Ceramide Synthase 1–Regulated Sensitivity to Cisplatin Is Associated

Total Page:16

File Type:pdf, Size:1020Kb

Ceramide Synthase 1–Regulated Sensitivity to Cisplatin Is Associated (Dihydro)ceramide Synthase 1–Regulated Sensitivity to Cisplatin Is Associated with the Activation of p38Mitogen-Activated Protein Kinase and Is Abrogated by Sphingosine Kinase 1 Junxia Min,1 Adi Mesika,3 Mayandi Sivaguru,1,2 Paul P. Van Veldhoven,4 Hannah Alexander,1 Anthony H. Futerman,3 and Stephen Alexander1 1Division of Biological Sciences and 2Molecular Cytology Core, University of Missouri, Columbia, Missouri; 3Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel; and 4Katholieke Universiteit Leuven, Departement Moleculaire Celbiologie, Afdeling Farmakologie, Leuven, Belgium Abstract LASS4/CerS4 or LASS5/CerS5, from the endoplasmic Resistance to chemotherapeutic drugs often limits their reticulum (ER) to the Golgi apparatus. Supporting the clinical efficacy. Previous studies have implicated the hypothesis that this translocation is mechanistically bioactive sphingolipid sphingosine-1-phosphate (S-1-P) involved in the response to cisplatin, we showed that in regulating sensitivity to cisplatin [cis-diamminedi- expression of SphK1, but not SphK2, abrogates both the chloroplatinum(II)] and showed that modulating the increased cisplatin sensitivity in cells stably expressing S-1-P lyase can alter cisplatin sensitivity. Here, we show LASS1/CerS and the translocation of the LASS1/CerS1. that the members of the sphingosine kinase (SphK1 and The data suggest that the enzymes of the sphingolipid SphK2) and dihydroceramide synthase (LASS1/CerS1, metabolic pathway can be manipulated to improve LASS4/CerS4, and LASS5/CerS5) enzyme families each sensitivity to the widely used drug cisplatin. have a unique role in regulating sensitivity to cisplatin (Mol Cancer Res 2007;5(8):801–12) and other drugs. Thus, expression of SphK1 decreases sensitivity to cisplatin, carboplatin, doxorubicin, and Introduction vincristine, whereas expression of SphK2 increases Chemotherapy is frequently used in the treatment of cancer, sensitivity. Expression of LASS1/CerS1 increases the but drug resistance greatly limits the efficacy of treatment. sensitivity to all the drugs tested, whereas LASS5/CerS5 Some cancers are initially resistant to chemotherapy, whereas only increases sensitivity to doxorubicin and vincristine. others become resistant during the course of treatment. This is LASS4/CerS4 expression has no effect on the sensitivity true for the drug cisplatin [cis-diamminedichloroplatinum(II)], to any drug tested. Reflecting this, we show that the which is widely used to treat a variety of solid tumors including activation of the p38mitogen-activated protein (MAP) non-Hodgkin’s lymphoma, small cell and non–small cell lung kinase is increased only by LASS1/CerS1, and not by cancers, testicular, ovarian, head and neck, esophageal, and LASS4/CerS4 or LASS5/CerS5. Cisplatin was shown to bladder cancers (1). Many different mechanisms of resistance to cause a specific translocation of LASS1/CerS1, but not cisplatin have been investigated; yet it is clear that the resistance to cisplatin is complex and multifaceted, and we are far from having a full understanding of all the relevant Received 2/27/07; revised 5/31/07; accepted 6/12/07. Grant support: Work in the Alexander lab is supported by NIH grant GM53929. signaling pathways involved (2). A better understanding of the Work in the Futerman lab is supported by the Israel Science Foundation, grant mechanisms controlling the sensitivity to cisplatin could be 1047/03, and by the Minerva Foundation, Munich, Germany. A.H. Futerman is used to make the drug more effective. the Joseph Meyerhoff Professor of Biochemistry at the Weizmann Institute of Science. S. Alexander and A.H. Futerman are the corecipients of United States – In an unbiased genetic examination of genes that are Israel National Science Foundation grant. P.P. Van Veldhoven was supported by involved with the cellular response and sensitivity to cisplatin grants from the Flemish Fonds voor Werenschappelijk Onderzoek (G.405.02) and from the Belgian Ministry of Federaal Wetenschapsbeleid Interuniversitarie in the model eukaryote Dictyostelium discoideum, we showed Attractiepolen (IAP-P5/05). that disruption of the gene encoding sphingosine-1-phosphate The costs of publication of this article were defrayed in part by the payment of (S-1-P) lyase resulted in decreased sensitivity to the drug (3). page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. This defined the S-1-P lyase as a potential molecular target for Note: Supplementary data for this article is available at Molecular Cancer controlling sensitivity to cisplatin and suggested a general role Research Online (http://mcr.aacrjournals.org/). for sphingolipids in the cellular response to the drug. S-1-P is Current address for J. Min: Brigham and Woman’s Hospital, Department of Medicine/Division of Genetics, Harvard Medical School New Research Building, synthesized from sphingosine and ATP by two distinct 77 Avenue Louis Pasteur, Boston, MA 02115. sphingosine kinases, and S-1-P lyase catalyzes the conversion Current address for M. Sivaguru: Institute for Genomic Biology, 1206 W. Gregory Dr., University of Illinois, Urbana, IL 61801. of S-1-P to hexadecenal and phosphoethanolamine at the end of Requests for reprints: Stephen Alexander, Division of Biological Sciences, 303 the pathway of sphingomyelin metabolism (Fig. 1). S-1-P is a Tucker Hall, University of Missouri, Columbia, MO 65203. Phone: 573-882- bioactive sphingolipid that is involved in many cellular 6670; Fax: 573-882-0123. E-mail: [email protected] Copyright D 2007 American Association for Cancer Research. functions including controlling cell proliferation, cell differen- doi:10.1158/1541-7786.MCR-07-0100 tiation, and cell movement (4). The prevailing thought was that Mol Cancer Res 2007;5(8). August 2007 801 Downloaded from mcr.aacrjournals.org on September 27, 2021. © 2007 American Association for Cancer Research. 802 Min et al. FIGURE 1. Pathway of sphingolipidmetabolism. The enzymes of special importance to this studyare the sphingosine kinases ( SphK1-2) andthe dihydroceramide synthases (CerS1-6/LASS1-6). Previous studies had shown that high ceramide promotes cell death, whereas high S-1-P promotes cell proliferation. The current study reveals a more detailed picture. DH, dihydro, PEA, phosphoethanolamine. S-1-P functions in a rheostat-like mechanism with another to ask whether modulation of any, or all, of these enzymes bioactive sphingolipid, ceramide, where the relative levels of results in an altered cellular response to cisplatin, and to begin the two sphingolipids control whether cells proliferate (high to establish the roles of these enzymes relative to one another in S-1-P) or die (high ceramide; refs. 4, 5). This, coupled with the controlling this response. Synthesis of S-1-P in human cells is observed decreased cisplatin sensitivity in the S-1-P lyase null mediated by two sphingosine kinase enzymes, which are mutant, led us to suggest that modulating the levels of the reported to have opposing roles in the cell (13). Sphingosine enzymes for the synthesis and degradation of S-1-P would have kinase 1 (SphK1) is a prosurvival enzyme, which promotes cell predictable effects on the sensitivity to cisplatin (6). Indeed, proliferation, whereas sphingosine kinase 2 (SphK2) is believed extensive genetic, biochemical, and pharmacologic studies in to be proapoptotic. The SphK2 protein contains a domain with D. discoideum further established a clear role for the S-1-P homology to the BH3-only proteins, common to the proapop- lyase as well as the sphingosine kinases in controlling cisplatin totic members of the Bcl-2 family of proteins (14). Both SphK1 sensitivity, where cells overexpressing sphingosine kinase or and SphK2 use the natural substrate D-erythro-sphingosine with null for S-1-P lyase have decreased sensitivity to cisplatin, similar Km values (although SphK2 can use a broader range of whereas cells null for the sphingosine kinase or overexpressing analogs; refs. 15-17). This suggests the possibility that it is the S-1-P lyase are more sensitive. The change in sensitivity cellular location and/or specific protein-protein interactions of was seen with cisplatin and carboplatin, but not with other these enzymes that determines their effect on the cell, rather drugs (6-8). than the absolute level of S-1-P in the cell (13). These studies were extended to human cells. We showed The de novo synthesis of the upstream bioactive molecule increased drug sensitivity in either HEK293 cells (human ceramide in human cells is executed by a family of six embryonic kidney) or A549 cells (human lung cancer) over- transmembrane dihydroceramide synthase enzymes that are expressing the human S-1-P lyase gene, and again, the response involved in the synthesis of dihydroceramide from sphinganine was highly biased toward the platinum-based drugs cisplatin and fatty acyl CoA. These enzymes were originally termed and carboplatin. Moreover, we showed that inhibition of the LASS (longevity assurance) genes to denote that the first gene sphingosine kinase with the competitive inhibitor dimethyl- discovered in yeast (LAG1) extended life span (18), but they sphingosine has a synergistic effect on increasing cisplatin have been renamed CerS to more closely reflect their sensitivity (9). Mechanistically, we showed that the increase in biochemical nature (19). Accumulating evidence suggests that cisplatin sensitivity resulting
Recommended publications
  • Combination of Photodynamic Therapy with Fenretinide and C6
    Wayne State University Wayne State University Theses 1-1-2015 Combination Of Photodynamic Therapy With Fenretinide And C6-Pyridinium Ceramide Enhances Killing Of Scc17b Human Head And Neck Squamous Cell Carcinoma Cells Via The eD Novo Sphingolipid Biosynthesis And Mitochondrial Apoptosis Nithin Bhargava Boppana Wayne State University, Follow this and additional works at: https://digitalcommons.wayne.edu/oa_theses Part of the Medicinal Chemistry and Pharmaceutics Commons Recommended Citation Boppana, Nithin Bhargava, "Combination Of Photodynamic Therapy With Fenretinide And C6-Pyridinium Ceramide Enhances Killing Of Scc17b Human Head And Neck Squamous Cell Carcinoma Cells Via The eD Novo Sphingolipid Biosynthesis And Mitochondrial Apoptosis" (2015). Wayne State University Theses. 431. https://digitalcommons.wayne.edu/oa_theses/431 This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Theses by an authorized administrator of DigitalCommons@WayneState. COMBINATION OF PHOTODYNAMIC THERAPY WITH FENRETINIDE AND C6-PYRIDINIUM CERAMIDE ENHANCES KILLING OF SCC17B HUMAN HEAD AND NECK SQUAMOUS CELL CARCINOMA CELLS VIA THE DE NOVO SPHINGOLIPID BIOSYNTHESIS AND MITOCHONDRIAL APOPTOSIS by NITHIN BHARGAVA BOPPANA THESIS Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE 2015 MAJOR: PHARMACEUTICAL SCIENCES Approved By: ________________________________ Advisor Date © COPYRIGHT BY NITHIN BHARGAVA BOPPANA 2015 All Rights Reserved DEDICATION Dedicated to my mom Rekha Vasireddy for always believing in me and helping me in becoming the person who I am today. ii ACKNOWLEDGEMENTS I am grateful to my advisor, Dr. Duska Separovic for her invaluable mentorship throughout the project.
    [Show full text]
  • Table SI. Primer List of Genes Used for Reverse Transcription‑Quantitative PCR Validation
    Table SI. Primer list of genes used for reverse transcription‑quantitative PCR validation. Genes Forward (5'‑3') Reverse (5'‑3') Length COL1A1 AGTGGTTTGGATGGTGCCAA GCACCATCATTTCCACGAGC 170 COL6A1 CCCCTCCCCACTCATCACTA CGAATCAGGTTGGTCGGGAA 65 COL2A1 GGTCCTGCAGGTGAACCC CTCTGTCTCCTTGCTTGCCA 181 DCT CTACGAAACCAGGATGACCGT ACCATCATTGGTTTGCCTTTCA 192 PDE4D ATTGCCCACGATAGCTGCTC GCAGATGTGCCATTGTCCAC 181 RP11‑428C19.4 ACGCTAGAAACAGTGGTGCG AATCCCCGGAAAGATCCAGC 179 GPC‑AS2 TCTCAACTCCCCTCCTTCGAG TTACATTTCCCGGCCCATCTC 151 XLOC_110310 AGTGGTAGGGCAAGTCCTCT CGTGGTGGGATTCAAAGGGA 187 COL1A1, collagen type I alpha 1; COL6A1, collagen type VI, alpha 1; COL2A1, collagen type II alpha 1; DCT, dopachrome tautomerase; PDE4D, phosphodiesterase 4D cAMP‑specific. Table SII. The differentially expressed mRNAs in the ParoAF_Control group. Gene ID logFC P‑Value Symbol Description ENSG00000165480 ‑6.4838 8.32E‑12 SKA3 Spindle and kinetochore associated complex subunit 3 ENSG00000165424 ‑6.43924 0.002056 ZCCHC24 Zinc finger, CCHC domain containing 24 ENSG00000182836 ‑6.20215 0.000817 PLCXD3 Phosphatidylinositol‑specific phospholipase C, X domain containing 3 ENSG00000174358 ‑5.79775 0.029093 SLC6A19 Solute carrier family 6 (neutral amino acid transporter), member 19 ENSG00000168916 ‑5.761 0.004046 ZNF608 Zinc finger protein 608 ENSG00000134343 ‑5.56371 0.01356 ANO3 Anoctamin 3 ENSG00000110400 ‑5.48194 0.004123 PVRL1 Poliovirus receptor‑related 1 (herpesvirus entry mediator C) ENSG00000124882 ‑5.45849 0.022164 EREG Epiregulin ENSG00000113448 ‑5.41752 0.000577 PDE4D Phosphodiesterase
    [Show full text]
  • HCC and Cancer Mutated Genes Summarized in the Literature Gene Symbol Gene Name References*
    HCC and cancer mutated genes summarized in the literature Gene symbol Gene name References* A2M Alpha-2-macroglobulin (4) ABL1 c-abl oncogene 1, receptor tyrosine kinase (4,5,22) ACBD7 Acyl-Coenzyme A binding domain containing 7 (23) ACTL6A Actin-like 6A (4,5) ACTL6B Actin-like 6B (4) ACVR1B Activin A receptor, type IB (21,22) ACVR2A Activin A receptor, type IIA (4,21) ADAM10 ADAM metallopeptidase domain 10 (5) ADAMTS9 ADAM metallopeptidase with thrombospondin type 1 motif, 9 (4) ADCY2 Adenylate cyclase 2 (brain) (26) AJUBA Ajuba LIM protein (21) AKAP9 A kinase (PRKA) anchor protein (yotiao) 9 (4) Akt AKT serine/threonine kinase (28) AKT1 v-akt murine thymoma viral oncogene homolog 1 (5,21,22) AKT2 v-akt murine thymoma viral oncogene homolog 2 (4) ALB Albumin (4) ALK Anaplastic lymphoma receptor tyrosine kinase (22) AMPH Amphiphysin (24) ANK3 Ankyrin 3, node of Ranvier (ankyrin G) (4) ANKRD12 Ankyrin repeat domain 12 (4) ANO1 Anoctamin 1, calcium activated chloride channel (4) APC Adenomatous polyposis coli (4,5,21,22,25,28) APOB Apolipoprotein B [including Ag(x) antigen] (4) AR Androgen receptor (5,21-23) ARAP1 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 1 (4) ARHGAP35 Rho GTPase activating protein 35 (21) ARID1A AT rich interactive domain 1A (SWI-like) (4,5,21,22,24,25,27,28) ARID1B AT rich interactive domain 1B (SWI1-like) (4,5,22) ARID2 AT rich interactive domain 2 (ARID, RFX-like) (4,5,22,24,25,27,28) ARID4A AT rich interactive domain 4A (RBP1-like) (28) ARID5B AT rich interactive domain 5B (MRF1-like) (21) ASPM Asp (abnormal
    [Show full text]
  • Supplementary File 2A Revised
    Supplementary file 2A. Differentially expressed genes in aldosteronomas compared to all other samples, ranked according to statistical significance. Missing values were not allowed in aldosteronomas, but to a maximum of five in the other samples. Acc UGCluster Name Symbol log Fold Change P - Value Adj. P-Value B R99527 Hs.8162 Hypothetical protein MGC39372 MGC39372 2,17 6,3E-09 5,1E-05 10,2 AA398335 Hs.10414 Kelch domain containing 8A KLHDC8A 2,26 1,2E-08 5,1E-05 9,56 AA441933 Hs.519075 Leiomodin 1 (smooth muscle) LMOD1 2,33 1,3E-08 5,1E-05 9,54 AA630120 Hs.78781 Vascular endothelial growth factor B VEGFB 1,24 1,1E-07 2,9E-04 7,59 R07846 Data not found 3,71 1,2E-07 2,9E-04 7,49 W92795 Hs.434386 Hypothetical protein LOC201229 LOC201229 1,55 2,0E-07 4,0E-04 7,03 AA454564 Hs.323396 Family with sequence similarity 54, member B FAM54B 1,25 3,0E-07 5,2E-04 6,65 AA775249 Hs.513633 G protein-coupled receptor 56 GPR56 -1,63 4,3E-07 6,4E-04 6,33 AA012822 Hs.713814 Oxysterol bining protein OSBP 1,35 5,3E-07 7,1E-04 6,14 R45592 Hs.655271 Regulating synaptic membrane exocytosis 2 RIMS2 2,51 5,9E-07 7,1E-04 6,04 AA282936 Hs.240 M-phase phosphoprotein 1 MPHOSPH -1,40 8,1E-07 8,9E-04 5,74 N34945 Hs.234898 Acetyl-Coenzyme A carboxylase beta ACACB 0,87 9,7E-07 9,8E-04 5,58 R07322 Hs.464137 Acyl-Coenzyme A oxidase 1, palmitoyl ACOX1 0,82 1,3E-06 1,2E-03 5,35 R77144 Hs.488835 Transmembrane protein 120A TMEM120A 1,55 1,7E-06 1,4E-03 5,07 H68542 Hs.420009 Transcribed locus 1,07 1,7E-06 1,4E-03 5,06 AA410184 Hs.696454 PBX/knotted 1 homeobox 2 PKNOX2 1,78 2,0E-06
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • A Selective Inhibitor of Ceramide Synthase 1 Reveals a Novel Role in Fat Metabolism
    ARTICLE DOI: 10.1038/s41467-018-05613-7 OPEN A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism Nigel Turner1, Xin Ying Lim2,3, Hamish D. Toop 4, Brenna Osborne 1, Amanda E. Brandon5, Elysha N. Taylor4, Corrine E. Fiveash1, Hemna Govindaraju1, Jonathan D. Teo3, Holly P. McEwen3, Timothy A. Couttas3, Stephen M. Butler4, Abhirup Das1, Greg M. Kowalski 6, Clinton R. Bruce6, Kyle L. Hoehn 7, Thomas Fath1,10, Carsten Schmitz-Peiffer8, Gregory J. Cooney5, Magdalene K. Montgomery1, Jonathan C. Morris 4 & Anthony S. Don3,9 1234567890():,; Specific forms of the lipid ceramide, synthesized by the ceramide synthase enzyme family, are believed to regulate metabolic physiology. Genetic mouse models have established C16 ceramide as a driver of insulin resistance in liver and adipose tissue. C18 ceramide, syn- thesized by ceramide synthase 1 (CerS1), is abundant in skeletal muscle and suggested to promote insulin resistance in humans. We herein describe the first isoform-specific ceramide synthase inhibitor, P053, which inhibits CerS1 with nanomolar potency. Lipidomic profiling shows that P053 is highly selective for CerS1. Daily P053 administration to mice fed a high- fat diet (HFD) increases fatty acid oxidation in skeletal muscle and impedes increases in muscle triglycerides and adiposity, but does not protect against HFD-induced insulin resis- tance. Our inhibitor therefore allowed us to define a role for CerS1 as an endogenous inhibitor of mitochondrial fatty acid oxidation in muscle and regulator of whole-body adiposity. 1 School of Medical Sciences, UNSW Sydney, Sydney 2052 NSW, Australia. 2 Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney 2052 NSW, Australia.
    [Show full text]
  • Lipid Signalling Dynamics of Palmitate- Induced Endoplasmic Reticulum Stress in Skeletal Muscle
    Lipid signalling dynamics of palmitate- induced endoplasmic reticulum stress in skeletal muscle A dissertation submitted for the degree of Doctor of Philosophy at the University of Cambridge. Submitted September 2018. Ben Daniel McNally King’s College “Obviously my method of thought and reasoning is influenced by a scientific training – if that were not so my scientific training will have been a waste and a failure.” Rosalind Franklin – taken from a letter to her father, Ellis Franklin, undated (approximately 1940). “I was taught that the way of progress is neither swift nor easy.” Marie Curie - Taken from Pierre Curie (1936). “Machines will do the heavy work, Men will supervise the machines, You owe much to these machines, Horsepower, not manpower, Brains, not brawn.” Progress by Public Service Broadcasting, released in 2017. Declaration This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except as declared in the Preface and specified in the text. It is not substantially the same as any that I have submitted, or, is being concurrently submitted for a degree or diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. I further state that no substantial part of my dissertation has already been submitted, or, is being concurrently submitted for any such degree, diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text.
    [Show full text]
  • Supplementary Table 1A. Genes Significantly Altered in A4573 ESFT
    Supplementary Table 1A. Genes significantly altered in A4573 ESFT cells following BMI-1knockdown genesymbol genedescription siControl siBMI1 FC Direction P-value AASS aminoadipate-semialdehyde synthase | tetra-peptide repeat homeobox-like6.68 7.24 1.5 Up 0.007 ABCA2 ATP-binding cassette, sub-family A (ABC1), member 2 | neural5.44 proliferation,6.3 differentiation1.8 and Upcontrol, 1 0.006 ABHD4 abhydrolase domain containing 4 7.51 6.69 1.8 Down 0.002 ACACA acetyl-Coenzyme A carboxylase alpha | peroxiredoxin 5 | similar6.2 to High mobility7.26 group2.1 protein UpB1 (High mobility0.009 group protein 1) (HMG-1) (Amphoterin) (Heparin-binding protein p30) | Coenzyme A synthase ACAD9 acyl-Coenzyme A dehydrogenase family, member 9 9.25 8.59 1.6 Down 0.008 ACBD3 acyl-Coenzyme A binding domain containing 3 7.89 8.53 1.6 Up 0.008 ACCN2 amiloride-sensitive cation channel 2, neuronal 5.47 6.28 1.8 Up 0.005 ACIN1 apoptotic chromatin condensation inducer 1 7.15 7.79 1.6 Up 0.008 ACPL2 acid phosphatase-like 2 6.04 7.6 2.9 Up 0.000 ACSL4 acyl-CoA synthetase long-chain family member 4 6.72 5.8 1.9 Down 0.001 ACTA2 actin, alpha 2, smooth muscle, aorta 9.18 8.44 1.7 Down 0.003 ACYP1 acylphosphatase 1, erythrocyte (common) type 7.09 7.66 1.5 Up 0.009 ADA adenosine deaminase 6.34 7.1 1.7 Up 0.009 ADAL adenosine deaminase-like 7.88 6.89 2.0 Down 0.006 ADAMTS1 ADAM metallopeptidase with thrombospondin type 1 motif, 1 6.57 7.65 2.1 Up 0.000 ADARB1 adenosine deaminase, RNA-specific, B1 (RED1 homolog rat) 6.49 7.13 1.6 Up 0.008 ADCY9 adenylate cyclase 9 6.5 7.18
    [Show full text]
  • Sphingolipids
    Ectopic expression of ceramide synthase 2 in neurons suppresses neurodegeneration induced by ceramide synthase 1 deficiency Stefka D. Spassievaa,1, Xiaojie Jib,c,1, Ye Liub, Kenneth Gabled, Jacek Bielawskie, Teresa M. Dunnd, Erhard Bieberichf, and Lihong Zhaob,2 aDepartment of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843; bThe Jackson Laboratory, Bar Harbor, ME 04609; cGraduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469; dDepartment of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; eDepartment of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425; and fDepartment of Neuroscience and Regenerative Medicine, Medical College of Georgia/Augusta University, Augusta, GA 30912 Edited by David W. Russell, University of Texas Southwestern Medical Center, Dallas, TX, and approved April 13, 2016 (received for review December 7, 2015) Sphingolipids exhibit extreme functional and chemical diversity suggested to cause apoptosis in certain cancer cells, whereas that is in part determined by their hydrophobic moiety, ceramide. ceramide with a C16 fatty acyl chain (C16 ceramide) has been In mammals, the fatty acyl chain length variation of ceramides is considered prosurvival (10–12). The ceramide profile changes in determined by six (dihydro)ceramide synthase (CerS) isoforms. aging and neurodegenerative brains, but whether these alterations Previously, we and others
    [Show full text]
  • Biological Functions of Sphingomyelin Synthase Related Protein and Ceramide Synthase 4 Investigated with Transgenic Mouse Mutants
    Biological functions of Sphingomyelin synthase related protein and Ceramide synthase 4 investigated with transgenic mouse mutants Dissertation Zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Andreas Bickert aus Neuwied Bonn, 2016 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn Erstgutachter: Prof. Dr. Klaus Willecke Zweitgutachter: Prof. Dr. Michael Hoch Tag der Promotion: 25.10.2016 Erscheinungsjahr: 2017 Table of Contents Table of Contents 1 Introduction.................................................................................................. 1 1.1 Biological lipids ............................................................................................ 1 1.2 Eucaryotic membranes ................................................................................ 3 1.3 Sphingolipids ............................................................................................... 5 1.3.1 Sphingolipid metabolic pathway ................................................................. 6 1.3.1.1 De novo sphingolipid biosynthesis .......................................................... 8 1.3.1.2 The ceramide transfer protein ................................................................. 8 1.3.1.3 Biosynthesis of complex sphingolipids .................................................... 9 1.3.1.4 Sphingolipid degradation and the salvage
    [Show full text]
  • Disorders of Sphingolipid Synthesis, Sphingolipidoses, Niemann-Pick Disease Type C and Neuronal Ceroid Lipofuscinoses
    551 38 Disorders of Sphingolipid Synthesis, Sphingolipidoses, Niemann-Pick Disease Type C and Neuronal Ceroid Lipofuscinoses Marie T. Vanier, Catherine Caillaud, Thierry Levade 38.1 Disorders of Sphingolipid Synthesis – 553 38.2 Sphingolipidoses – 556 38.3 Niemann-Pick Disease Type C – 566 38.4 Neuronal Ceroid Lipofuscinoses – 568 References – 571 J.-M. Saudubray et al. (Eds.), Inborn Metabolic Diseases, DOI 10.1007/978-3-662-49771-5_ 38 , © Springer-Verlag Berlin Heidelberg 2016 552 Chapter 38 · Disor ders of Sphingolipid Synthesis, Sphingolipidoses, Niemann-Pick Disease Type C and Neuronal Ceroid Lipofuscinoses O C 22:0 (Fatty acid) Ganglio- series a series b HN OH Sphingosine (Sphingoid base) OH βββ β βββ β Typical Ceramide (Cer) -Cer -Cer GD1a GT1b Glc ββββ βββ β Gal -Cer -Cer Globo-series GalNAc GM1a GD1b Neu5Ac βαββ -Cer Gb4 ββ β ββ β -Cer -Cer αβ β -Cer GM2 GD2 Sphingomyelin Pcholine-Cer Gb3 B4GALNT1 [SPG46] [SPG26] β β β ββ ββ CERS1-6 GBA2 -Cer -Cer ST3GAL5 -Cer -Cer So1P So Cer GM3 GD3 GlcCer - LacCer UDP-Glc UDP Gal CMP -Neu5Ac - UDP Gal PAPS Glycosphingolipids GalCer Sulfatide ββ Dihydro -Cer -Cer SO 4 Golgi Ceramide apparatus 2-OH- 2-OH-FA Acyl-CoA FA2H CERS1-6 [SPG35] CYP4F22 ω-OH- ω-OH- FA Acyl-CoA ULCFA ULCFA-CoA ULCFA GM1, GM2, GM3: monosialo- Sphinganine gangliosides Endoplasmic GD3, GD2, GD1a, GD1b: disialo-gangliosides reticulum KetoSphinganine GT1b: trisialoganglioside SPTLC1/2 [HSAN1] N-acetyl-neuraminic acid: sialic acid found in normal human cells Palmitoyl-CoA Deoxy-sphinganine + Serine +Ala or Gly Deoxymethylsphinganine 38 . Fig. 38.1 Schematic representation of the structure of the main sphingolipids , and their biosynthetic pathways.
    [Show full text]
  • Functional Analysis of Acyl-Coa Binding Protein in Skin and Sebaceous Glands
    FUNCTIONAL ANALYSIS OF ACYL-COA BINDING PROTEIN IN SKIN AND SEBACEOUS GLANDS Ph.D. Thesis Hanne Engelsby Supervisor Nils J. Færgeman Department of Biochemistry and Molecular Biology Faculty of Science, University of Southern Denmark March 2017 FUNCTIONAL ANALYSIS OF ACYL-COA BINDING PROTEIN IN SKIN AND SEBACEOUS GLANDS PREFACE The work presented in this PhD thesis was performed in Professor Nils J. Færgemans laboratory, Department of Biochemistry and Molecular Biology, University of Southern Denmark. Many people and research groups were involved in the successful obtainment of the results presented here and I would like to express my gratitude and thankfulness to them. First I would like to thank my supervisor Nils J. Færgeman for providing me with the opportunity to carry out this PhD. He has been an excellent guidance and I have enjoyed our fruitful discussions regarding this project. Professor Carien M. Niessen, Department of Dermatology and CECAD Cologne, University of Cologne provided me with an excellent opportunity to carry out my environmental exchange in her laboratory. I am highly grateful for that and for the many fruitful discussions we have had. The members of the Niessen lab always provided me with the help I needed and invited me to their gatherings, which made me feel very welcome in their group. I would especially like to thank Emmi Wachsmuth and Franziska Peters for their excellent guidance in the lab and for introducing me to the many aspects of skin science. I would like to thank present and former members of the Nils J. Færgeman laboratory, who have created a wonderful environment.
    [Show full text]