructing Sarcomeric Structure–Function Relations in Titin-Bioid Knock-In Mice
ARTICLE https://doi.org/10.1038/s41467-020-16929-8 OPEN Deconstructing sarcomeric structure–function relations in titin-BioID knock-in mice Franziska Rudolph1, Claudia Fink1, Judith Hüttemeister1, Marieluise Kirchner2, Michael H. Radke 1,3, Jacobo Lopez Carballo1, Eva Wagner4,5,6, Tobias Kohl4,5,6, Stephan E. Lehnart 4,5,6, Philipp Mertins 2,7 & ✉ Michael Gotthardt 1,3,8 Proximity proteomics has greatly advanced the analysis of native protein complexes and 1234567890():,; subcellular structures in culture, but has not been amenable to study development and disease in vivo. Here, we have generated a knock-in mouse with the biotin ligase (BioID) inserted at titin’s Z-disc region to identify protein networks that connect the sarcomere to signal transduction and metabolism. Our census of the sarcomeric proteome from neonatal to adult heart and quadriceps reveals how perinatal signaling, protein homeostasis and the shift to adult energy metabolism shape the properties of striated muscle cells. Mapping biotinylation sites to sarcomere structures refines our understanding of myofilament dynamics and supports the hypothesis that myosin filaments penetrate Z-discs to dampen contraction. Extending this proof of concept study to BioID fusion proteins generated with Crispr/CAS9 in animal models recapitulating human pathology will facilitate the future analysis of molecular machines and signaling hubs in physiological, pharmacological, and disease context. 1 Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Strasse, 1013125 Berlin, Germany. 2 Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Strasse, 1013125 Berlin, Germany. 3 DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany. -
Case Report Two Cases of the MYH9 Disorder Fechtner Syndrome Diagnosed from Observation of Peripheral Blood Cells Before End-Stage Renal Failure
Hindawi Case Reports in Nephrology Volume 2019, Article ID 5149762, 6 pages https://doi.org/10.1155/2019/5149762 Case Report Two Cases of the MYH9 Disorder Fechtner Syndrome Diagnosed from Observation of Peripheral Blood Cells before End-Stage Renal Failure Shin Teshirogi,1 Jun Muratsu ,1 Hidenori Kasahara,1 Ken Terashima,1 Sho Miki,1 Tomohiro Minami,1 Yujiro Okute,1 Suguru Yoneda,1 Atsuyuki Morishima ,1 Shinji Kunishima,2 and Katsuhiko Sakaguchi 1 1Department of Nephrology and Hypertension, Sumitomo Hospital, 5-3-20 Nakanoshima, Kita-ku, Osaka 530-0005, Japan 2Department of Advanced Diagnosis, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan Correspondence should be addressed to Jun Muratsu; [email protected] Received 22 June 2019; Revised 21 August 2019; Accepted 4 October 2019; Published 26 November 2019 Academic Editor: Yoshihide Fujigaki Copyright © 2019 Shin Teshirogi et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. As a MYH9 disorder, Fechtner syndrome is characterized by nephritis, giant platelets, granulocyte inclusion bodies (Döhle-like bodies), cataract, and sensorineural deafness. Observation of peripheral blood smear for the presence of thrombocytopenia, giant platelets, and granulocyte inclusion bodies (Döhle-like bodies) is highly important for the early diagnosis of MYH9 disorders. In our two cases, sequencing analysis of the MYH9 gene indicated mutations in exon 24. Both cases were diagnosed as the MYH9 disorders Fechtner syndrome before end-stage renal failure on the basis of the observation of peripheral blood smear. -
MYH9 Mutation, the Hidden Face of Diverse Disease
Urology & Nephrology Open Access Journal Case Report Open Access MYH9 mutation the hidden face of diverse disease spectrum - from renal perspective; renal perspective of MYH9 mutation Abstract Volume 5 Issue 4 - 2017 MYH9 (myosin heavy chain 9)-mutation is a frequent genetic disorder among African- 1 1 Americans and rare in Caucasians that can lead to dramatic deterioration of renal function Assel Rakhmetova, Pakesh Baishya, Pouneh 1 2 1 and as a consequence, end stage renal disease (ESRD). The clinical presentation of MYH9 Dokouhaki, Abdullah Alabbas, Kim Solez 1 mutations includes five syndromes: May-Hegglin anomaly, Sebastian, Fechtner, Epstein Department of laboratory medicine and pathology, University syndromes and isolated sensorineural deafness. The diagnosis is challenging to establish of Alberta hospital, Canada 2Department of pediatrics, division of nephrology, University of due to non-specific presentation that requires exclusion of a vast number of other entities. Alberta hospital, Canada Renal biopsy is not commonly performed but it may reveal non-specific findings such as mesangial expansion with hypercellularity, focal segmental glomerulosclerosis (FSGS) Correspondence: Pakesh Baishya, Department of laboratory and/or global glomerulosclerosis usually with no immune complex deposition. The medicine and pathology, University of Alberta hospital, immunostaining study for alpha-smooth muscle actin (SMA) can be valuable to perform Edmonton, Alberta, Canada, Tel 1 5875328105, in patients suspected to have MYH9 mutations in order to detect early FSGS. Additional Email studies for patients presenting with thrombocytopenia, decreasing glomerular filtration rate, proteinuria and haematuria are suggested. Here, we report a child with classic clinical picture Received: December 10, 2017 | Published: October 26, 2017 of MYH9 genetic disorder that presented with early focal segmental glomerulosclerosis with possible concurrent C1q nephropathy. -
Platelet Function Disorders
TREATMENT OF HEMOPHILIA APRIL 2008 • NO 19 PLATELET FUNCTION DISORDERS Second Edition Anjali A. Sharathkumar Amy Shapiro Indiana Hemophilia and Thrombosis Center Indianapolis, U.S.A. Published by the World Federation of Hemophilia (WFH), 1999; revised 2008. © World Federation of Hemophilia, 2008 The WFH encourages redistribution of its publications for educational purposes by not-for-profit hemophilia organizations. In order to obtain permission to reprint, redistribute, or translate this publication, please contact the Communications Department at the address below. This publication is accessible from the World Federation of Hemophilia’s website at www.wfh.org. Additional copies are also available from the WFH at: World Federation of Hemophilia 1425 René Lévesque Boulevard West, Suite 1010 Montréal, Québec H3G 1T7 CANADA Tel. : (514) 875-7944 Fax : (514) 875-8916 E-mail: [email protected] Internet: www.wfh.org The Treatment of Hemophilia series is intended to provide general information on the treatment and management of hemophilia. The World Federation of Hemophilia does not engage in the practice of medicine and under no circumstances recommends particular treatment for specific individuals. Dose schedules and other treatment regimes are continually revised and new side effects recognized. WFH makes no representation, express or implied, that drug doses or other treatment recommendations in this publication are correct. For these reasons it is strongly recommended that individuals seek the advice of a medical adviser and/or consult printed instructions provided by the pharmaceutical company before administering any of the drugs referred to in this monograph. Statements and opinions expressed here do not necessarily represent the opinions, policies, or recommendations of the World Federation of Hemophilia, its Executive Committee, or its staff. -
Genetic Disorders of the Glomerular Filtration Barrier
CJASN ePress. Published on April 23, 2020 as doi: 10.2215/CJN.11440919 Genetic Disorders of the Glomerular Filtration Barrier Anna S. Li,1,2 Jack F. Ingham,1 and Rachel Lennon 1,3 Abstract The glomerular filtration barrier is a highly specialized capillary wall comprising fenestrated endothelial cells, podocytes, and an intervening basement membrane. In glomerular disease, this barrier loses functional integrity, allowing the passage of macromolecules and cells, and there are associated changes in both cell morphology and the extracellular matrix. Over the past three decades there has been a transformation in our understanding about glomerular disease, fueled by genetic discovery, and this is leading to exciting advances in our knowledge about 1Division of Cell- glomerular biology and pathophysiology. In current clinical practice, a genetic diagnosis already has important Matrix Biology and implications for management ranging from estimating the risk of disease recurrence post-transplant to the life- Regenerative changing advances in the treatment of atypical hemolytic uremic syndrome. Improving our understanding about Medicine, Wellcome Centre for Cell-Matrix the mechanistic basis of glomerular disease is required for more effective and personalized therapy options. In this Research, School of review we describe genotype and phenotype correlations for genetic disorders of the glomerular filtration barrier, Biological Sciences, with a particular emphasis on how these gene defects cluster by both their ontology and patterns of glomerular Faculty of Biology, pathology. Medicine and Health, CJASN ccc–ccc Manchester Academic 15: , 2020. doi: https://doi.org/10.2215/CJN.11440919 Health Science Centre, The University of Manchester, Introduction fenestrae that are 70–100 nm in diameter and covered Manchester, United .