Epigeic communities at the timberline of

Alp Flix (Switzerland: Grisons)

Diplomarbeit

der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Holger Frick

2005

Leiter der Arbeit:

Prof. Dr. Wolfgang Nentwig,

Zoologisches Institut der Universität Bern

Ich danke Prof. Wolfgang Nentwig herzlich für die Leitung meiner Diplomarbeit und dafür dass er immer Zeit für mich hatte. Ein ganz spezieller Dank gilt dem Betreuer meiner Diplomarbeit Dr. Christian Kropf, der mir stets wichtige wissenschaftliche und persöhnliche Ratschläge gab und mir immer mit motivierenden Worten zur Seite stand. Die Diskussionen mit ihm, sein Wissen und Engagement haben mich in vielerlei Hinsicht weitergebracht. Bei der Belegschaft des Naturhistorischen Museums Bern bedanke ich mich für das tolle Arbeitsklima und der Hilfe bei allen möglichen Problemen. Schliesslich möchte ich meiner Familie für ihre Unterstützung während meines ganzen Studiums recht herzlich Danke sagen.

2 Table of contents

Part 1: Influence of stand-alone trees on epigeic (Araneae) at the alpine timberline

Titel……………………………………………………………………………………..5 Abstract…………………………………………………………………………………6 Introduction…………………………………………………………………..…………7 Methods…………………………………………………………………………………7 Study area……………………………………………………………………….7 Sampling of spiders…………………………………………..…………………8 Parameters………………………………………………………………………8 Data analysis….…………………………………………..….…………………9 Results…………………………………………………………………………………11 Community composition……….……………………………………..……….11 Activity densities of selected species …………………..……………………..12 Discussion…………………………………………………………..…………………14 Community composition ……………………..…………………….…………14 Activity densities of selected species……………………………….…………15 Acknowledgements……………………………………………………………………18 References……………………………………………………..………………………18 Figures…………………………………………………………………………………23 Tables…………………………………….……………………………………………29

3 Part 2: Spiders (Arachnida: Araneae) of the timberline in the Swiss Central Alps (Alp Flix, Grisons)

Title……………………………………………………………….…………...………31 Abstract…………………………………………………………..……………………32 Introduction……………………………………………………………………………33 Methods……………………………………………………………..…………………33 Study site……………………………………………………..………………..33 Study period………………………………………………….….…………….34 Sampling methods for spiders on trees…………………………….………….34 Sampling methods for ground dwelling spiders……………….....………..….35 Determination…………………………………………………….…………...36 Results and Discussion…………………….………………………………….………36 List of species…………………………………………………………………36 Comments on first records, endemic and rare species and their phenology…..36 Acknowledgements……………………………………………………………………44 References……………………………………………………………..………………44 Figures…………………………………………………………………………………53 Tables………………………………………………………………………………….56

4 Influence of stand-alone trees on epigeic spiders (Araneae) at the alpine timberline

Holger Frick, Wolfgang Nentwig and Christian Kropf

Holger Frick ([email protected]), Zoological Institute, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland, and Natural History Museum Bern, Department of Invertebrates, Bernastrasse 15, CH-3005 Bern.

Wolfgang Nentwig ([email protected]), Zoological Institute, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland.

Corresponding author: Christian Kropf ([email protected]), Natural History Museum Bern, Department of Invertebrates, Bernastrasse 15, CH-3005 Bern, Switzerland.

5 Abstract

We investigated epigeic spiders (Araneae) under stand-alone Norway spruce trees (Picea abies) at the alpine timberline using pitfall traps. These were positioned in three different ranges, i.e. an inner range (close to the tree trunk), a median range, and an outer range (at the outer limit of branch cover). We studied community composition and activity densities with respect to three significantly interrelated parameters: (1) Relative distance of a trap from the tree trunk, (2) branch cover of a trap, and (3) vegetation cover. Community composition: Species numbers correlated negatively with the relative distance from the tree trunk in linyphiids, and positively in lycosids and gnaphosids. Branch cover correlated positively with linyphiid species numbers, and negatively with lycosids. showed higher activity densities in the inner ranges, Lycosidae and Gnaphosidae in the outer ranges. A Chi2-test revealed also a significant difference for the total number of specimens per range that increases from the inner to the outer range. Activity densities of selected species: 11 out of 14 species were significantly correlated to the relative distance to the tree trunk, 10 to the branch cover, and 2 to vegetation cover. Open- land species preferred the outer range, forest species the inner range. One species, the linyphiid Caracladus avicula, possibly can be classified as a habitat specialist of the alpine timberline. The data show that stand-alone spruce trees are an important structural element of the timberline that offers habitats for a wide variety of species with different habitat preferences. Thus, the alpine timberline could play a key role in future conservation efforts.

6 1. Introduction

Structural heterogeneity of a biotope is one of the most important factors influencing communities and species diversity (Hatley and MacMahon 1980, Horvath et al. 2000, Nentwig et al. 2004, Niemelä et al. 1996, Robinson 1981, Rosenzweig and Abramsky 1993). The alpine timberline represents one of the most heterogeneous and biologically diverse biotopes of Central Europe (Thaler 1989). Despite of this, studies on small-scale distribution patterns of animal communities at the timberline are scarce and our understanding of the importance of certain structural elements on these patterns is still unsatisfying. Spiders (Araneae) are an important, abundant and “megadiverse” (Coddington et al. 1996) group of epigeic with elaborate habitat preferences of species (Bauchhenss 1990, Foelix 1996, Samu et al. 1999, Wise 1993 and others). Thus, they are suitable indicative organisms for studying field-ecological problems. We investigated the small-scale distribution patterns of epigeic spiders around stand-alone trees at the timberline in the Swiss Central Alps. The epigeic fauna around these single trees deserves special interest as the trees presumably offer microhabitats for forest species and represent a sharp boundary against the open dwarf shrub heath and alpine meadow. So, as a working hypothesis, we assume that the mosaic-like structured timberline harbors not only habitat specialists, but also a broad range of small-scale distributed forest and open-land species. However, to our knowledge, these stand-alone trees at the alpine timberline have never been studied before in this respect.

2. Methods:

2.1 Study area Alp Flix (GPS: 769 400 / 154 350; WGS84 coordinates: N: 46° 31' 8.41'', E: 9° 38' 47.12'') is situated in the Central Swiss Alps in the Canton Grisons and belongs to the village of Sur (Fig. 1). It is an approximately 1000 m broad and south-west exposed terrace at 1950 m above sea level with adjacent high mountain tops (ca. 3000 m a.s.l.) and a 400 m deep valley. In the south-west, the study site is bordered by the forest edge with stand alone Norway spruce trees

7 (Picea abies), that we chose as study objects. The trees are surrounded by dwarf shrub heath, dominated by Juniperus communis and Rhododendron ferrugineum combined with alpine meadow patches (Hänggi and Müller 2001). Occasional cattle-grazing occurs throughout the vegetation period.

2.2 Sampling of spiders We selected four Norway spruce trees of similar age and size that were at least 100 m apart (ca. 8 m in diameter and ca. 12 m height) and used pitfall traps for assessment of activity densities (Luff 1975). Nine pitfall traps were placed around each tree, in three directions with three traps each. We defined three ranges: an inner range, from the tree trunk up to about 1 m away; a median range, from ca. 1 m to ca. 2.5 m from the tree trunk and an outer range, from ca. 2.5 m from the tree trunk until the outer border of the branch cover at approx. 4 m from the tree trunk (Fig. 2). The traps consisted of white plastic cups with an upper diameter of 6.9 cm and a depth of 7.5 cm. We filled them with 4 % formaldehyde and 0.05 % SDS as tenside until 3 cm under the upper edge and fixed a quadrangular transparent plastic cover (15 x 15 cm) with 3 wooden rods 5 cm above the traps. The traps were emptied once a month between 15th May 2003 and 28th October 2003 (snow-free time) and a last time on 24th May 2004, when the snow started to melt.

2.3 Parameters: We recorded three parameters: 1) Relative distance from tree trunk: Shape and outline of the trees were not exactly equal. Therefore, we calculated the position of traps between tree trunk and outer limit of branch cover as a number between 0 (trap at tree trunk) and 1 (trap at outer limit of branch cover). The distance between the tree trunk and the outer limit of the branch cover was measured in eight different directions: N, NE, E, SE, S, SW, W and NW (Fig. 2). In this way, eight triangles can be defined (Fig. 3). The outer tips of branches (D) were considered to lie on c, the distance between NE and E (Fig. 3). The relative position (r) of each pitfall trap (P) between the tree trunk (T) and the interpolated outer tip of the branches (D) was calculated by using the following formulas:

8 t (1) r = d ba ⋅⋅ sin()γ (2) d = c ()180sin −−⋅ βδ

⎛ b ⎞ (3) β = a ⎜sinsin γ ⋅ ⎟ ⎝ c ⎠

(4) c = 22 baba ⋅⋅⋅−+ cos2 ()γ

With γ = 45°, distances a (between T and NE), b (between T and E), and t (between T and P) and the angle δ were measured in the field, angles α, β and ε were calculated (Fig. 3). 2) Branch cover: We estimated the branch cover above every trap for 5 levels, i.e. 5: 0 – 25 cm; 4: 26 – 50 cm; 3: 51 – 100 cm; 2: 101 – 150 cm; 1: above 151 cm from the soil surface. Then, we multiplied the branch cover in percent of a square around a trap at a certain level with the level number (e.g. cover of 80 % at level 5: 0.8 x 5) and summed up these five numbers for every trap, resulting in an index between 0 (no cover) and 5 (total cover below 25 cm). We estimated branch cover upwards from level 5. Only the parts of an upper level that exceeded the cover of the lower level were considered. We used the average of two series of estimations. In addition, we calculated the total cover for all 9 traps of each tree by summing up the mentioned indices. This results in a number between 0 (no cover) and 45 (total cover of all traps below a height of 25 cm) for each tree. 3) Vegetation cover was assessed using squares of 1 x 1 m around the traps. Herbs and shrubs that were at least 5 cm high and drooping branches touching the ground were taken into account. We used the average of two series of estimations.

2.4 Data analyses Community composition: Total species numbers and activity densities (including values for linyphiids, lycosids, and gnaphosids separately) for the inner, median and outer ranges were compared with a Chi2 test. In addition, the Spearman correlation coefficients (r) between species richness and relative distance from tree trunk, branch cover, and vegetation cover were

9 calculated. We also compared the activity densities for the families separately and the total counts per tree and range, and calculated correlation coefficients as above. Species associations in the three ranges were calculated with the Czekanowski index (also known as Dice- or Sorensen index) with SPSS (SPSS for Windows, Rel. 11.5.0. 2002. Chicago: SPSS Inc.) as proposed by Niemelä et al. (1996) and Thom et al. (2002). We used a presence-absence matrix for every species, tree and range as parameters. Activity densities of selected species: We used species with more than 2 specimens per trap on average (i.e. more than 72 individuals) to analyse possible correlations between specimen counts per species and the three parameters mentioned above. In brackets are numbers of individuals and percentage of all specimens of the 69 species (Frick et al. 2005): Cryphoeca silvicola (200 individuals = 3.2 %), Agnyphantes expunctus (88 individuals = 1.4 %), Bolyphantes luteolus (202 individuals = 3.2 %), Caracladus avicula (470 individuals = 7.5 %), Centromerus pabulator (106 individuals = 1.7 %), Improphantes nitidus (258 individuals = 4.1 %), Macrargus carpenteri (110 individuals = 1.8 %), Panamomops tauricornis (83 individuals = 1.3 %), Pelecopsis elongata (338 individuals = 5.4 %), Scotinotylus alpigenus (628 individuals = 10.0 %), Scotinotylus clavatus (89 individuals = 1.4 %), Tapinocyba affinis (223 individuals = 3.6 %), Alopecosa taeniata (346 individuals = 5.5 %), Pardosa riparia (2345 individuals = 37.4 %). A Kolmogorov-Smirnov test showed that most of our data sets are not normally distributed. Therefore, we used statistics for non-parametric data for all analyses. Relative distance from tree trunk: We split the analysis in two parts. First we considered all trees as equal and pooled them for the analysis. Second – because of small natural differences between the trees – we considered the four trees separately. A Kruskal-Wallis test showed that four species out of 14 occurred in different numbers under the four trees. A post hoc Nemenyi test showed which trees differed from each other. Species with less than 18 specimens per tree (i.e. 2 specimens per trap on average) were excluded from the analysis of the single trees. We compared the activity density of each species (9 traps per tree, 36 traps in total) with the relative distance to the tree trunk using a Spearman rank coefficient with SPSS. Vegetation cover and branch cover: We pooled the four trees for each analysis because possible differences in quality of the four trees do not bias the estimations of vegetation and

10 branch cover around the traps. We calculated the Spearman rank coefficient (r) for all trees together to correlate activity density data with the vegetation cover and branch cover. Correlation between parameters: the Spearman correlation coefficients (r) were calculated for relative distance – branch cover, relative distance – vegetation cover and branch cover – vegetation cover.

3. Results

3.1 Community composition Species richness: We recorded 69 species. No differences were detected in species richness between the ranges, neither for families alone (Linyphiidae: Chi2 test, p=0.391; Lycosidae: Chi2 test, p = 0.819; Gnaphosidae: Chi2 test, p=0.662), nor for all families together (Chi2 test, p = 0.605). However, there were different similarities in species composition between the ranges (Czekanowski index of percentage similarity): the similarity between the inner and the median range was the highest for Linyphiidae and for all families together. The similarity between the median and outer range was highest for Lycosidae and Gnaphosidae (Table 1). A correlation analysis after a sequential Bonferroni correction revealed significant differences between the distance of the tree trunk and the species numbers: gnaphosids increase from 4 species in the inner range to 7 species in the median range and decrease to 6 species in the outer range (Fig. 4). Lycosids increase (4 – 5 – 6 species), linyphiids decrease (36 – 35 – 26) (Table 2 and Fig. 4)). Altogether, 44 linyphiid species were recorded, showing that the reduced species number in the outer range is not only due to decrease of “inner range species” but also to additional occurrence of “outer range species”. Linyphiids and lycosids also showed significant correlations to the branch cover: the more pronounced the branch cover, the more linyphiid species occurred, and the less lycosid species (Table 2). No correlation between species richness and vegetation cover could be detected. Activity densities: The total number of specimens increases from the inner to the outer range to 173 % (provided that the specimen number of the inner range is set as 100 %), i.e. from 1758 specimens in the inner range, 2113 specimens in the median range to 2395

11 specimens in the outer range (Chi2 test, p < 0.001; Fig. 5). Considering the families separately, the numbers of individuals in the different ranges show differences between the families (all Chi2 tests: p < 0.001): Linyphiidae decrease to 51 % (inner range 1256 – median range 1086 – outer range 640). Lycosidae increase to 517 % (318 – 900 – 1643;), and Gnaphosidae increase to 625 % (12 – 51 – 75) from the inner to the outer range (Fig. 5). Correlation coefficients (after sequential Bonferroni correction) were significant between the relative distance and the activity densities of Linyphiidae, Lycosidae and Gnaphosidae. Linyphiidae decrease, Lycosidae and Gnaphosidae increase (Table 2). Linyphiidae correlate positively with both branch and vegetation cover, i.e. the more pronounced the both, the more specimens of linyphiids occurred. In contrast, lycosids correlated negatively with the branch cover, whereas the gnaphosids showed no correlation (Table 2). The total counts of species and specimens showed no correlations at all (Table 2).

3.2 Activity densities of selected species Differences between trees: 10 species showed no significant differences in activity density under the 4 trees. However, 4 species, i.e. A. expunctus (Kruskal-Wallis test, p = 0.012; Nemenyi, p < 0.05), B. luteolus (Kruskal-Wallis test, p = 0.002; Nemenyi, p < 0.01), C. pabulator (Kruskal-Wallis test, p < 0.001; Nemenyi, p < 0.01), and M. carpenteri (Kruskal- Wallis test, p = 0.019, Nemenyi, p < 0.05), showed significant differences at the 5 %-level between tree 1 and 2, C. pabulator (Nemenyi: p < 0.01) also between tree 1 and 4. For a more detailed comparison we calculated the total branch cover for all 9 traps per tree. The values are: 13.0 (tree 1), 26.8 (tree 2), 20.1 (tree 3), and 20.4 (tree 4) respectively. So, tree 1 was the “lightest”, and tree 2 the “darkest” of the 4 trees. A. expunctus avoided not only the outer ranges of trees 2 - 4, but also all ranges of the “light” tree 1, while it occurred in highest activity density under the “dark” tree 2 (Fig. 7a). In contrast, B. luteolus and M. carpenteri preferred not only the outer range of trees 2-4, but also all ranges of tree 1 and occurred in lowest activity density under the “dark” tree 2 (Figs. 8a and 12a). C. pabulator showed no preference (Fig. 10a). Relative distance: The observed activity densities for the inner, median and outer ranges for each tree separately are shown (Figs. 6a - 19a). The occurrence of 11 out of 14 species (C. silvicola, A. expunctus, B. luteolus, C. avicula, I. nitidus, M. carpenteri, P. tauricornis, S.

12 alpigenus, S. clavatus, A. taeniata, P. riparia) was significantly correlated (all data after a sequential Bonferroni correction; Rice 1989) with the distance from the tree trunk. C. silvicola, A. expunctus, I. nitidus and P. tauricornis decreased in number from the inner to the outer range (Figs. 6a, 7a, 11a and 13a). S. alpigenus and S. clavatus showed the same tendency, but both species occurred in higher numbers in the median range of tree 3 (Figs. 15a, 16a). All these species have negative Spearman correlation coefficients (r) for activity density and relative distance at the significance level of 0.05 (Table 3). In addition, C. silvicola (Fig. 6a), A. expunctus (Fig. 7a), P. tauricornis (Fig. 13a), and S. clavatus (Fig. 16a), occurred mostly around the “dark” tree 2, while the lowest specimen numbers were found around the “light” tree 1 (see above). The activity densities of B. luteolus, M. carpenteri, A. taeniata and P. riparia were positively and significantly correlated with the relative distance to the tree trunk (Figs. 8a, 12a, 18a, 19a and Table 3) and showed comparable patterns in all trees. C. avicula showed a similar all over significant positive correlation (Table 3); however, trees 2 and 4 showed a deviating pattern, with the highest specimen numbers in the median range (Fig. 9a). For C. pabulator, P. elongata and T. affinis we could not detect a significant correlation between the activity density and the relative distance at the 5 % level. For C. pabulator, the median range showed the lowest, for P. elongata, the highest specimen numbers. T. affinis showed different tendencies between trees, with decreasing numbers from the inner to the outer range in trees 1 and 4, and with highest activity density in the median range in trees 2 and 3. Branch cover: The specimen numbers of 10 species are significantly correlated with the degree of branch cover (after sequential Bonferroni correction; Table 3): C. silvicola, A. expunctus, B. luteolus, I. nitidus, M. carpenteri, P. tauricornis, S. alpigenus, S. clavatus, T. affinis, A. taeniata. Among these 10 species, A. taeniata shows a negative, all linyphiids and C. silvicola a positive correlation (Table 3). C. avicula, C. pabulator, M. carpenteri, P. elongata, and P. riparia show no significant correlation after Bonferroni correction (Table 3). Vegetation cover: 2 species were positively correlated with the degree of vegetation cover after Bonferroni correction, i.e. S. alpigenus and S. clavatus (Table 3).

13 Correlations between parameters: The relative distance and branch cover (r: -0.801; p < 0.001), the relative distance and vegetation cover (r: -0.376; p = 0.024) and branch and vegetation cover (r: 0.505; p = 0.002) were all significantly inter-correlated.

4. Discussion

4.1 Community composition The communities on family level did not differ between the three ranges in species numbers according to the Chi2 test – all Czekanowski indices were relatively high, i.e. above 0.68. Coelho et al. (1997) mentioned that Czekanowski indices above 0.6 mark significant overlaps. Correlation coefficients however were significant for the relative distance and species numbers of linyphiids, lycosids, and gnaphosids. The latter two increase with the relative distance from the tree trunk, which is probably due to the preferences of many species of these free-hunting spiders for open habitats (Thaler and Buchar 1994, 1996, Buchar and Thaler 1995, 1997, Grimm 1985, Pajunen et al. 1995); this is also supported by the negative correlation of the lycosids with the branch cover. Linyphiids obviously showed a majority of forest species, reflected by the negative correlation with relative distance and the positive correlation with branch cover. The specimen numbers differed between ranges for all families and the total number. The results for the Linyphiidae and Lycosidae are most probably highly influenced by a few species: S. alpigenus, C. avicula and P. elongata together comprise 48.8 % of the total counts in Linyphiidae and P. riparia alone 82.0 % of the Lycosidae. P. riparia, the eudominant species (with 37.4 % of all captured specimens) may be the main factor for the increase of the total specimen number from the inner to the outer range. The correlations with branch cover and vegetation cover are similar to those for the species counts; in addition, the linyphiid specimen counts were also positively correlated with the vegetation cover. The habitat quality, especially the microclimate, reflected by the vegetation cover, probably plays a decisive role (Bauchhenss 1990, Downie et al. 1995, Foelix 1996, Samu et al. 1999, Wise 1993). The inner range of a tree – preferred by the linyphiids in our study – is characterized by higher humidity and lower and more stable temperature as compared to the

14 outer range (Larcher 2001). Our data show astonishing parallels to the results of a study by Hatley and MacMahon (1980). They showed that web-building species, like the linyphiids, preferred higher humidity and lower temperature as well as more dense vegetation as compared to free hunters (like lycosids and gnaphosids). Interestingly, this study was conducted in a big sage (Artemisia tridentata) community. So, the patterns of spider species richness and activity densities presented here possibly can be generalized to a wider variety of biotopes and therefore could be of general importance for our understanding of the distribution and species diversity of predatory invertebrates. Pajunen et al. (1995), in a study about epigeic forest spiders in S-Finland, found similar patterns of species- and specimen counts for the Linyphiidae, Lycosidae, and Gnaphosidae. They tried to explain these patterns with the availability of suitable prey items (Otto and Svensson 1982) and with habitat preferences. However, as Huhta (1971) had shown, the activity density of springtails in forest soils does not influence the size of populations of spiders feeding on them. An additional possible explanation concerns the necessity of 3- dimensional vegetation structural elements (Pearce et al. 2004, Pajunen et al. 1995, Downie et al. 1995, Coulson and Butterfield 1986, Charrett 1964). This is especially true for web builders and could explain the preferences for branch- and vegetation covered habitats by the linyphiids. The prey spectra of many spiders, however, are insufficiently known. Spring tails (Collembola) play a major role for small linyphiids (Nentwig 1987, Nyffeler 1988, 1999), also for forest-dwelling species (Huhta 1971), while lycosids feed mainly on larger prey items like Diptera, Homoptera, Coleoptera, Heteroptera and other spiders (Edgar 1969, Nentwig 1987, Nyffeler 1999).

4.2 Activity densities of selected species The majority of species showed correlations between their occurrence and parameters related to trees. This confirms the importance of a particular structural element, i.e. stand- alone spruce trees in an alpine environment. They offer different microclimatic conditions as compared to the “open” surroundings (Larcher 2001, Zweifel et al. 2002). Microclimatic factors depend largely on vegetation structure (Larcher 2001), in our case mainly on branch and vegetation cover. However, these parameters are difficult to measure and to quantify and could only be estimated in the frame of this study. Also, all three parameters are significantly

15 inter-correlated. This is why we relied upon the relative distance of spider catches to the tree trunk indicating particular microclimatic conditions in our analysis. The information from branch and vegetation cover should be treated here as complementary data.

Differences between trees Four species were significantly different in specimen number under trees 1 and 2. This may be explained by the fact that tree 1 had the lowest degree of branch cover up to 1m above the ground (total cover 13.0), while tree 2 had the highest among the four trees studied (total cover 26.8). A. expunctus, as a forest species (Bosmanns 1991, Maurer and Hänggi 1990, Muster 2001), preferred, as expected, the “dark” tree 2 and the inner ranges of the other trees. In contrast, B. luteolus as an open land species (Helsdingen et al. 2001, Maurer and Hänggi 1990, Palmgren 1973) and M. carpenteri with different habitat preferences (Thaler 1983) showed the opposite i.e. preferred the “lighter” areas. This is also consistent with findings of M. carpenteri in meadows and dwarf shrub heath (Muster 2001, Thaler 1995b).

Relative distance to tree trunk, branch cover, and vegetation cover Eleven out of 14 species were significantly influenced by the distance from the tree trunk. 9 of these (all except C. avicula and P. riparia) correlate also with the branch cover and only two (S. alpigenus, S. clavatus) with vegetation cover. This could indicate that microclimatic factors related to shading were more important than the structure of the vegetation layer. However, the sequential Bonferroni correction could also have obscured a true effect, as 8 out of 14 species were significantly correlated to the degree of vegetation cover without Bonferroni correction. As we rely mainly on the parameter “relative distance” that is inter-correlated with vegetation structure, we prefer the more cautious application of the sequential Bonferroni correction although its usefulness in ecological studies had been doubted recently (Moran 2003). B. luteolus, C. avicula, M. carpenteri, P. riparia, and A. taeniata occur preferably in the outer range with a significant decrease in specimen numbers towards the tree trunk. The correlation with the branch cover is negative (not significant after sequential Bonferroni correction in C. avicula and P. riparia). Both data sets show that the species avoid dark areas under the trees. B. luteolus and P. riparia are known to prefer open habitats (Maurer and

16 Hänggi 1990, Muster 2001, Thaler 1995a). The habitat preferences of M. carpenteri (see above) and A. taeniata were more difficult to assess. Kronestedt (1990) discussed the occurrence of A. taeniata in different types of forests, e.g. coniferous and birch forests, and in more shady and mesic habitats. In our study site, A. taeniata clearly preferred the less shaded outer ranges of the trees and correlated also significantly and negatively with the degree of branch cover (Fig. 18a and Table 3). It should also be kept in mind that old data may be based on confusion with Alopecosa aculeata (Kronestedt 1990). C. avicula is known as a litter dweller in subalpine forests rather than in alpine meadows where it had been found less common (Maurer and Hänggi 1990, Lessert 1910, Muster 2001, Thaler 1995a). As it is a rare species that was found mostly in smaller numbers (e.g. Muster 2001, Thaler 1999) these conclusions should be re-evaluated. Our results based on 470 specimens suggest that C. avicula appears in highest numbers at the timberline at least on Alp Flix. So, C. avicula possibly can be classified as a habitat specialist of the timberline with a tendency towards more open and light areas. The activity densities of six species (C. silvicola, A. expunctus, I. nitidus, P. tauricornis, S. alpigenus, S. clavatus) correlated negatively with the relative distance to the tree trunk and positively with the branch cover and the preferred the “dark” tree 2. These findings are in good accordance with literature data. All six species are known to occur mostly in litter of coniferous forests (Lessert 1910, Maurer and Hänggi 1990, Muster 2001, Thaler 1995a, 1999). C. silvicola and I. nitidus seem to be restricted to forests, while the other species also occur in dwarf shrub heath. Our data (not a single specimen of I. nitidus, only 2 specimens of C. silvicola in the outer range) support these observations (Figs. 11a and 6a). Remarkably, P. tauricornis and S. clavatus were also lacking totally in the outer range and occurred mostly in the inner range (Figs. 13a and 16a). The few specimens of both species that were found in the median range, occurred in traps with high vegetation cover nearby. It can be assumed that these localities offer microclimatic conditions similar to those in the litter layer of coniferous forests, their preferred habitat. These marked differences in the activity densities of the 14 selected species seem to be partly in contrast to the results revealed by the Czekanowski indices for the families. However, the Czekanowski index accounts for the occurrence or absence of a species only, thereby

17 neglecting individual numbers. So, differential occurrence of a species in different ranges is often overlooked when using this index alone. Three species did not significantly correlate with the relative distance. Of these, T. affinis is positively correlated with the branch cover. Also this species is known as a forest species with additional occurrence in dwarf shrub heath and meadows (Maurer and Hänggi 1990, Muster 2001). In conclusion, the alpine timberline occupies only a small area, but shows high structural heterogeneity, offers habitats for numerous open-land and forest species, and possibly also for habitat specialists. Our data show that the mosaic pattern of structural elements is reflected by a wide variety of spider species with different and elaborate habitat preferences. As the critical dimensions of an area for a longtime survival of spider species seem to be rather small, i.e. below 1 ha, at least for open-land species (Hänggi 1991), future research should draw special attention to such biotopes. Therefore, the alpine timberline could play a key role in future conservation efforts.

Acknowledgements

We are grateful to Dr. Ambros Hänggi (Basel) for the idea and concept of this study and his comments on the script. We cordially thank Victoria Spinas (Sur), who helped us collecting the specimen on Alp Flix and the Foundation Schatzinsel Alp Flix for accommodation. We are most grateful to Dr. Jean-Pierre Airoldi (Bern) for statistical and Theo Burri (Bern) for mathematical advices and Hannes Baur and Alain Jacob (Bern) for fruitful discussions on the topic. We also thank Dr. Martin Schmidt (Bern) for important comments on the script and Halinka Lamparski (Perth) and Tristan Derham (Perth) for corrections on the language. H.F. cordially thanks his parents for continuous help and support.

References

18 Bauchhenss, E. 1990: Mitteleuropäische Xerotherm-Standorte und ihre epigäische Spinnenfauna: eine autökologische Betrachtung. – Abh. naturwiss. Ver. Hamburg (NF) 31/32: 153-162. Bosmans, R. 1991: Lepthyphantes. – In: Heimer, S. and Nentwig, W., Spinnen Mitteleuropas. Paul Parey Verlag, pp. 178-201. Buchar, J. and Thaler, K. 1995: Die Wolfspinnen von Österreich 2: Gattungen Arctosa, Tricca, Trochosa (Arachnida, Araneida: Lycosidae). Faunistisch-tiergeographische Übersicht. - Carinthia II. 105: 481-498. Buchar, J. and Thaler, K. 1997: Die Wolfspinnen von Österreich 4 (Schluss): Gattungen Pardosa max. p. (Arachnida, Araneida: Lycosidae). Faunistisch-tiergeographische Übersicht. - Carinthia II. 107: 515-539. Charrett, J.M. 1964: The distribution of spiders on the Moor House Nature Reserve, Westmorland. – J. Anim. Ecol. 33: 27-48. Coelho, M.M., Martins, M.J., Collares-Pereira, M.J. and Pires, A.M. 1997: Diet and feeding relationships of two Iberian cyprinids. – Fisheries Manag. Ecol. 4: 83-91. Coddington, J.A., Young, L.H. and Coyle, F.A. 1996: Estimating spider species richness in a southern Appalachian cove hardwood forest. – J. Arachnol. 24: 111-128. Coulson, J.C. and Butterfield, J. 1986: The spider communities on peat and upland grasslands in northern England. – Holarct. Ecol. 9: 229-239. Downie, I.S., Butterfield, J.E.L. and Coulson, J.C. 1995: Habitat preferences of sub-montane spiders in northern England. – Ecography 18: 51-61. Edgar, W.D. 1969: Prey and predators of the wolfspider Lycosa lugubris. – J. Zool. Lond. 159: 405-411. Frick, H., Kropf, C., Hänggi, A., Nentwig, W. and Bolzern A. 2005: Spiders (Arachnida: Araneae) of the timberline in the Swiss Central Alps (Alp Flix, Grisons, Switzerland). – Mitt. Schweiz. Ent. Ges. 78: in press. Foelix, R.F. 1996: Biology of spiders. – Oxford University Press. Grimm, U. 1985: Die Gnaphosidae Mitteleuropas (Arachnida, Araneae). – Abh. naturwiss. Ver. Hamburg (NF) 26: 1-318.

19 Hänggi, A. 1991: Minimale Flächengrösse zur Erhaltung standorttypischer Spinnengemeinschaften. Ergebnisse eines Vorversuches. – Bull. Soc. neuchâtel. Sci. nat. 116: 105-112. Hänggi, A. and Müller, J.P. 2001: Eine 24-Stunden Aktion zur Erfassung der Biodiversität auf der Alp Flix (Grisons): Methoden und Resultate. – Jber. Ges. Graubünden 110: 5-36. Hatley, C.L. and MacMahon, J.A. 1980: Spider community organization: seasonal variation and the role of vegetation architecture. – Environ. Entomol. 9: 632-639. Helsdingen, P.J. van, Thaler, K. and Deltshev, C. 2001: The European species of Bolyphantes with an attempt of a phylogenetic analysis (Araneae Linyphiidae). – Mem. della Soc. Entomol. Ital. 80: 3-35. Horvath, R., Maguara, T., Peter, G. and Bayar, K. 2000: Edge effect on weevil and spider communities at the Bükk national park in Hungary. – Acta Zool. Hung. 46: 275-290. Hutha, V 1971: Succession in the spider communities of the forest floor after clear-cutting and prescribed burning. – Ann. Zool. Fennici 8: 483-542. Kronestedt, T. 1990: Separation of two species standing as Alopecosa aculeata (Clerck) by morphological, behavioural and ecological characters, with remarks on related species in the pulverulenta group (Araneae, Lycosidae). – Zoologica Scripta 19: 203-225. Larcher, W. 2001: Ökophysiologie der Pflanzen. – Ulmer. Lessert, R. de 1910: Araignées. In: Catalogue des Invertebrés de la Suisse: Fsc.3. – Mus. Hist. Nat. Genève: 1- 639. Luff, K.L. 1975: Some features influencing efficiency of pitfall traps. – Oecologia 19: 345- 357. Maurer, R. and Hänggi, A. 1990: Katalog der schweizerischen Spinnen. – Documenta Faunistica Helvetiae 12. Moran, M.D. 2003: Arguments for rejecting the sequential Bonferroni in ecological studies. – Oikos 100: 403-405. Muster, C. 2001: Biogeographie von Spinnentieren der mittleren Nordalpen (Arachnida: Araneae, Opiliones, Pseudoscorpiones). – Verh. naturwiss. Ver. Hamburg 39: 5-196. Nentwig, W. 1987: The prey of spiders. – In: Nentwig, W. (ed.) Ecophysiology of spiders. Springer. pp. 249-263.

20 Nentwig, W., Bacher, S., Beierkuhnlein, C., Brandl, R. and Grabherr, G. 2004: Ökologie. – Spectrum. Niemela, J., Haila, Y. and Punttila, P. 1996: The importance of small-scale heterogeneity in boreal forests: Variation in diversity in forest-floor invertebrates across the succession gradient. – Ecography 19: 352-368. Nyffeler, M. 1988: Prey and predatory importance of micryphantid spiders in winter wheat fields and hay meadows. – J. Appl. Ent. 105: 190-197. Nyffeler, M. 1999: Prey selection of spiders in the field. – J. Arachnol. 27: 317-324. Otto, C. and Svensson, B.J. 1982: Structure of communities of ground-living spiders along altitudinal gradients. – Holarct. Ecol. 5: 35-47. Pajunen, T., Haila, Y., Halme, E., Niemelä, J. and Punttila, P. 1995: Forest fragmentation and ground dwelling spiders (Arachnida, Araneae) in the southern Finnish taiga. – Ecography 18: 62-72. Palmgren, P. 1973: Beiträge zur Kenntnis der Spinnenfauna der Ostalpen. – Comm. Biol. 71: 1-52. Pearce, J.L., Veiner, L.A., Eccles, G., Pedlar, J. and McKenney D. 2004: Influence of habitat and microhabitat on epigeal spider (Araneae) assemblages in four stand types. – Biodivers. Conserv. 13: 1305-1334. Robinson, J.V. 1981: The effect of architectural variation in habitat on a spider community: an experimental field study. – Ecology 62: 73-80. Rosenzweig, M.L. and Abramsky, Z. 1993: How are diversity and productivity related? – In: Ricklefs, R.E. and Schulter, D. (eds.), Species Diversity in Ecological Communities. University of Chicago Press, pp. 52-65. Rice, W.R. 1989: Analyzing tables of statistical tests. – Evolution 43: 223-225. Samu, F., Sunderland, K.D. and Szinetar, C. 1999: Scale-dependant dispersal and distribution patterns of spiders in agricultural systems: a review. – J. Arachnol. 27: 325-332. Thom, R.M., Zeigler, R. and Borde, A.B. 2002: Floristic development patterns in a restored Elk River estuarine marsh, Grays Harbor, Washington. – Restoration Ecology 10: 487- 496.

21 Thaler, K. 1983: Bemerkenswerte Spinnenfunde in Nordtirol (Österreich) und Nachbarländern: Deckennetzspinnen, Linyphiidae (Arachnida: Aranei). – Veröff. Mus. Ferdinandeum 63: 135-167. Thaler, K. 1989: Epigäische Spinnen und Weberknechte (Arachnida, Aranei, Opiliones) im Bereich des Höhentransektes Glocknerstrasse: Südabschnitt (Kärnten, Österreich). – Veröff. Österr. MAB-Hochgeb. Progr. Hohe Tauern. 13: 201-215. Thaler, K. 1995a: Oekologische Untersuchungen im Unterengadin 15. Lieferung D11. Spinnen (Araneida) mit Anhang über Weberknechte (Opiliones). – Ergebn. Wiss. Unters. Schweiz. Nationalpark 12: 473-538. Thaler, K. 1995b: Beiträge zur Spinnenfauna von Nordtirol. 5. Linyphiidae 1. Linyphiinae (sensu Wiehle) (Arachnida: Araneida). – Ber. Nat.-med. Verein Innsbruck 82: 153- 190. Thaler, K. 1999: Beiträge zur Spinnenfauna von Nordtirol - 6. Linyphiidae 2: Erigoninae (sensu Wiehle) (Arachnida: Araneae). – Veröff. Mus. Ferdinandeum 79: 215-264. Thaler, K. and Buchar, J. 1994: Die Wolfspinnen von Österreich 1: Gattungen Acantholycosa, Alopecosa, Lycosa (Arachnida, Araneida: Lycosidae). Faunistisch-tiergeographische Übersicht. - Carinthia II. 104: 357-375. Thaler, K. and Buchar, J. 1996: Die Wolfspinnen von Österreich 3: Gattungen Aulonia, Pardosa (p. p.), Pirata, Xerolycosa (Arachnida, Araneida: Lycosidae). Faunistisch- tiergeographische Übersicht. - Carinthia II. 106: 393-410. Wise, D. 1993: Spiders in ecological webs. – Cambridge University Press, Ort. Zweifel R., Böhm J.P. and Häsler R, 2002: Midday stomatal closure in Norway spruce – reactions in the upper and lower crown. – Tree Physiol. 22: 1125-1136.

22 Fig. 1: Position of the study site in the Central Alps (400 km x 400 km, insert: 20 km x 20 km, modified after http://www.lib.utexas.edu/maps/switzerland.html and www.jmem.ch/Wiler/Base/images/SwissMapRelief.jpg).

Fig. 2: Position of all traps (squares and circles) in relation to the outlines of all four trees as seen from above. The outer tips of the branches of all 4 trees are connected by lines. The main directions are indicated with lines equaling 400 cm. Tree 1: black line and white squares; tree 2: dark grey line and black squares; tree 3: grey line and white circles; tree 4: white line and black circles.

23 Fig. 3: Exemplary calculation of the relative distance (r) of a pitfall trap situated between northeast (NE) and east (E), seen from tree trunk (T). See text for calculation formulas and details.

Fig. 4: Number of species per family (from left to right: total number of species, Linyphiidae, Lycosidae and Gnaphosidae) and range (inner, median and outer).

24 Fig. 5: Number of specimens per family (from left to right: total number of specimens, Linyphiidae, Lycosidae and Gnaphosidae) and range (inner, median and outer).

25 Figs. 6a-19a: (a) number of specimens per tree (from left, black to right, white: tree 1, 2, 3 and 4) and range (inner, median, outer); (b) number of specimens per relative distance (white circles) and branch cover (black squares). In the scale for relative distance the 0.0 and 1.0 mark the tree trunk and the outer tip of the branches respectively. In the scale for the branch coverage, 5.0 means completely covered below a height of 25 cm and 0.0 means no cover at all.

Cryphoeca silvicola Agnyphantes expunctus

Bolyphantes luteolus Caracladus avicula

26 Centromerus pabulator Improphantes nitidus

Macrargus carpenteri Panamomops tauricornis

Pelecopsis elongata Scotinotylus alpigenus

27 Scotinotylus clavatus Tapinocyba affinis

Alopecosa taeniata Pardosa riparia

28 Table 1: Similarity indices for the families separated and together for comparisons between inner-medium, medium-outer and inner-outer ranges.

Czekanowski inner- medium- inner- index medium outer outer Linyphiidae 0.87 0.69 0.68 Lycosidae 0.89 0.91 0.80 Gnaphosidae 0.73 0.92 0.80 total 0.81 0.74 0.69

Table 2: Influences of relative distance from the tree trunk, branch cover and vegetation cover on species richness and activity density per family. Abbreviations: N: numbers of traps, n: total number of species or specimens respectively, r: Spearman correlation coefficients, p: significance, *: p = 0.05, **: p = 0.01, ***: p = 0.001, b: significant after Bonferroni correction (p = 0.05).

relative distance branch cover vegetation cover N 36 36 36 Linyphiidae r -0.587 0.771 0.461 (n=44) p 0.000***b 0.000***b 0.005** Lycosidae r 0.757 -0.706 -0.361 (n=6) p 0.000***b 0.000***b 0.030* Gnaphosidae r 0.639 -0.371 -0.030 (n=7) p 0.000***b 0.026* 0.861 species richness all families r -0.098 0.391 0.299 (n=69) p 0.571 0.018* 0.077 Linyphiidae r -0.536 0.692 0.569 (n=2982) p 0.001***b 0.000***b 0.000***b Lycosidae r 0.814 -0.646 -0.082 (n=2861) p 0.000***b 0.000***b 0.636 Gnaphosidae r 0.651 -0.392 -0.094 (n=138) p 0.000***b 0.018* 0.586 activity density all families r 0.330 -0.047 0.381 (n=6266) p 0.050* 0.784 0.022*

29 Table 3: Influences of relative distance from the tree trunk, branch cover and vegetation cover on spider activity densities. Abbreviations: N: numbers of traps, n: numbers of specimens, r: Spearman correlation coefficients, p: significance, *: p = 0.05, **: p = 0.01, ***: p = 0.001, b: significant after Bonferroni correction (p = 0.05), X: excluded data, if less than 18 specimens. branch vegetation species relative distance cover cover

tree 1 tree 2 tree 3 tree 4 all trees all trees all trees N 9 9 9 9 36 36 36 Cryphoeca silvicola r X -0.966 -0.804 -0.849 -0.779 0.839 0.489 (C. L. Koch 1834) p X 0.000*** 0.009** 0.004** 0.000***b 0.000***b 0.002** Hahniidae n 8 97 50 45 200 200 200 Agnyphantes expunctus r X -0.834 -0.420 -0.831 -0.554 0.676 0.490 (O. P. - Cambridge 1875) p X 0.005** 0.261 0.006** 0.001***b 0.000***b 0.002** Linyphiidae n 1 42 16 29 88 88 88 Bolyphante luteolus r 0.854 X 0.802 0.815 0.564 -0.589 -0.269 (Blackwall 1833) p 0.003** X 0.009** 0.007** 0.000***b 0.000***b 0.113 Linyphiidae n 102 13 29 58 202 202 202 Caracladus avicula r 0.552 0.661 0.753 0.454 0.654 -0.429 -0.292 (L. Koch 1869) p 0.123 0.053 0.019* 0.220 0.000***b 0.009** 0.084 Linyphiidae n 87 144 118 121 470 470 470 Centromerus pabulator r X -0.069 0.388 0.017 0.095 0.060 0.169 (O. P. - Cambridge 1875) p X 0.860 0.302 0.965 0.583 0.728 0.325 Linyphiidae n 2 38 28 38 106 106 106 Improphantes nitidus r -0.966 -0.870 -0.843 -0.842 -0.858 0.746 0.411 (Thorell 1875) p 0.000*** 0.002** 0.004** 0.004** 0.000***b 0.000***b 0.013* Linyphiidae n 42 51 93 72 258 258 258 Macrargus carpenteri r 0.186 X X 0.785 0.583 -0.567 -0.387 (O. P. - Cambridge 1894) p 0.633 X X 0.012* 0.000***b 0.000***b 0.020* Linyphiidae n 40 11 15 44 110 110 110 Panamomops tauricornis r X -0.881 -0.901 -0.762 -0.865 0.710 0.366 (Simon 1881) p X 0.002** 0.001*** 0.017* 0.000***b 0.000***b 0.028* Linyphiidae n 12 35 16 20 83 83 83 Pelecopsis elongata r -0.617 -0.451 -0.059 -0.527 -0.291 0.313 0.200 (Wider 1834) p 0.077 0.223 0.881 0.145 0.085 0.063 0.243 Linyphiidae n 82 20 70 166 338 338 338 Scotinotylus alpigenus r -0.858 -0.762 -0.762 -0.946 -0.748 0.887 0.612 (L. Koch 1869) p 0.003** 0.017* 0.017* 0.000*** 0.000***b 0.000***b 0.000***b Linyphiidae n 59 225 115 229 628 628 628 Scotinotylus clavatus r X -0.905 X -0.879 -0.716 0.817 0.585 (Schenkel 1927) p X 0.001*** X 0.002** 0.000***b 0.000***b 0.000***b Linyphiidae n 3 44 10 32 89 89 89 Tapinocyba affinis r -0.485 -0.586 0.114 -0.638 -0.404 0.536 0.341 Lessert 1907 p 0.185 0.097 0.771 0.064 0.015* 0.001***b 0.042* Linyphiidae n 55 62 37 69 223 223 223 Alopecosa taeniata r 0.763 0.879 0.797 0.895 0.686 -0.552 -0.032 (C. L. Koch 1835) p 0.017* 0.002** 0.010* 0.001*** 0.000***b 0.000***b 0.852 Lycosidae n 54 79 62 151 346 346 346 Pardosa riparia r 0.678 0.767 0.683 0.833 0.739 -0.500 -0.036 (C. L. Koch 1833) p 0.045* 0.016* 0.042* 0.005** 0.000***b 0.002** 0.834 Lycosidae n 440 790 558 557 2345 2345 2345 No. of sign. cases: p= 0.05 5 (55%) 8 (67%) 8 (67%) 10 (71%) 12 (86%) 12 (86%) 8 (57%)

No. of sign. cases: p= 0.01 3 (33%) 6 (50%) 4 (33%) 8 (57%) 11 (79%) 12 (86%) 4 (29%)

No. of sign. cases: p= 0.001 1 (11%) 2 (17%) 1 (8%) 2 (14%) 11 (79%) 10 (71%) 2 (14%)

No. of sign. cases after - - - - 11 (79%) 10 (71%) 2 (14%) Bonferroni: p= 0.05

30 Spiders (Arachnida: Araneae) of the timberline in the Swiss Central Alps (Alp Flix, Grisons).

Holger Frick 1,2, Christian Kropf 2,4, Ambros Hänggi 3, Wolfgang Nentwig 1 and Angelo Bolzern 3

1 Zoological Institute, University of Bern, Baltzerstrasse 6, CH-3012 Bern 2 Natural History Museum Bern, Department of Invertebrates, Bernastrasse 15, CH-3005 Bern, Switzerland. 3 Natural History Museum Basel, Abteilung Biowissenschaften (Zoologie), Augustinergasse 2, 4001 Basel 4 Correspondence to Christian Kropf: [email protected]

31 Abstract

We studied spiders of the timberline on Alp Flix (Switzerland, Canton Grisons, 1960 m) between June 2002 and May 2004 around and on stand-alone Norway spruce trees (Picea abies) by means of pitfall traps, funnel traps, frame and litter sampling, branch eclectors, restricted canopy fogging, beating, sweepnetting and hand sampling. We recorded 93 species, four of them endemics of the Alps, another seven of the European mountain system. Maro lehtineni is new to Switzerland; five species are new for the Canton Grisons, i.e. Evansia merens, Meioneta innotabilis, Moebelia penicillata, Obscuriphantes obscurus and Agroeca proxima. We show that stand-alone trees at the alpine timberline offer a broad range of habitats for a high number of spider species which should be considered in future conservation and research efforts. Phenologies of certain species and diversity indices for the different methods are added.

Keywords: Spiders, Araneae, faunistics, timberline, new records, Grisons, Central Alps, Switzerland.

32 1. Introduction

Faunistic data of diverse groups with differentiated preferences of species represent one of the basics for many other disciplines including conservation biology. Due to their often strict dependency on abiotic and biotic factors and therefore sensitivity for environmental changes (Bauchhenss 1990; Wise 1993; Foelix 1996; Samu et al. 1999), species associations of spiders (Araneae) have a high indicator value and reflect the status and the “health” of a habitat (Clausen 1986; Hänggi 1998; Thaler 1998). This makes them ideal study objects for many conservational and ecological problems.

The Alp Flix in the canton Grisons is a hotspot of biodiversity in Switzerland (Hänggi & Müller 2001), but only a preliminary study was devoted to the spider fauna (Hänggi 2000; Hänggi & Kropf 2001). It had been shown previously that the diversity of spiders at the timberline exceeds that of the surroundings (Thaler 1989; Zingerle 1999a; b). However, the spider associations of different areas around single trees of the timberline and of different strata have not been studied yet. The timberline on Alp Flix with its mosaic patterns of open areas and stand-alone trees is therefore of particular faunistic and ecological interest.

2. Methods

2.1. Study site

Alp Flix (GPS coordinates: 769 400 / 154 350; WGS84 coordinates: N: 46° 31' 8.41'', E: 9° 38' 47.12'') is situated in the Central Swiss Alps in the Canton Grisons and belongs to the village of Sur (fig. 1). The south-west exposed terrace of Alp Flix is approximately 1000 m broad and ranges from 1950 m a.s.l. up to 2100 m. It is bordered in the north-east by steep mountains with an elevation of over 3000 m and in the south-west by the valley of the river Julia. The underground with granite, gneiss, quartzite, chalk and serpentine consists of moraine material from the nearby Err massive.

The study site is situated about 550 m north-east of the hamlet Salategnas at the lower edge of the terrace between 1950 m and 1960 m. The south western border is defined by

33 the anthropogenic affected forest edge where occasional cattle-grazing occurs throughout the vegetation period. The site is characterised by numerous stand-alone Norway spruce trees (Picea abies). In the north east, the biotope changes to dwarf shrub heath, dominated by Juniperus communis and Rhododendron ferrugineum.

The climate on Alp Flix is inneralpine-continental (Hänggi and Müller 2001) with a snow-free time from May to the end of October. The temperature extremes in summer range from 0°C at night to 30°C at daytime and in winter from -20°C to ca. +15°C (fig. 2). The snow cover ranges from a few centimetres to more than one meter.

2.2. Study period

The study periods lasted from June 2002 to May 2004. The funnel traps (FUN) and the nearby pitfall traps (PTF) were used from June 2002 to June 2003 (coll. A. H.), the pitfall traps (PTB) from May 2003 to May 2004 (coll. H. F.). The same applies for the frame (FRS) and litter samples (LIT) and the sweepnetting (SWE), conducted during the snow- free time of 2003. During that time, spiders were collected by using branch eclectors (BRE), beatings (BEA) and restricted canopy fogging (RCF) (coll. A. B.). Besides, hand samplings (coll. H. F., A. B.) were taken sporadically between May 2003 and May 2004 at the timberline (HST) and at nearby sites (HSS). A detailed summary of the study periods can be seen in table 1.

2.3. Sampling methods for spiders on trees

Branch eclectors (BRE): The branch eclector traps are basically constructed after Behre (1989) and Mühlenberg (1993). The traps were filled with formaldehyde (4 %); a tenside (liquid soap, non-perfumed) was added. Two eclectors were positioned on each of six Norway spruce trees between 110 cm and 430 cm above the ground. All branches sampled had a diameter of roughly 5 cm.

Beating (BEA): 84 branches were beaten 20 to 25 times at a distance from the ground between 80 cm and 500 cm. Each branch was sampled only once. The spiders were collected on a white umbrella (ø: 85 cm) and transferred into ethanol 75 %.

34 Restricted Canopy Fogging (RCF): 36 branches were enclosed separately by robust transparent sealed plastic bags (height 150 cm; width 100 cm; volume approx. 400 l) at a height of up to 240 cm above ground. The bags were filled with CO2. 20 minutes later, the branch was shaken and removed. Each branch was sampled only once.

2.4. Sampling methods for ground dwelling spiders

Funnel traps (FUN): We used plastic bottles (ca. 0.75 l) with a funnel (ø: 15 cm) fixed on the top. At the lower end of the funnel, a wire-cross prevented small vertebrates from falling into the trap. The traps were covered by a plastic plate at 5 cm above the ground (Obrist and Duelli, 1996). Two funnel traps (filled with 4 % formaldehyde with a detergent) were installed in opposite corners of a square of 2 x 3 m together with two pitfall traps (PTF) in the other corners that were of the same type as the PTBs described below.

Pitfall traps at sites near the branch eclectors (PTB): White plastic cups with an upper diameter of 6.9 cm and a depth of 7.5 cm were filled with 4 % formaldehyde and 0.05 % SDS as tenside until 3 cm under the upper edge. Quadrangular transparent plastic covers (15 x 15cm) were fixed at ca. 5 cm above the traps. Nine pitfall traps per tree were positioned around four trees of similar size (diameter ca. 8 m, height ca. 12 m) in three directions with three traps each. These trees were sampled with pitfall traps (PTB) and branch eclectors (BRE) exclusively.

Frame (FRS) and litter samples (LIT): Frames (FRS): Four trees per month were investigated without any additional sampling (except LITs) in the same month. Three samples of 22 x 22 cm (5 cm depth) per tree were cut out of the soil. The samples were taken in three different directions each and were sampled at random places under the branches. Extraction of specimens was done by a MacFadyen high-gradient funnel (MacFadyen 1962). The litter samples (LIT) were taken in the same way under the same trees, but only the litter layer was collected.

Sweepnetting (SWE): The vegetation under four trees was sampled every month by sweepnetting, without any additional sampling in the same month. Sampling was done ca. 2 m away from the tree trunk and at the outer border of the branch cover.

35 2.5. Determination:

We determined the specimens mostly after Roberts (1985, 1987, 1995) and Wiehle (1956, 1960). Other literature used: Blouwe (1973); Bosmans (1991); Bosmans and de Smet (1993); Braun (1965); Buchar (1981); Buchar and Thaler (1995); Denis (1965); Grimm (1985, 1986); Hänggi (1989); Heimer and Nentwig (1991); Helsdingen et al. (1977, 2001); Jantscher (2001); Knoflach (1992, 1996); Kronestedt (1990); Levi (1977); Locket et al. (1974); Logunov (1996); Logunov and Kronestedt (2003); Lugetti and Tongiorgi (1965, 1969); Miller (1967); Millidge (1975, 1979); Ovtsharenko et al. (1992); Pesarini (1996, 2000); Relys and Weiss (1997); Saaristo (1971); Snazell (1983); Szita and Samu (2000); Thaler (1969, 1970, 1971, 1972a, b, 1976, 1978a, b, 1981, 1983, 1987, 1991); Thaler and Buchar (1993); Tongiorgi (1966a, b); Wiehle (1937); Wunderlich (1972, 1980, 1985, 1986); Zabka (1997).

3. Results and Discussion

3.1. List of species

93 species out of 13 families were found, including one species, Maro lehtineni newly discovered for Switzerland (Bolzern and Frick 2005) and five species, Evansia merens, Meioneta innotabilis, Moebelia penicillata, Obscuriphantes obscurus and Agroeca proxima new for the Canton Grisons. Four species are endemic to the Alps, i.e. Caracladus avicula, Metopobactrus schenkeli, Scotinotylus clavatus, Tenuiphantes jacksonoides. Another seven species can be classified as endemics of the European mountain system: Erigonella subelevata, Tapinocyba affinis, Arctosa renidescens, Pardosa blanda, Talavera monticola, Robertus truncorum, Xysticus macedonicus.

3.2. Comments on first records, endemic and rare species and their phenology

Araneidae

Araniella displicata

Only known locality of this species in Grisons (Hänggi 2000). All records in June.

36 Gnaphosidae

Drassodes lapidosus

Determination after Roberts (1995) and Grimm (1985). According to Thaler (1981, 2004), most high-altitude records of D. lapidosus should concern D. cupreus (Blackwall, 1834). The species status of D. lapidosus and D. cupreus is under debate (e.g. Grimm 1985). A detailed discussion by Bolzern and Hänggi is in preparation. We found specimens between mid May and July.

Micaria aenea

Habitat: Most findings in the subalpine belt between 1500 and 2000 m; in dry and sunny habitats; clearings, meadows, birch fen woods, coniferous forests, timberline and dwarf shrub heath (Hänggi et al. 1995; Muster 2001; Thaler 2004).

Distribution: Holarctic, eurosibirian (Thaler 2004); after Thaler (1997a; 1998; 2004) arctoalpine to boreomontane distribution.

Comments: Rarely found in Switzerland (Maurer & Hänggi 1990). We observed the highest activity in Mai and June (fig. 3a).

Linyphiidae

Bolyphantes alticeps / B. luteolus

Habitat: B. alticeps in various habitats in Europe (Hänggi et al. 1995 ; Helsdingen et al. 2001); in the Alps up to the timberline (Puntscher 1980); at the timberline mostly in the dwarf shrub heath and sometimes in the subalpine forests (Muster 2001; Thaler 1995b).

B. luteolus in Europe in dry grassland, rushes, alder carrs and on coastal dunes; (Hänggi et al. 1995; Helsdingen et al. 2001); in the Alps at the timberline; alpine meadows (Palmgren 1973; Thaler 1995b).

Distribution: Extra-mediterranean, Palaearctic (Maurer and Hänggi 1990; Helsdingen et al. 2001).

Comments: Syntopic occurrence of both species and Bolephthyphantes index. 10 females intermediate between B. alticepes and B. luteolus. Species assignment of females

37 was based on the majority of characters the specimen shared either with B. alticeps or B. luteolus, respectively.

B. alticeps is stenochronous; mating in late summer (Palmgren 1975; Wiehle 1956). Our phenological data of B. alticeps are partly consistent to Muster’s (2001) data. We found a few specimens between September and October and a peak of activity in winter (fig. 3b), while Muster (2001) noted conspicuous long activities in late autumn. However, it should be noted that our data of the winter concern a period of six months (November to mid May).

Adults of B. luteolus were found from the late autumn with the peak of activity in winter (fig. 3c). Helsdingen et al. (2001) state that B. luteolus is stenochronous with matings in late summer. Schaefer (1976) felt that adults do not overwinter.

Caracladus avicula

Habitat: subalpine belt; from subalpine coniferous forest up to the timberline (~1000- 2000m) (Thaler, 1999); epigeal (Maurer and Hänggi 1990); in forests and meadows (Hänggi et al. 1995; Muster 2001).

Distribution: Endemite of the Alps (Muster 2001; Thaler 1999);

Comments: Diplochronous (Thaler 1999); Main activity should be in lower altitudes between the end of March and mid May, in higher altitudes between June and September. (Thaler 1972b). Muster (2001) found most of the specimens in June and July at similar sites. We observed the highest activity between the beginning of November and mid June (fig. 3d).

Erigonella subelevata

Few records in Switzerland (Maurer & Hänggi 1990). We observed specimens all over the year in low but similar numbers (fig. 3e). This is contradicting to the data of Muster (2001), who noted highest activities between winter and July. 14 of the 15 specimens were in two pitfall traps in southern direction from the tree trunk around a single P. abies tree. All specimens were at rather open sites with a low coverage of branches and high proportions of litter and grass.

38

Evansia merens

Habitat: Myrmecophilous (Thaler et al. 1990); nidicolous in ant nests; mostly with associated ants from the Formica fusca - group; sometimes under stones in dwarf shrub heath between 1900 and 2200 m (Thaler 1999).

Distribution: West-palaearctic, eventually extra-mediterranean (Thaler 1999).

Comments: First record for Grisons, second record for Switzerland after Schenkel (1936). We found two specimens in May at a site with a high abundance of Formica sp. Adult during the whole year; most individuals in autumn (Wiehle 1960).

Macrargus carpenteri

Habitat: Habitat preferences unclear; seems to be xerophilous (Thaler 1983). Thaler (1995b) found the species at the timberline and in the lower alpine zone (in dwarf shrubs and grass meadow); epigeal (Maurer and Hänggi 1990; Hänggi et al. 1995).

Distribution: Central Europe and West Siberia; the Alps mark the southern distribution border (Thaler 1995b).

Comments: M. carpenteri seems to be mature and active in winter (Thaler 1995b); we found males and females between the beginning of October and May exclusively (fig. 3f). Our record is the second in Switzerland (Maurer and Hänggi 1990).

Mansuphantes pseudoarciger

Habitat: montane; epigeal; in moderate humid moss of a P. abies - forest. (Maurer and Hänggi 1990).

Distribution: Western Alps; France and Switzerland (Bosmans 1995).

Comments: second finding in Switzerland, after Müller (1985); first record for Grisons. Adults were found nearly exclusively between November and early June (fig. 3g). 70 % of all specimens in pitfall traps were caught in a range of about 1 m around the tree trunk of the P. abies.

39 Maro lehtineni

Habitat: In the Alps only one finding in a hey meadow (1960m) and one in dwarf shrub heath at 2190 m (Thaler 1995b).

Distribution: Alps, North and East Europe and Siberia (Thaler 1983).

Comments: First record for Switzerland is in preparation as a separate publication by Bolzern and Frick.

Meioneta innotabilis

Habitat: On bark of spruce (Muster 2001); from low altitudes up to the timberline (Thaler 1995b), also in cultivated spruce forests (Hänggi et al. 1995).

Distribution: Europe (Muster 2001).

Comments: One male between mid May and early June in branch eclector. First finding for Grisons and first documentation since Schenkel (1923).

Moebelia penicillata

Colline and montane region up to ca. 1500 m (Hänggi et al. 1995). One record at 1920 m (Muster 2001). Our record (one female in August) is probably at the highest location known so far. First record for Grisons.

Mughiphantes cornutus

Habitat: main distribution in subalpine forests between 1500 and 2000 m (Thaler 1995b); only a few specimens found in higher subalpine belt in the Alps (Thaler 1972a); epigeal; in forest litter (Maurer and Hänggi 1990).

Distribution: Boreo-montane/boreo-alpine and also in South Siberia (Thaler 1995b).

Comments: We observed a main activity between May and August, covering nearly the whole snow-free time (fig. 3h). Diplochronous (Thaler 1972a). 85 % of all observed specimens from pitfall traps were caught directly at the tree trunk or in a range of about 1m around the tree trunk of P. abies.

40

Obscuriphantes obscurus

Adult males in spring, late summer and autumn (Wiehle 1956); our records in May (BRE), August (SWE), and winter (PTB), probably close to the upper distribution limits; first record for Grisons.

Panamomops tauricornis

Distribution: long known as endemite of the Alps but recently also recorded from North Asia (Eskov 1994; Thaler 1999).

Comments: Rare species, diplochronous (Thaler 1995a). We found adult specimens all over the year with the main activity between mid May and end of July (fig. 3i).

Porrhomma campbelli

Determination of the four females uncertain because of lack of males, confusion with P. pallidum (22 males, 15 females in our sample) possible. If determination is correct, it would be the second finding in Grisons (Maurer and Hänggi 1990).

Scotargus pilosus

Winter-active (Muster 2001); second record in Grisons, first after Thaler (1971); all our male specimens have a thorn like structure on the dorsal arm of the paracymbium that is not figured in published drawings (Denis 1966; Miller 1971; van Helsingen 1973, Thaler 1987; Pesarini 1996 and others). Determination confirmed by K. Thaler (in litt.).

Scotinotylus clavatus

Distribution: Endemite of the Alps with nearctic twin species (Cochlembolus sacer) (Thaler 1999).

Comments: Diplochronous after Thaler (1999); females long-living and overwintering (Thaler 1995a); we observed adults in all months, males had the highest activity between

41 July and September, diplochrony was not detectable. Females were equally common between September and mid June (fig. 3j). Most specimens close to the tree trunks of P. abies.

Stemonyphantes conspersus

Second finding in Switzerland and Grisons, first one by Maurer and Hänggi (1989); main activity in winter (Muster 2001); we found most specimens between October and early June (fig. 3k).

Tenuiphantes jacksonoides

Habitat: Subalpine spruce forest until grass heath, 1500-2500 m (Thaler 1995b); more in open vegetation than in forests (Helsdingen et al. 1977); epigeal (Maurer and Hänggi 1990);

Distribution: Narrow endemic of the Eastern Alps (Thaler 1995b; Muster 2001).

Comments: Second finding in Grisons, first after Helsdingen et al. (1977) third record for Switzerland. Adults are found from June to September (Helsdingen et al. 1977). Our specimen is slightly different from the drawing of Helsdingen et al. (1977); it lacks one apophysis on the inner part of the lamella. Apart from this, the male palp fits well to T. jacksonoides. Determination confirmed by K. Thaler (in litt.).

Walckenaeria mitrata

Second finding in Grisons after Thaler (1971). Highest location up till now at 1700 m (Thaler 1999), our record at 1960 m a. s. l.

Salticidae

Talavera monticola

The female epigyne is not certainly distinguishable from T. esyunini and T. minuta, but according to the distribution of these Talavera species (Logunov and Kronestedt 2003) our specimen should be T. monticola.

42

Lycosidae

Pardosa riparia

Habitat: In light forests of pine, spruce, and larch, with high grass below, up to 2000 m (Thaler 1995a; c); epigeal; mostly humid meadows in higher altitudes (Maurer and Hänggi 1990; Hänggi et al. 1995); mountain pastures (Muster 2001).

Distribution: Palaearctic (Maurer and Hänggi 1990).

Comments: The eudominant species at the timberline of Alp Flix. The maximum activity was between mid May and July (fig. 3l). Females show high variability in colour and shape of the epigynum. However, species specific traits according to Tongiorgi (1966a; b) were clearly visible.

Thomisidae

Xysticus audax/ X. macedonicus

Habitat: X. audax: euryzonal forest species; dry and wet meadows; epigeal and arboricol up to the dwarf shrub heath; up to ca. 2100 m, sometimes in open sites and above the timberline (Maurer and Hänggi 1990; Muster 2001; Thaler 1997b; 2004).

X. macedonicus: Euryzonal up to 2400 m, in the alps up to 2160 m, thermophilous, open land, alpine grass, debris, dry forests, mixed deciduous forests, epigeal (Hänggi et al. 1995; Kropf & Horak 1996; Thaler 1997b; Muster 2000;).

Distribution: X. audax in Europe, Siberia, Asia Minor, Japan, Sachalin (Maurer and Hänggi 1990); X. macedonicus is an endemite of the European mountain system (Muster 2001).

Comments: The females of X. audax are easily confused with their sister species X. macedonicus and X. cristatus. Several females appeared intermediate between X. audax and X. macedonicus and were counted as X. audax; however, one female clearly matched the drawings of X. macedonicus (Jantscher 2001). Males are mostly distinct (Jantscher 2001). X. audax and X. macedonicus occur syntopically but with different microhabitat preferences (Hänggi 2003; Muster 2000). Second record in Switzerland, first after Hänggi (2003) also on Alp Flix. See figure 3m for phenology of X. audax.

43 To conclude, the timberline on Alp Flix has proved to harbour a rich community of spider species with diverse ecological preferences, many alpine-endemic species and faunistic rarities. Presumably, this is also true for other invertebrates. Future studies and conservation efforts should pay special attention to the timberline as a major part of the invertebrate diversity of the region possibly can be maintained in this relatively small area.

4. Acknowledgements

We are deeply indebted to all the people who helped us during our field work, especially to Viktoria Spinas (Sur, CH) for her support on the alp. A special thank goes to the foundation “Schatzinsel Alp Flix” and to Dr. Jürg Paul Müller (Chur, CH) who made accommodation at the study site available. Prof. Dr. Konrad Thaler (Innsbruck, A) kindly checked the determination of “problematic” specimens. For technical help, material and fruitful discussions we thank Dr. Denise Wyniger (New York., U.S.A.), Roland Mühlethaler (Basel, CH), Prof. Dr. Jürg Zettel (Bern, CH) and Alain Jacob (Bern, CH). We are also grateful to Gianni Savoldelli (Randons, CH) for the weather data and Halinka Lamparski (Perth, AU) and Tristan Derham (Perth, AU) for corrections on the language. H.F. cordially thanks his parents for continuous help and support.

5. References

Bauchhenss, E. 1990: Mitteleuropäische Xerotherm-Standorte und ihre epigäische Spinnenfauna – eine autökologische Betrachtung. - Abhandlungen des Naturwissenschaftlichen Vereins in Hamburg (NF) 31/32: 153-162. Behre, G. F. 1989. Freilandökologische Methoden zur Erfassung der Entomofauna (Weiter-und Neuentwicklung von Geräten). – Jahresberichte des Naturwissenschaftlichen Vereins in Wuppertal 42, 238-242. Blick, T. & Scheidler, M. 2003: Rote Liste gefährdeter Spinnen (Arachnida: Araneae) Bayerns. – Schriftenreihe / Bayerisches Landesamt für Umweltschutz 166: 308- 321.

44 Blouwe, R. de 1973. Révision de la famille des Agelenidae (Araneae) de la région méditerranéenne. - Bulletin de l’ Institut Royal des Sciences Naturelles de Belgique 49: 1-111. Bosmans, R. 1991: Lepthyphantes. - In: Heimer, S. and Nentwig, W., Spinnen Mitteleuropas, pp. 178-201, Paul Parey Verlag, Berlin und Hamburg. Bosmans, R. and Smet, K. de 1993. Le genre Walckenaeria Blackwall en Afrique du Nord (Araneae, Linyphiidae). Etudes sur les Linyphiidae nord-africaines, I. - Revue Arachnologique, 10 (2): 21-51. Braun, R. 1965. Beitrag zu einer Revision der paläarktischen Arten der Philodromus aureolus - Gruppe (Arach., Araneae). I. Morphologisch-systematischer Teil. - Senckenbergiana biologica 46: 369-428. Buchar, J. 1981. Zur Lycosiden-Fauna von Tirol (Araneae, Lycosidae). – Vestnik Ceskoslovenske Spolecnosti Zoologicke 45: 4-13. Buchar, J. and Thaler, K. 1995. Die Wolfspinnen von Österreich 2: Gattungen Arctosa, Tricca, Trochosa (Arachnida, Araneida: Lycosidae). Faunistisch-tiergeographische Übersicht. - Carinthia II. 185 (105): 481-498. Clausen, I.H.S. 1986. The use of spiders as ecological indicators. – Bulletin of the British arachnological Society 7: 83-86. Denis, J. 1965. Notes sur les Erigonides. XXX. Le genre Minitia Thorell. – Bulletin de la Société d’Histoire Naturelle de Tolouse 100: 181-205. Foelix, R.F. 1996: Biology of spiders. – Oxford University Press. New York. pp. 1-330. Grimm, U. 1985: Die Gnaphosidae Mitteleuropas (Arachnida, Araneae). - Abhandlungen des Naturwissenschaftlichen Vereins in Hamburg (NF) 26: 1-318. Grimm, U. 1986. Die Clubionidae Mitteleuropas. Corinninae und Liocraninae (Arachnida, Araneae). - Abhandlungen des Naturwissenschaftlichen Vereins in Hamburg (NF) 27: 1-91. Hänggi, A. 1989. Beiträge zur Kenntnis der Spinnenfauna des Kt. Tessin II – Bemerkenswerte Spinnenfunde aus Magerwiesen der Montanstufe. - Mitteilungen der Schweizerischen Entomologischen Gesellschaft 62: 167-174. Hänggi, A., Stöckli, E. and Nentwig, W. 1995. Lebensräume Mitteleuropäischer Spinnen. Charakterisierung der Lebensräume der häufigsten Spinnenarten Mitteleuropas und der mit diesen vergesellschafteten Arten. –Miscellanea Faunistica Helvetiae 4: 1- 460.

45 Hänggi, A. 1998. Bewertung mit Indikatoren versus Erfassung des gesamten Artenspektrums - ein Konfliktfall? – Laufener Seminarbeiträge 8: 33-42. Hänggi, A. 2000. Alp Flix – Das Ergebnis. GEO: 9/2000 Supplement: 7-23. Hänggi, A. 2003. Nachträge zum „Katalog der schweizerischen Spinnen“ - 3. Neunachweise von 1999 bis 2002 und Nachweise synanthroper Spinnen. - Arachnologische Mitteilungen 26: 36-49. Hänggi, A. and Kropf, C. 2001. Erstnachweis der Zwergspinne Micrargus alpinus für die Schweiz – Mit Bemerkungen zur Bedeutung von Museumssammlungen und den Grenzen der Aussagekraft von Literaturangaben. - Jahresbericht der Naturforschenden Gesellschaft Graubünden 110: 45-49. Hänggi, A. and Müller, J.P. 2001. Eine 24-Stunden Aktion zur Erfassung der Biodiversität auf der Alp Flix (Grisons): Methoden und Resultate. - Jahresbericht der Naturforschenden Gesellschaft Graubünden 110: 5-36. Heimer, S. and Nentwig, W., Spinnen Mitteleuropas, Paul Parey Verlag, Berlin und Hamburg. pp.1-543 Helsdingen, P.J. van, Thaler, K. and Deltshev, C. 1977. The tenuis group of Lepthyphantes Menge (Araneae, Linyphiidae). - Tijdschrift voor Entomologie 23: 1-54. Helsdingen, P.J. van, Thaler, K. and Deltshev, C. 2001. The European species of Bolyphantes with an attempt of a phylogenetic analysis (Araneae Linyphiidae). – Memorie della Societá entomologica italiana 80: 3-35. Jantscher, E. 2001. Diagnostic characters of Xysticus cristatus, X. audax and X. macedonicus (Araneae: ). - Bulletin of the British arachnological Society 12 (1): 17-25. Knoflach, B.1992. Neue Robertus-Funde in den Alpen: R. mediterraneus Escov und Robertus sp. (Arachnida, Aranei: Theridiidae). – Berichte des naturwissenschaftlich-medizinischen Vereins in Innsbruck 79: 161-171. Knoflach, B. 1996. Die Arten der Steatoda phalerata-Gruppe in Europa (Arachnida: Araneae, Theridiidae). - Mitteilungen der Schweizerischen Entomologischen Gesellschaft 69: 377-404. Kronestedt, T. 1990. Separation of two species standing as Alopecosa aculeata (Clerck) by morphological, behavioural and ecological characters, with remarks on related species in the pulverulenta group (Araneae, Lycosidae). Zoologica Scripta 19(2): 203-225.

46 Kropf, C. and Horak, P. 1996: Die Spinnen der Steiermark (Arachnida, Araneae). - Mitteilungen des Naturwissenschaftlichen Vereines für Steiermark. Sonderheft: 5- 112. Levi, H.W. 1977. The orb-weaver genera Metepeira, Kaira and Aculepeira in America North of Mexico (Araneae: Araneidae). Bulletin of the Museum of Comparative Zoology 148 (5): 185-238. Locket, G. H., Millidge, A. F. and Merrett, P. 1974. British spiders vol. 3. The Ray Society, London, 314 pp. Logunov, D. V. 1996. A critical review of the spider genera Apollophanes O. P.- Cambridge, 1898 and Thanatus C. L. Koch, 1837 in North Asia (Araneae, Philodromidae). Revue Arachnologique 11: 133-202. Logunov, D. V. and Kronestedt, T. 2003. A review of the Talavera Peckham and Peckham, 1909 (Araneae, Salticidae). Journal of Natural History 37: 1091-1154. Lugetti, G. and Tongiorgi P. 1965. Revisione delle specie italiane dei generi Arctosa C. L. Koch e Tricca Simon con note su una Acantholycosa delle Alpi Giulie (Aran. Lycosidae). Redia 49: 165-228. Lugetti, G. and Tongiorgi, P. 1969. Ricerche sul genere Alopecosa Simon (Araneae - Lycosidae). Atti della societá Toscana di Scienze naturali Memorie 76 (B): 1-100. MacFadyen, W.A., 1962. Soil sampling. Advances in Ecological Research 1: 1- 34. Maurer, R. and Hänggi, A. 1989. Für die Schweiz neue und bemerkenswerte Spinnen (Araneae) III. Mitteilungen der Schweizerischen Entomologischen Gesellschaft 62: 175-182. Maurer, R. and Hänggi, A. 1990. Katalog der schweizerischen Spinnen. Documenta Faunistica Helvetiae 12. Miller, F. 1967. Studien über Kopulationsorgane von Zelotes, Micaria, Robertus und Dipoena. - Prirodovedne Prace Ustavu Ceskoslovenske Akademie ved v Brne (N.S.) 1 (7): 253-296. Millidge, A. F. 1975. Re-examination of the erigonine spiders "Micrargus herbigradus" and "Pocadicnemis pumila" (Araneae, Linyphiidae). - Bulletin of the British arachnological Society 3: 145-155. Millidge, A. F. 1979. Some erigonine spiders from southern Europe. - Bulletin of the British arachnological Society 4: 316-328.

47 Mühlenberg, M. 1993. Freilandökologie. - 3. Ausgabe. Quelle & Meyer (UTB), Heidelberg and Wiesbaden, 512 pp. Müller, H.-G. 1985. Die moosbewohnenden Araneen eines Fichtenwaldes am Col de la Forclaz - ein Beitrag zur schweizerischen Spinnenfauna (Arachnida: Araneae). - Entomologische Zeitschrift 95: 268-272. Muster, C. 2000. Weitere für Deutschland neue Spinnentiere aus dem bayerischen Alpenraum (Araneae: Linyphiidae, Agelenidae, Thomisidae, Salticidae). - Berichte des Naturwissenschaftlich-medizinischen Vereins in Innsbruck 87: 209-219. Muster, C. 2001. Biogeographie von Spinnentieren der mittleren Nordalpen (Arachnida: Araneae, Opiliones, Pseudoscorpiones). - Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg 39: 5-196. Nährig, D. and Harms, K.H., 2003: Rote Listen und Checklisten der Spinnentiere Baden- Württembergs. – Naturschutz-Praxis, Artenschutz 7: 1-199. Obrist, M. K. and Duelli, P. 1996. Trapping efficiency of funnel- and cup-traps for epigeal arthropods. - Mitteilungen der Schweizerischen Entomologischen Gesellschaft 69: 361-369. Ovtsharenko, V.I., Platnick, N.I. and Song, D.X. 1992. A review of the North Asian ground spiders of the genus Gnaphosa (Araneae, Gnaphosidae). Bulletin of the American Museum of Natural History 212: 1-88. Palmgren, P. 1973. Beiträge zur Kenntnis der Spinnenfauna der Ostalpen. - Commentationes Biologicae 71: 1-52. Palmgren, P.1975. Die Spinnenfauna Finnlands und Ostfennoskandiens VI: Linyphiidae 1. - Fauna Fennica 28: 1-102. Pesarini, C. 1996. Note su alcuni Erigonidae italiani, con descrizione di una nuova specie (Araneae). - Atti della Societá Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 135: 413-429. Pesarini, C. 2000. Contributo alla conoscenza della fauna araneologica italiana (Araneae). - Memorie della Societa Entomologica Italiana 78: 379-393. Puntscher, S. 1980. Ökologische Untersuchungen an Wirbellosen des zentralalpinen Hochgebirges Obergurgel, Tirol). V. Verteilung und Jahresrhythmik von Spinnen. Hrsg. Heinz Janetschek. Alpin-Biologische Studien: XIV. - Veröffentlichungen der Universität Innsbruck 129: 1-106.

48 Relys, V. and Weiss, I. 1997. Micrargus alpinus sp. n., eine weitere Art der M. herbigradus - Gruppe aus Österreich (Arachnida: Araneae: Linyphiidae). - Revue Suisse de Zoologie 104: 491-501. Roberts, M. J. 1985. The spiders of Great Britain and Ireland. Volume 1: Atypidae to Theridiosomatidae. - Harley Books, Colchester, 229 pp. Roberts, M. J. 1987. The spiders of Great Britain and Ireland. Volume 2: Linyphiidae and checklist. - Harley Books, Colchester, 204 pp. Roberts, M. J. 1995. Spiders of Britain and Northern Europe. - Harper Collins Publishers, London, 383 pp. Saaristo, M. I. 1971. Revision of the genus Maro O. P.-Cambridge (Araneae, Linyphiidae). Annales Zoologici Fennici 8: 463-482. Samu, F., Sunderland, K.D. and Szinetar, C. 1999: Scale-dependant dispersal and distribution patterns of spiders in agricultural systems: a review. – Journal of Arachnology 27: 325-332. Schaefer, M. 1976. Experimentelle Untersuchungen zum Jahreszyklus und zur Überwinterung von Spinnen (Araneida). – Zoologische Jahrbücher Systematik 103: 127-289. Schenkel, E 1923. Beitrag zur Spinnenkunde. - Verhandlungen der Naturforschenden Gesellschaft in Basel 34: 78-127. Schenkel, E. 1936. Kleine Beiträge zur Spinnenkunde. – Revue Suisse de Zoologie 43: 307-333. Snazell, R. 1983. On two spiders recently recorded from Britain. - Bulletin of the British arachnological Society 6: 93-98. Szita, E. and Samu, F. 2000. Taxonomical review of Thanatus species (Philodromidae, Araneae) of Hungary. - Acta Zoologica Academiae Scientiarum Hungaricae 46: 155-179. Thaler, K. 1969. Über einige wenig bekannte Zwergspinnen aus Tirol (Arachn., Araneae, Erigonidae). - Berichte des Naturwissenschaftlich-medizinischen Vereins in Innsbruck 57: 195-219. Thaler, K. 1970. Über einige wenig bekannte Zwergspinnen aus den Alpen (Arachn., Araneae, Erigonidae). - Berichte des Naturwissenschaftlich-medizinischen Vereins in Innsbruck 58: 255-276.

49 Thaler, K. 1971. Über drei wenig bekannte hochalpine Zwergspinnen (Arach., Aranei, Erigonidae). - Mitteilungen der Schweizerischen Entomologischen Gesellschaft 44: 309-322. Thaler, K. 1972a. Über vier wenig bekannte Leptyphantes-Arten der Alpen (Arachnida, Aranei, Linyphiidae). – Archives des Sciences 25 (3): 289-308. Thaler, K. 1972b. Über einige wenig bekannte Zwergspinnen aus den Alpen, II (Arachnida: Aranei, Erigonidae). – Berichte des Naturwissenschaftlich- medizinischen Vereins in Innsbruck 59: 29-50. Thaler, K. 1976. Über wenig bekannte Zwergspinnen aus den Alpen, IV (Arachnida, Aranei, Erigonidae). - Archives des Sciences 29: 227-246. Thaler, K. 1978a. Über wenig bekannte Zwergspinnen aus den Alpen, V (Arachnida: Aranei, Erigonidae). - Beiträge zur Entomologie 28: 183-200. Thaler, K. 1978b. Die Gattung Cryphoeca in den Alpen (Arachnida, Aranei, Agelenidae). - Zoologischer Anzeiger 200: 334-346. Thaler, K. 1981. Bemerkenswerte Spinnenfunde in Nordtirol (Österreich) (Arachnida:Aranei). - Veröffentlichungen des Tiroler Landesmuseums Ferdinandeum 61: 105-150. Thaler, K. 1983. Bemerkenswerte Spinnenfunde in Nordtirol (Österreich) und Nachbarländern: Deckennetzspinnen, Linyphiidae (Arachnida: Aranei). - Veröffentlichungen des Tiroler Landesmuseums Ferdinandeum 63: 135-167. Thaler, K. 1987. Über einige Linyphiidae aus Kashmir (Arachnida: Araneae). - Courier Forschungsinstitut Senckenberg 93: 33-42. Thaler, K. 1989: Epigäische Spinnen und Weberknechte (Arachnida, Aranei, Opiliones) im Bereich des Höhentransektes Glocknerstrasse - Südabschnitt (Kärnten, Österreich). Veröffentlichungen des österreichischen MAB-Hochgebirgsprogrammes Hohe Tauern 13: 201-215. Thaler, K. 1991. Porrhomma. In: Heimer, S. and Nentwig, W., Spinnen Mitteleuropas, pp. 236-239, Verlag Paul Parey, Berlin und Hamburg. Thaler, K. 1995a. Oekologische Untersuchungen im Unterengadin 15. Lieferung D11. Spinnen (Araneida) mit Anhang über Weberknechte (Opiliones). - Ergebnisse der wissenschaftlichen Untersuchungen im Schweizerischen Nationalpark. 12: D473- D538.

50 Thaler, K. 1995b. Beiträge zur Spinnenfauna von Nordtirol. 5. Linyphiidae 1. Linyphiinae (sensu Wiehle) (Arachnida: Araneida). - Berichte des Naturwissenschaftlich- medizinischen Vereins in Innsbruck. 82: 153-190. Thaler, K. 1997a. Beiträge zur Spinnenfauna von Nordtirol – 3: "Lycosaeformia" (Agelenidae, Hahniidae, Argyronetidae, Pisauridae, Oxyopidae, Lycosidae) und Gnaphosidae (Arachnida: Araneae). - Veröffentlichungen des Tiroler Landesmuseums Ferdinandeum 75/76: 97-146. Thaler, K. 1997b. Beiträge zur Spinnenfauna von Nordtirol - 4. Dionycha (Anyphaenidae, Clubionidae, Heteropodidae, Liocranidae, Philodromidae, Salticidae, Thomisidae, Zoridae). - Veröffentlichungen des Tiroler Landesmuseums Ferdinandeum. 77: 233-285. Thaler, K. 1998. Die Spinnen von Nordtirol (Arachnida, Araneae): Faunistische Synopsis. - Veröffentlichungen des Tiroler Landesmuseums Ferdinandeum 78: 37-58. Thaler, K. 1999. Beiträge zur Spinnenfauna von Nordtirol - 6. Linyphiidae 2: Erigoninae (sensu Wiehle) (Arachnida: Araneae). - Veröffentlichungen des Tiroler Landesmuseums Ferdinandeum 79: 215-264. Thaler, K. 2004. Zur Faunistik der Spinnen (Araneae) von Österreich: Gnaphosidae, Thomisidae (Dionycha pro parte). - Linzer biologische Beiträge 36 (1): 417-484. Thaler, K., Kofler, A. and Meyer, E. 1990. Fragmenta Faunistica Tirolensia - IX (Arachnida: Aranei, Opiliones; Myriapoda: Chilopoda, Diplopoda: Glomerida; Insecta: Dermaptera, Coleoptera: Staphylinidae). - Berichte des Naturwissenschaftlich-medizinischen Vereins in Innsbruck. 77: 225-243. Thaler, K., und Buchar, J. 1993. Eine verkannte Art der Gattung Lepthyphantes in Zentraleuropa: L. tripartitus Miller & Svatox (Araneida: Linyphiidae). - Mitteilungen der Schweizerischen Entomologischen Gesellschaft 66: 149-158.

Tongiorgi, P. 1966a. Italian wolf spiders of the genus Pardosa (Araneae: Lycosidae). - Bulletin of the Museum of Comparative Zoology 134: 275-334.

Tongiorgi, P. 1966b. Wolf spiders of the Pardosa monticola group (Araneae, Lycosidae). - Bulletin of the Museum of Comparative Zoology 134: 335-359. Wiehle, H. 1937. Spinnentiere oder Arachnoidea, VIII. 26: Familie Theridiidae oder Haubennetzspinnen (Kugelspinnen). – Die Tierwelt Deutschlands und der angrenzenden Meeresteile 33, Gustav Fischer Verlag, Jena, pp.119-222.

51 Wiehle, H. 1956. Spinnentiere oder Arachnoidea, X. 28: Familie Linyphiidae- Baldachinspinnen. - Die Tierwelt Deutschlands und der angrenzenden Meeresteile 44, Gustav Fischer Verlag, Jena, 337 pp. Wiehle, H. 1960. Spinnentiere oder Arachnoidea, XI. Micryphantidae-Zwergspinnen. - Die Tierwelt Deutschlands und der angrenzenden Meeresteile 47, Gustav Fischer Verlag, Jena, 620 pp. Wise, D. 1993: Spiders in ecological webs. – Cambridge University Press, Cambridge; p.328. Wunderlich, J. 1972. Zur Kenntnis der Gattung Walckenaeria Blackwall 1833 unter besonderer Berücksichtigung der europäischen Subgenera und Arten (Arachnida: Araneae: Linyphiidae). - Zoologische Beiträge 18: 371-472. Wunderlich, J. 1980. Revision der europäischen Arten der Gattung Micaria Westring 1851, mit Anmerkungen zu den übrigen paläarktischen Arten (Arachnida: Araneida: Gnaphosidae). - Zoologische Beiträge 25: 233-341. Wunderlich, J. 1985. Lepthyphantes pseudoarciger n. sp. und verwandte Arten der Lepthyphantes pallidus-Gruppe. - Senckenbergiana biologica 66: 115-118. Wunderlich, J. 1986. Spinnenfauna gestern und heute - Fossile Spinnen in Bernstein und ihre heute lebenden Verwandten. Erich Bauer Verlag bei Quelle & Meyer, Wiesbaden, 283 pp. Zabka, M. 1997. Salticidae – Pajaki skaczace (Arachnida: Araneae) (Salticidae of Poland). - Fauna Polski (Fauna Poloniae) 19: 1-189. Zingerle, V. 1999a. Epigäische Spinnen und Weberknechte im Naturpark Sextner Dolomiten und am Sellajoch (Südtirol, Italien (Araneae, Opiliones). – Berichte des Naturwissenschaftlich-medizinischen Vereins in Innsbruck 86: 165-200. Zingerle, V. 1999b. Spider and harvestman communities along a glaciation transect in the Italian Dolomites. – Journal of Arachnology 27: 222-228.

52 Figure 1: Map of Switzerland with study site (modified after http://www.lib.utexas.edu/maps/switzerland.html and www.jmem.ch/Wiler/Base/images/SwissMapRelief.jpg)

Figure 2: Weather data of Radons (1870 m), opposite to Alp Flix on the other valley side. The data show average, minimum and maximum temperature (in °C) and the total precipitation (bars, in l/m2) per week from May 2003 to May 2004.

90 30.0 Temperature maximum 80 Temperature average 20.0 70 Temperature minimum Rain and Snow 60 10.0 50 0.0 40 30 -10.0 Temperature (°C) Temperature

Precipitation (l/m2) Precipitation 20 -20.0 10 0 -30.0 1 2 3 4 5 6 7 8 9

week 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 10 11 12 13 14 15 16 17 18 19 20

month May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May

53 Figure 3a-m: Phenologies of selected species for males (black) and females (grey) separately. The graphics are based on pitfall trap data (PTB). Abbreviations: May: 15. 05. 2003 - 14. 06. 2003; Jun: 14. 06. 2003 - 07. 07. 2003; Jul: 07. 07. 2003 - 04. 08. 2003; Aug: 04. 08. 2003 - 03. 09. 2003; S: Sep: 03. 09. 2003 - 28. 09. 2003; Oct: 28. 09. 2003 - 28. 10. 2003 and Win: 28. 10. 2003 - 24. 05. 2004.

54

55 Table 1: Detailed overview of all methods. The dates tagged with an asterisk concern funnel traps (FUN) exclusively. Hand sampling is not mentioned in this list.

BRE BEA RCF FUN + PTF PTB FRS + LIT SWE BRE 14.05.2003 - 14.+ 15.05.2003 - 15.+ 14.05.2003 - 17.05.2003 May 09.06.2003 16.05.2003 14.06.2003 16.05.2003 09.06.2003 09.06.2003 - 09.+10.06.20 20.06.2002 - 14.06.2003 - 09.06.2003 - June 10.06.2003 12.06.2003 13.06.2003 07.07.2003 03 27.06.2002* 07.07.2003 07.07.2003 27.06.2002 -

04.07.2002 07.07.2003 - 04.07.2002 - 07.07.2003 - July 07.07.2003 08.07.2003 01.08.2003 11.07.2002 01.08.2003 11.07.2002 -

18.07.2002 18.07.2002 - 07.07.2003 - 09.07.2003 08.07.2003 25.07.2002 04.08.2003 25.07.2002 -

01.08.2002 01.08.2003 - 01.+ 01.08.2002 - 04.08.2003 - 01.08.2003 - August 02.08.2003 05.08.2003 06.08.2003 31.08.2003 31.08.2003 08.08.2002 03.09.2003 31.08.2003 08.08.2002 -

15.08.2002 15.08.2002 -

26.08.2002 31.08.2003 - 01.+ 26.08.2002 - 03.09.2003 - 31.08.2003 - September 01.09.2003 02.09.2003 03.09.2003 26.09.2003 02.09.2003 11.09.2002 28.09.2003 26.09.2003 11.09.2002 -

01.10.2002 26.+ 28.09.2003 - October 28.09.2003 28.09.2003 27.09.2003 29.09.2003 28.10.2003 Winter 01.10.2002 - 28.10.2003 -

(Oct. - May) 14.05.2003 24.05.2004 14.05.2003 - May 29.05.2003 29.05.2003 - June 09.06.2003

56 Table 2: List of all species found. Abbreviations: BRE: branch eclector; BEA: beating; RCF: restricted canopy fogging; FUN: funnel trap; PTF: pitfall traps near the funnel traps; PTB: pitfall traps under trees with branch eclectors; FRS: frame samples; LIT: litter samples; SWE: sweepnettings; HST: hand samples at the timberline; HSS: hand samples at nearby sites. Additionally we included three of the more common diversity indices.

methods on branches methods on the ground hand sampling family taxon m/f total BRE BEA RCF FUN PTF PTB FRS LIT SWE HST HSS Amaurobiidae Coelotes terrestris (Wider, 1834) 1/0 1/0 1 Araneidae Aculepeira ceropegia (Walckenaer, 1802) 0/2 0/1 0/3 3 Araneidae Araneus diadematus Clerck, 1757 0/2 0/2 2 Araneidae Araneus quadratus Clerck, 1757 1/6 1/0 2/6 8 Araneidae Araniella displicata (Hentz, 1847) 0/2 1/0 1/2 3 Araneidae Parazygiella montana (C.L. Koch, 1834) 0/1 0/1 0/2 2 Dictynidae Dictyna arundinacea (Linnaeus, 1758) 3/3 0/5 2/5 5/13 18 Dictynidae Mastigusa arietina (Thorell, 1871) 0/3 0/3 3 Gnaphosidae Drassodes lapidosus (Walckenaer, 1802) 3/0 6/0 9/0 9 Gnaphosidae Drassodes pubescens (Thorell, 1856) 3/0 7/4 10/4 14 Gnaphosidae Gnaphosa leporina (L. Koch, 1866) 1/0 1/1 7/3 9/4 13 Gnaphosidae Haplodrassus signifier (C. L. Koch, 1839) 16/11 4/0 29/29 49/40 89 Gnaphosidae Micaria aenea Thorell, 1871 12/5 10/1 36/14 58/20 78 Gnaphosidae Micaria pulicaria (Sundevall, 1831) 0/2 1/0 1/2 3 Gnaphosidae Zelotes talpinus (L. Koch, 1872) 1/0 1/0 0/1 2/1 3 Hahniidae Cryphoeca silvicola (C. L. Koch, 1834) 15/7 0/4 0/1 141/59 0/2 0/2 1/1 157/76 233 Linyphiidae Agnyphantes expunctus (O. P. – Cambridge, 1875) 55/12 4/72 5/37 28/60 2/2 2/13 0/2 96/198 294 Linyphiidae Agyneta cauta (O. P. – Cambridge, 1902) 4/0 2/0 32/11 38/11 49 Linyphiidae Anguliphantes monticola (Kulczyn’ski, 1881) 8/1 8/1 9 Linyphiidae Bolephthyphantes index (Thorell, 1856) 2/5 2/5 7 Linyphiidae Bolyphantes alticeps (Sundevall, 1833) 1/1 4/0 7/18 3/1 15/20 35 Linyphiidae Bolyphantes luteolus (Blackwall, 1833) 0/1 5/3 11/4 113/89 0/1 1/5 130/103 233 Linyphiidae Caracladus avicula (L. Koch, 1869) 0/1 11/10 5/8 251/219 10/34 0/7 0/1 277/280 557 Linyphiidae Centromerus arcanus (O. P. – Cambridge, 1873) 3/0 3/0 3 Linyphiidae Centromerus pabulator (O. P. – Cambridge, 1875) 4/0 11/0 75/31 1/4 91/35 126 Linyphiidae Ceratinella brevis (Wider, 1834) 1/0 1/0 1 Linyphiidae Erigone atra Blackwall, 1833 1/0 1/0 1 Linyphiidae Erigonella subelevata (L. Koch, 1869) 9/6 9/6 15 Linyphiidae Evansia merens O. P. – Cambridge, 1900 0/2 0/2 2 Linyphiidae Gonatium rubens (Blackwall, 1833) 0/1 0/8 0/1 0/10 10 Linyphiidae Improphantes nitidus (Thorell, 1875) 136/122 0/1 0/1 136/124 260 Linyphiidae Lepthyphantes nodifer Simon, 1884 0/1 0/1 1

57 Linyphiidae Macrargus carpenteri (O. P. – Cambridge, 1894) 1/0 5/0 98/12 104/12 116 Linyphiidae Mansuphantes pseudoarciger (Wunderlich, 1985) 24/4 24/4 28 Linyphiidae Maro lehtineni Saaristo, 1971 1/0 7/1 8/1 9 Linyphiidae Meioneta innotabilis (O. P.-Cambridge, 1863) 1/0 1/0 1 Linyphiidae Meioneta rurestris (C.L. Koch, 1836) 0/1 0/1 1 Linyphiidae Metopobactrus schenkeli Thaler, 1976 2/0 1/0 3/0 3 Linyphiidae Micrargus alpinus Relys & Weiss, 1997 3/2 3/2 5 Linyphiidae Minicia marginella (Wider, 1834) 0/1 0/1 1 Linyphiidae Moebelia penicillata (Westring, 1851) 0/1 0/1 1 Linyphiidae Mughiphantes cornutus Schenkel, 1927 26/25 26/25 51 Linyphiidae Mughiphantes mughi (Fickert, 1875) 3/1 0/3 1/3 5/4 3/2 7/8 19/21 40 Linyphiidae Obscuriphantes obscurus (Blackwall, 1841) 1/0 1/0 0/1 2/1 3 Linyphiidae Panamomops tauricornis (Simon, 1881) 46/37 4/34 6/22 56/93 149 Linyphiidae Pelecopsis elongata (Wider, 1834) 0/1 208/150 2/5 3/4 213/160 373 Linyphiidae Pelecopsis radicicola (L. Koch, 1872) 1/3 1/2 6/1 6/9 14/15 29 Linyphiidae Pityohyphantes phrygianus (C. L. Koch, 1836) 0/2 0/10 0/4 2/1 1/13 0/1 3/31 34 Linyphiidae Porrhomma campbelli F. O. P. – Cambridge, 1894 0/4 0/4 4 Linyphiidae Porrhomma pallidum Jackson, 1913 22/15 22/15 37 Linyphiidae Scotargus pilosus Simon, 1913 1/2 5/2 6/4 10 Linyphiidae Scotinotylus alpigena (L. Koch, 1869) 536/92 8/19 1/1 0/1 545/113 658 Linyphiidae Scotinotylus clavatus (Schenkel, 1927) 69/20 1/20 0/3 70/43 113 Linyphiidae Stemonyphantes conspersus (L. Koch,1879) 14/2 2/3 0/2 1/0 8/5 25/12 37 Linyphiidae Tapinocyba affinis Lessert, 1907 1/0 0/1 177/46 30/116 2/6 210/169 379 Linyphiidae Tenuiphantes cristatus (Menge, 1866) 2/5 2/5 7 Linyphiidae Tenuiphantes jacksonoides (van Helsdingen, 1977) 1/0 1/0 1 Linyphiidae Tenuiphantes mengei Kulczyn’ski, 1887 1/6 2/0 18/15 0/1 21/22 43 Linyphiidae Tenuiphantes tenebricola (Wider, 1834) 4/2 1/0 5/2 7 Linyphiidae Thyreostenius biovatus (O. P. – Cambridge, 1875) 0/1 0/9 0/10 10 Linyphiidae Walckenaeria antica (Wider, 1834) 1/0 15/2 16/2 18 Linyphiidae Walckenaeria languida (Simon, 1914) 0/1 0/1 1 Linyphiidae Walckenaeria mitrata (Menge, 1868) 0/1 0/1 1 Linyphiidae Walckenaeria monoceros (Wider, 1834) 1/0 1/0 1 Liocranidae Agroeca proxima (O. P. – Cambridge, 1871) 2/0 4/0 6/0 6 Lycosidae Alopecosa accentuata (Latreille, 1817) 2/0 1/0 3/0 3 Lycosidae Alopecosa pulverulenta (Clerck, 1757) 17/4 9/2 40/16 2/0 68/22 90 Lycosidae Alopecosa taeniata (C. L. Koch, 1835) 119/17 24/6 303/43 0/1 0/1 3/2 449/70 519 Lycosidae Arctosa renidescens Buchar & Thaler, 1995 11/1 14/4 28/17 53/22 75 Lycosidae Pardosa blanda (C. L. Koch, 1833) 49/9 7/1 41/27 2/9 1/1 100/47 147 Lycosidae Pardosa ferruginea (L. Koch, 1870) 0/1 0/1 1 Lycosidae Pardosa mixta (Kulczyn’ski, 1887) 3/19 0/1 3/20 23

58 Lycosidae Pardosa riparia (C. L. Koch, 1833) 257/95 104/35 1835/510 36/70 2/1 2234/711 2945 Lycosidae Pirata piraticus (Clerck, 1757) 0/1 0/1 1 Lycosidae Trochosa terricola Thorell, 1856 1/0 1/0 1 Philodromidae Philodromus cespitum (Walckenaer, 1802) 4/0 0/2 4/2 6 Philodromidae Philodromus collinus C. L. Koch, 1835 1/0 1/0 1 Philodromidae Philodromus vagulus Simon, 1875 2/2 0/1 0/1 2/4 6 Philodromidae Thanatus formicinus (Clerck, 1757) 0/1 2/0 18/1 0/1 20/3 23 Salticidae Evarcha arcuata (Clerck, 1757) 1/0 1/0 1 Salticidae Salticus scenicus (Clerck, 1757) 2/2 2/2 4 Salticidae Talavera monticola (Kulczyn’ski, 1884) 0/1 0/1 1 Sparassidae Micrommata virescens (Clerck, 1757) 2/0 0/1 1/1 1/0 4/2 6 Theridiidae Achaearanea ohlerti (Thorell, 1870) 0/2 0/2 0/4 4 Theridiidae Robertus truncorum (L. Koch, 1872) 1/0 1/0 20/12 0/10 1/0 23/22 45 Theridiidae Steatoda phalerata (Panzer, 1801) 1/0 1/0 1 Theridiidae Theridion impressum L.Koch, 1881 0/1 3/1 3/17 0/2 6/21 27 Thomisidae atomaria (Panzer, 1801) 1/0 1/0 1 Thomisidae Xysticus audax (Schrank, 1803) 3/1 1/0 2/1 1/0 12/3 0/1 0/1 19/7 26 Thomisidae Xysticus bifasciatus C.L.Koch, 1837 1/0 1/0 1 Thomisidae Xysticus gallicus Simon, 1875 1/0 0/1 1/1 2 Thomisidae Xysticus luctuosus (Blackwall, 1836) 5/0 8/0 13/0 13 Thomisidae Xysticus macedonicus Silhavy, 1944 0/1 0/1 1 totals number of individuals m/f 100/31 10/100 9/57 537/174 219/65 4492/1774 62/258 13/47 11/17 64/171 10/15 5527/2709 total 131 110 66 711 284 6266 320 60 28 235 25 8236 number of species 15 10 10 37 21 69 15 10 12 19 17 93 number of exclusive species 2 0 1 5 0 24 2 0 0 1 3 38

59

60