Report on Microseismic Monitoring and Early Warning System

Total Page:16

File Type:pdf, Size:1020Kb

Report on Microseismic Monitoring and Early Warning System Ref. Ares(2018)4856304 - 21/09/2018 Deliverable D1.4 Report on microseismic monitoring and early warning system Project acronym: GoSAFE RAIL Starting date: 01/10/2016 Duration (in months): 36 Call (part) identifier: H2020-S2R-OC-CCA-04-2015 Grant agreement no: 730817 Due date of deliverable: April 2018 Actual submission date: 14-05-2018 Responsible/Author: Yme Asgeir Kvistedal - YK Dissemination level: PU Status: Issued Reviewed: NGI and ROD-IS GA 730817 Page 1 | 25 Document history Revision Date Description 0.1 13.04 First draft 0.2 19.04 Internal revision by NGI 0.3 11.05 External revision by ROD-IS 1.0 14.05 First issue Report contributors Name Beneficiary Short Name Details of contribution Yme Asgeir Kvistedal YK Author Frode Sandersen FS Author Asgeir Olaf Kydland Lysdahl AOL Internal review Lorcan Connolly External review GA 730817 Page 2 | 25 Table of Contents 1. Executive Summary ................................................................................................................ 4 2. Abbreviations and acronyms .................................................................................................. 5 3. Background ............................................................................................................................. 6 4. Objective/Aim ......................................................................................................................... 6 5. Introduction ............................................................................................................................ 7 6. Rauma Line ............................................................................................................................. 9 7. Detection and warning system - hardware .......................................................................... 12 8. Processing and detection - software .................................................................................... 16 9. Data examples from Rensken ............................................................................................... 19 10. Rockfall simulation tests ....................................................................................................... 20 11. Discussions ............................................................................................................................ 23 12. References ............................................................................................................................ 24 GA 730817 Page 3 | 25 1. Executive Summary A prototype rockfall and landslide warning system has been installed at a high frequent rockfall site on the Rauma line, north-western Norway. The system is based on a wireless microseismic sensor network, and uses a combination of geophones and magnetometers to identify vibrations in the railway line, generated upon impact of falling rocks or landslide debris. The aim of the system is to identify when events with potential to generate obstructions or damage to the track has occurred, and to issue an automatic warning to the driver of the next passing train of the potential hazard. A set of algorithms to identify the different types of events generating vibrations in a railway line has been implemented. The ability to identify rockfalls were tested on an abandoned track section, using a sledgehammer to simulate impact. During these tests the system automatically identified all impacts sufficiently strong to generate a shockwaves in track. Detection of landslides is based on an algorithm previously used for detection of avalanches, having a proven track record. Identification of trains and rolling-stock is achieved using magnetometers, and has so far had an absolute success rate on site. At the time of writing the prototype has been in operation for a little more than four months, and during this period there has not been any naturally occurring rockfalls or landslides. An extended testing period is needed before making a final conclusion on the reliability and applicability of the technology as a warning system. The technology is reliable, has low maintenance requirement and is easy to install onsite without interfering with normal traffic. GA 730817 Page 4 | 25 2. Abbreviations and acronyms Abbreviation / Acronyms Description Geohazard Naturally occurring dangerous phenomenon that may cause loss of life, injury or other health impacts, property damage, loss of livelihoods and services, social and economic disruption, or environmental damage. Risk The combination of the consequences of an event or hazard and the associated likelihood of its occurrence. NGI Norwegian Geotechnical Institute BaneNor Norwegian National Rail Administration Rensken The GoSafeRail landslide and rockfall warning system test site. GSM-R Global System for Mobile Communications – Railway CTC Centralized Traffic Control ERTMS European Rail Traffic Management System GA 730817 Page 5 | 25 3. Background The present document constitutes the Deliverable D1.4 “Rockfall and landslide warning system on the Rauma Line” in the framework of the WA 3.1, task 1.2 of CCA 04-2015. 4. Objective/Aim This document has been prepared to provide documentation on a prototype system for object detection on railways, developed as part of the GoSafeRail project. GA 730817 Page 6 | 25 5. Introduction Geohazards such as landslides, rockfalls and avalanches pose significant risk to railways in many countries. This is especially true with older infrastructure, built at a time when available mitigation measures were limited. At some locations geographical challenges and cost constraints left no choice but to build railways through areas with known geohazards. As many of these lines still follow the same routes as when first built, the associated hazards persist today. In the future climate change is also expected to alter the geohazard risk at given locations, as more rain is likely to trigger more landslides, while less snow will result in fewer avalanches (Aunaas, 2016). Physical mitigation measures such as barrier walls and rockfall nets are successfully used to improve railway safety. Geohazard risk mapping has however shown that when the situation is significantly complex these measures become costly and difficult to dimension (Sandersen, 2016). Moving the line and building tunnels are in many cases the only permanent physical alternative. Figure 1: On the 9th of June 1926 a major landslide hit the Rauma line by Verma station. The landslide crossed the line twice, on both sides of the horseshoe turn in "Vendetunellen" Monitoring and warning systems are cost-efficient alternatives when permanent mitigation measures become difficult. These systems often need to cover sections of several kilometres and GA 730817 Page 7 | 25 should be able to detect all foreseeable geohazard events. In addition they need to work during all weather and seasonal conditions, and should ideally be easy to install and maintain. Slide detector fences have been used as a warning system for avalanches and rockfalls for many years. These are relatively simple systems where a close circuit is broken when a wire in the fence is cut upon impact. The problem with these installations is that they require personnel to enter a potentially hazardous area to repair a broken fence, before regular operation can continue. Many of these systems are thus left inactive. Pilot vehicles are sometimes used to check a line ahead of a passing train. This will reduce the overall capacity on the line and could unless fully automated become costly to deploy on a large scale. In the future drones are expected to become an alternative to pilot vehicles. This technology is however also subject to limitations, as most geohazard events are associated with severe weather conditions and limited visibility, making flying and visual inspection challenging. In more recent years different technologies have been used to detect track obstructions. Cameras and radars can automatically monitor track sections for objects that could pose risk to trains. Although efficient, these technologies are limited by line of sight and mostly applicable on hotspots such as stations and crossings. Geophones and fibreoptic cables have been used to detect possible obstructions through vibrations in the tracks. NGI installed the first prototype rock and ice fall detection system based on an array of geophones in 2004 (R. Cleave, 2009). This system used a standard seismic data acquisition unit and custom developed software for classification of events. The installation contained 24 geophones, mounted with 25 meter spacing alongside an exposed section of the Nordland line in northern Norway. The system was operational over a five year period, before eventually discontinued due to maintenance issues. Canadian railways also operate a few similar systems produced by Weir-Jones (Nedilko, 2016). Optical methods can be used to detect and locate vibrations and deformations along a fibre-optic cable. This method has been applied along roads and pipelines, and proposed as a solution for object detection on railways (Maloney, 2004). Both fibre-optic detection and wired geophone arrays require cables alongside the track, and are thus cumbersome to install and maintain. Analogue geophone cables are also subject to electrical interference and signal loss, limiting the possible length of a single system (R. Cleave, 2009). This report describes a wireless geophone-based rockfall and landslide detection system, developed as part of GoSafeRail. The prototype installation
Recommended publications
  • 432 Rauma 01 Stavem 08 Verma VF (St.Meld. Nr. 60).Pdf
    Samla plan for vassdrag (Samla Plan) skal gi eit framlegg til ei gruppevis prioritert rekkjefølge av vasskraftprosjekt for seinare konsesjonshandsaming. Prioritering av prosjekta skal skje etter eivurdering av kraftverkøkonomisk lønnsemd og grad av konflikt med andre brnkarinteresser som ei eventuell utbygging vil fera med seg. Samla Plan skal vidare gieit grunnlag for åtastilling tilkva vassdrag som ikkje bør byggast ut, men disponerast til andre føremål, Samla Plan vil omfatta vasskraftprosjekt tilsvarende omlag 40 TWh midlare årsproduksjon. Samla Plan blir rullert med relativt jamne mellomrom. Rulleringane blir presenterte for Stortinget ieigne stortings­ meldingar. Miljøvemdepartementet har ansvaret for arbeidet i samarbeid med Olje- og energidepartementet, Noregs vassdrags- og energiverk ogandre instansar. Arbeidet på ulike fagområde skjer dels sentralt og dels på fylkesnivå, der fagfolk frå fylkeskommunen, miljøvernavdelinga hos fylkesmannen og andre etatar ertrekte inn. l kvart fylke erdet oppretta eirådgivande kontaktgruppe for arbeidet med Samla Plan. Vassdragsforvalteren hos fylkesmannen erkoordinator for arbeidet med prosjekta ikvart fylke. Utgreiingane om vasskraftprosjekt og konsekevensar, blir for kvart prosjekt stilt saman i vassdragsrapportar. Forutan utgreiingane om vasskraftprosjekta, blir følgjande brukarinteresser!tema handsama: naturvern, friluftsliv, vilt, fisk, vassforsyning, vem mot forureining, kulturminnevern, jord- og skogbruk, reindrift, sikring mot flaum og erosjon, transpon, istilhøve og klima. Dessutan blir
    [Show full text]
  • Possible Solutions for Zero Emission Railways. Case Study
    Possible Solutions For Zero Emission Railways MOZEES Workshop - 22nd – 23rd October: CIENS, Oslo – Forum Dag Aarsland, Senior Advisor Possible Solutions for Zero Emission Railways MANDAT Forprosjekt NULLFIB- NULLutslippsløsninger For Ikke-elektrifiserte Baner Non-electrified lines • 1395 km (approx. 1/3rd) of total 4150 km is non- electrified. • Estimated cost for electrification for Nordlandsbanen would be = 1- 1,3 Billion €. Other lines (Meråker line and Trondheim- Stjørdal) will be electrified. • Diesel consumption for all lines per year is approx. 16 mill/litre • Fuel consumption for a Cargo-train for example, Trondheim-Bodø is approx. 8000 litres (roundtrip). Freight train passing mountain Saltfjellet on the Nordland line. Considering four alternatives Transition from fossil-based to zero-carbon for passenger-trains, freight-trains and on-track- machines. Study of: • Hydrogen • Biogas • Biodiesel • Battery Deadline for the feasibility study is end of 2019. Bodø, terminus of the Nordland line Hydrogen operation – assessment by the end of 2019 • The Norwegian Government Transport Committee has requested the Railway Directorate to investigate the possibility of a test project with hydrogen operation of railway vehicles. • The directorate shall before end of 2019 assess the cost and feasibility of a pilot project. Alstom hydrogen powered train Feasibility study of battery operation • Feasibility study of battery-operation for Nordlandsbanen (Trondheim – Bodø). • Length 728km, 162 tunnels, 256 bridges, challenging operation conditions. • Including the line from Rana mines to Mo I Rana. Snow clearing on tracks on the mountain Saltfjellet on the Nordland line Contributors Electrification Is it possible in a cost-effective way only to electrify sections of the line? Horisontal profile – Nordland line What do the train manufacturers think? Consepts for passenger train with locomotive and coaches.
    [Show full text]
  • Jernbanemagasinet 4 2020.Pdf
    Jernbane- magasinetNR. 4/2020 På sporet av en ny tid? Bane NOR gjør flere grep for å møte framtiden med bedre punktlighet og mer jernbane for pengene. Ansvar flyttes i jakten på smartere løsninger og skarpere kundefokus. PÅ PRØVETUR MØTE MED BANEBRYTENDE Hybrid-tog gir Den nye sjefen Stor kapasitetsøkning ny hverdag for Entur på gang Det aktuelle bildet Signerte for framtiden Jernbanedirektør Kirsti Slotsvik og arbeidet, og den offisielle signeringen vegdirektør Ingrid Dahl Hovland er både en anerkjennelse av at de signerte nylig Konnekts styrings- står overfor felles utfordringer, og at dokument. Dermed har det nasjonale løsninger krever felles innsats. kompetansesenteret for samferdsel Senteret vil knytte myndighetene, offisielt fått mandat til å representere arbeidslivet og akademia sammen de to direktoratene i arbeidet med å for å sikre kontinuerlig påfyll av sørge for riktig og tilstrekkelig kom- forskningsbasert og arbeidslivs- petanse i samferdselssektoren. relevant kompetanse. I tillegg vil Konnekts leder Adbul Basit selskapet jobbe for å gjøre samferdsel Mohammad mener det var en viktig enda mer attraktivt for framtidige milepæl å få på plass disse signa- arbeidstakere. turene. Konnekt, som ble lansert 28. februar i år, er godt i gang med FOTO ØYSTEIN GRUE 2 JERNBANEMAGASINET JERNBANEMAGASINET 3 Innspill Puls FOTO: ATB Har du fått med deg at ... … jernbanebudsjettet er Innhold mer enn doblet siden 2013. Budsjettet for neste år er på Nr. 4/2020 32,1 milliarder kroner. For 2013 lå det på 14,4 milliarder Tilpasser seg kroner. 08 Bane NOR tar grep for å … utviklingen i godstra- bedre punktligheten og bygge fikken på bane var positiv rimeligere.
    [Show full text]
  • REINHEIMEN 2° Reinheimen Nasjonalpark
    RE INH E IM E N REINHEIMEN 2° Reinheimen nasjonalpark Vårmarihand ved Nigardsbreen Trollveggen i formiddagssol. Elva Rauma 3° Reinheimen nasjonalpark Villmark med veidemannsspor Reinheimen nasjonalpark ligg i det nest største inngrepsfrie området i Sør-Noreg, og villmark pregar dette særs varierte fjellområdet. Dei høgste fjella i nasjonalparken reiser seg over 2000 m.o.h, medan det lågaste punktet ligg under Trollveggen ca. 130 m.o.h. Her finn vi mykje av det opphavlege fjelløkosystemet med villrein, jerv, kongeørn, jakt- falk og ryper. Reinheimen er rik på kulturminne etter den gamle villreinfangsten. Her er fangstgroper, massefangstanlegg, bogestelle og restar av gamle buplassar til fangstfolka. 4° Reinheimen nasjonalpark Mot toppen av Digervarden NATUROPPLEVINGAR Reinheimen kan by på allsidige og rike turopplevingar. Det meste av området er eit villmarksområde som i liten grad er tilrettelagt for friluftsliv, men i Tafjordfjella og vestlege delar av Skjåk finst merka stiar og turisthytter i og inntil nasjonalparken. Det finst og ein del hytter til utleige. Av omsyn til den sårbare villreinstammen har det ikkje vore ønskje om å marknadsføre eller kanali- sere større ferdsel inn i området. Skal du ferdast i desse områda, må du basere deg på å bere telt og anna utstyr i ryggsekken. Kjølenfjella 5° Reinheimen nasjonalpark Rypejakt Tradisjonelt har bygdefolket brukt Garnet vert sett ut området til beite- og seterdrift, fiske, reins- og småviltjakt. Det vert sett ut aure i mange av fjellvatna. Som besøkande i området kan du få kjøpt fiskekort. Garnfiske er oftast reservert dei innanbygdsbuande. Spør om gode tips! Du treng kort for å jakte både småvilt og rein.
    [Show full text]
  • Reindeer Hunting As World Heritage a Ten Thousan Year-Long Tradition
    Reindeer hunting as World Heritage A ten thousan year-long tradition Scientific statement 2006 Reindeer hunting as World Heritage Reindeer hunting as World Heritage A ten thousand year-long tradition A ten thousand year-long tradition Contents Preface 4 8 Description of the character of the 1 Wild reindeer hunting as World area (status at the time of nomination) 48 Heritage; a ten-thousand-year-long 8.1 General description of the area 48 tradition Summary 5 8.2 Description of how the four sub-areas 2 Introduction 8 complement one another 52 2.1 Early history of the project 8 8.3 Description of the individual sub-areas 53 8.3.1 Eikesdalsfjella 53 2.2 Information for national and municipal authorities 8 8.3.2 Snøhetta 54 8.3.3 Rondane 56 2.3 Consolidation of the project 8 8.3.4 Reinheimen 60 2.4 Openness and information 9 8.3.5 Buffer zone between the Eikesdalsfjella and This report has been prepared by a team of specialists appointed for the project: ”Wild reindeer 2.5 Broad foundation 9 Snøhetta sub-areas 63 hunting as World Heritage”: 2.6 Revitalisation and regional involvement 9 8.3.6 Buffer zone between the Snøhetta and Rondane - Professor Reidar Andersen, Museum of Archaeology and Natural History, Norwegian sub-areas 63 University of Science and Technology 3 Wild reindeer – history, genetics and - Per Jordhøy, Adviser at the Norwegian Institute for Nature Research habitat use 11 9 History and development 64 - Jostein Bergstøl, Research archaeologist at the Museum of Cultural History, 10 Komparativ analyse 67 University of Oslo 3.1
    [Show full text]
  • Measuring the Inaccurate: Causes and Consequences of Train Delays
    Summary: Measuring the inaccurate: Causes and consequences of train delays TØI Report 1459/2015 Author(s): Askill Harkjerr Halse, Vegard Østli and Marit Killi Oslo 2015, 71 pages Norwegian language In this report, we argue that the rich available data on train performance and railway infrastructure should be used to get precise measurements of economic relationships in railway management. As one such exercise, we first show how temporary speed reductions on railway links caused by low infrastructure quality affects running time and delays for Norwegian freight trains. Even though each speed reduction only adds about 44-50 seconds to running time, speed reductions still contribute to delay at the destination. Secondly, we show that delays has a negative effect on demand for passenger and freight trains services. The corresponding demand elasticity is lower than the one implied by willingness-to-pay studies, consistent with evidence from Great Britain. In is widely acknowledged in the transportation economics literature that more reliable transport time constitutes an economic benefit. In the presence of unreliability, individuals and firms adjust by taking costly measures like departing early or keeping a safety stock of goods. The ‘cost’ of train delays is therefore the foregone benefits that could have been achieved if all trains were running on time. Much of the existing literature on railway punctuality is based on optimization and/or simulation, calling for more empirical studies. In the innovation project PRESIS, funded by the Research Council of Norway and the Norwegian National Rail Administration, we have developed methods to survey reliability in the Norwegian rail sector.
    [Show full text]
  • Accesrailqr1.Pdf
    Acknowledgement: This document was developed by Galileo International, Training and Development. Customer feedback is important to us. Please take a few minutes to send any questions or comments to us at [email protected] ©2005 Galileo International. All Rights Reserved. Apollo, Galileo, the Globe device, Galileo 360o Learning, Best Buy Quote, Claim PNR, Custom Check, Focalpoint, Front Page News, Galileo 360 o Fares, GlobalWare, Inside Availability, Inside Link, Preview Plus, TravelScreen, Private Fares, PRO-files, Queue Manager, Scriptwriter Plus, Travel Directory, and Viewpoint are either registered trademarks or service marks of Galileo International in the United States and/or other countries. 8/05 GB AccesRail Quick Reference, August 2005 1 Contents AccesRail Products ....................................................................................................................3 AccesRail Facts ..........................................................................................................................4 AccesRail Rail Passes/Rules .....................................................................................................4 BritRail Pass ............................................................................................................................. 4 Eurail Pass (Available U.S./Canada only) ................................................................................. 5 Norway in a Nutshell Pass (Available U.S./Canada only) ........................................................
    [Show full text]
  • Utredning Av Kjemisk Behandling Av Vassdrag I Smitteregion
    Notat Behandlingsplan for bekjempelse av Gyrodactylus salaris i vassdrag i smitteregion Rauma. Utarbeidet for Direktoratet for naturforvaltning, DN Første versjon Februar 2013 Forord Behandlingsplanen er utarbeidet av Veterinærinstituttet (VI) på bestilling fra Direktoratet for naturforvaltning (DN). Behandlingsplan er et levende dokument som utvikles helt fram mot aksjonsstart. Denne versjonen er ferdigstilt med tanke på å følge søknad om tillatelse til rotenonbehandling. Ketil Skår Roar Sandodden leder seksjon for miljø- og smittetiltak prosjektleder Behandlingsplan for bekjempelse av Gyrodactylus salaris i vassdrag i smitteregion Romsdalsfjorden. 2 Innhold Forord ............................................................................ 2 Sammendrag ..................................................................... 4 1. Innledning ................................................................. 5 2. Begrunnelse for tiltak. .................................................. 6 3. Beskrivelse og avgrensning av behandlingsområdet. ............. 6 3.1 Aktuelle vassdrag og hydrologi .................................................. 7 3.2 Vannføring og vannhastighet .................................................... 13 3.3 Smittestatus og geografisk avgrensning av behandlingsområde ........... 15 4. Problemstillinger knyttet til kjemisk behandling ................. 17 4.1 Perifere vassdrag og vassdrag uten laks- behandling og/eller overvåkning? 17 4.2 Grunnvann, tidevannssoner og ledningsnett .................................. 18
    [Show full text]
  • Evidence of Rock Slope Breathing Using Ground-Based Insar
    GEOMOR-05677; No of Pages 18 Geomorphology xxx (2016) xxx–xxx Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph Evidence of rock slope breathing using ground-based InSAR Line Rouyet a,c,⁎, Lene Kristensen b, Marc-Henri Derron a, Clément Michoud a,d, Lars Harald Blikra b, Michel Jaboyedoff a, Tom Rune Lauknes c a Institute of Earth Sciences, Risk Group, Géopolis, Quartier Mouline, University of Lausanne, 1015 Lausanne, Switzerland b Norwegian Water Resources and Energy Directorate (NVE), Ødegårdsvegen 176, 6200 Stranda, Norway c Norut, P.O. Box 6434, Forskningsparken, 9294 Tromsø, Norway d Terranum Ltd., 35 bis rue de l'industrie, 1020 Bussigny, Switzerland article info abstract Article history: Ground-Based Interferometric Synthetic Aperture Radar (GB-InSAR) campaigns were performed in summer Received 16 May 2015 2011 and 2012 in the Romsdalen valley (Møre & Romsdal county, western Norway) in order to assess displace- Received in revised form 30 June 2016 ments on Mannen/Børa rock slope. Located 1 km northwest, a second GB-InSAR system continuously monitors Accepted 4 July 2016 the large Mannen rockslide. The availability of two GB-InSAR positions creates a wide coverage of the Available online xxxx rock slope, including a slight dataset overlap valuable for validation. A phenomenon of rock slope breathing is de- tected in a remote and hard-to-access area in mid-slope. Millimetric upward displacements are recorded in Keywords: Rock slope August 2011. Analysis of 2012 GB-InSAR campaign, combined with the large dataset from the continuous station, Stability shows that the slope is affected by inflation/deflation phenomenon between 5 and 10 mm along the line-of-sight.
    [Show full text]
  • Joint Barents Transport Plan Proposals for Development of Transport Corridors for Further Studies
    Joint Barents Transport Plan Proposals for development of transport corridors for further studies September 2013 Front page photos: Kjetil Iversen, Rune N. Larsen and Sindre Skrede/NRK Table of Contents Table Summary 7 1 Introduction 12 1.1 Background 12 1.2 Objectives and members of the Expert Group 13 1.3 Mandate and tasks 14 1.4 Scope 14 1.5 Methodology 2 Transport objectives 15 2.1 National objectives 15 2.2 Expert Group’s objective 16 3 Key studies, work and projects of strategic importance 17 3.1 Multilateral agreements and forums for cooperation 17 3.2 Multilateral projects 18 3.4 National plans and studies 21 4 Barents Region – demography, climate and main industries 23 4.1 Area and population 23 4.2 Climate and environment 24 4.3 Overview of resources and key industries 25 4.4 Ores and minerals 25 4.5 Metal industry 27 4.6 Seafood industry 28 4.7 Forest industry 30 4.8 Petroleum industry 32 4.9 Tourism industry 35 4.10 Overall transport flows 37 4.11 Transport hubs 38 5 Main border-crossing corridors in the Barents Region 40 5.1 Corridor: “The Bothnian Corridor”: Oulu – Haparanda/Tornio - Umeå 44 5.2 Corridor: Luleå – Narvik 49 5.3 Corridor: Vorkuta – Syktyvkar – Kotlas – Arkhangelsk - Vartius – Oulu 54 5.4 Corridor: “The Northern Maritime Corridor”: Arkhangelsk – Murmansk – The European Cont. 57 5.5 Corridor: “The Motorway of the Baltic Sea”: Luleå/Kemi/Oulu – The European Continent 65 5.6 Corridor: Petrozavodsk – Murmansk – Kirkenes 68 5.7 Corridor: Kemi – Salla – Kandalaksha 72 5.8 Corridor: Kemi – Rovaniemi – Kirkenes 76
    [Show full text]
  • Representing the SPANISH RAILWAY INDUSTRY
    Mafex corporate magazine Spanish Railway Association Issue 20. September 2019 MAFEX Anniversary years representing the SPANISH RAILWAY INDUSTRY SPECIAL INNOVATION DESTINATION Special feature on the Mafex 7th Mafex will spearhead the European Nordic countries invest in railway International Railway Convention. Project entitled H2020 RailActivation. innovation. IN DEPT MAFEX ◗ Table of Contents MAFEX 15TH ANNIVERSARY / EDITORIAL Mafex reaches 15 years of intense 05 activity as a benchmark association for an innovative, cutting-edge industry 06 / MAFEX INFORMS with an increasingly marked presence ANNUAL PARTNERS’ MEETING: throughout the world. MAFEX EXPANDS THE NUMBER OF ASSOCIATES AND BOLSTERS ITS BALANCE APPRAISAL OF THE 7TH ACTIVITIES FOR 2019 INTERNATIONAL RAILWAY CONVENTION The Association informed the Annual Once again, the industry welcomed this Partners’ Meeting of the progress made biennial event in a very positive manner in the previous year, the incorporation which brought together delegates from 30 of new companies and the evolution of countries and more than 120 senior official activities for the 2019-2020 timeframe. from Spanish companies and bodies. MEMBERS NEWS MAFEX UNVEILS THE 26 / RAILACTIVACTION PROJECT The RailActivation project was unveiled at the Kick-Off Meeting of the 38 / DESTINATION European Commission. SCANDINAVIAN COUNTRIES Denmark, Norway and Sweden have MAFEX PARTICIPTES IN THE investment plans underway to modernise ENTREPRENEURIAL ENCOUNTER the railway network and digitise services. With the Minister of Infrastructure The three countries advance towards an Development of the United Arab innovative transport model. Emirates, Abdullah Belhaif Alnuami held in the office of CEOE. 61 / INTERVIEW Jan Schneider-Tilli, AGREEMENT BETWEEN BCIE AND Programme Director of Banedanmark. MAFEX To promote and support internationalisation in the Spanish railway sector.
    [Show full text]
  • Upcoming Projects Infrastructure Construction Division About Bane NOR Bane NOR Is a State-Owned Company Respon- Sible for the National Railway Infrastructure
    1 Upcoming projects Infrastructure Construction Division About Bane NOR Bane NOR is a state-owned company respon- sible for the national railway infrastructure. Our mission is to ensure accessible railway infra- structure and efficient and user-friendly ser- vices, including the development of hubs and goods terminals. The company’s main responsible are: • Planning, development, administration, operation and maintenance of the national railway network • Traffic management • Administration and development of railway property Bane NOR has approximately 4,500 employees and the head office is based in Oslo, Norway. All plans and figures in this folder are preliminary and may be subject for change. 3 Never has more money been invested in Norwegian railway infrastructure. The InterCity rollout as described in this folder consists of several projects. These investments create great value for all travelers. In the coming years, departures will be more frequent, with reduced travel time within the InterCity operating area. We are living in an exciting and changing infrastructure environment, with a high activity level. Over the next three years Bane NOR plans to introduce contracts relating to a large number of mega projects to the market. Investment will continue until the InterCity rollout is completed as planned in 2034. Additionally, Bane NOR plans together with The Norwegian Public Roads Administration, to build a safer and faster rail and road system between Arna and Stanghelle on the Bergen Line (western part of Norway). We rely on close
    [Show full text]