<<

0

Experiment36–Extraterrestrialmicrowaves Place: ML-laboratory,labattheendoftheflight-timetunnel Meetingplace: Mainentranceofthephysicsdepartment(9.00o’clock) Tutor: Mr.Hagn,Phys.-Dep.E15,Tel.:289-12518,Room-No.2362 1) Courseoftheexperiment Theexperimentprovidesanintroductiontothemeasuringtechniquesofradioastronomy.Theradio signals(atawavelengthofabout18cm)oftheandthe“milkyway”aremeasured.Fromsuch measurementsthefluxandtheradiationtemperatureofthesesourcesarecalculated.Calibrationof theequipment(theamplifiercharacteristics–noisetemperature–aredetermined)willbecarriedout with the hot-cold-measurement method. The radiated power of the weather Meteosat is determinedviaapowercomparisonmeasurement. 2) Physicalterms Emission and absorption of electromagnetic waves in the range of microwaves, wave propagation, Planck’s law, Rayleigh-Jeans’s law, Nyquist theorem, generation mechanisms of electromagnetic wavesinnature. 3) Equipmentandmeasuringtechnique Parabolic antenna 1.75m ∅, RF amplifier, frequency converter, demodulator, spectrum analyzer, impedance,attenuationareexplainedindetailduringthecourseoftheexperiment. 4) Remarksconcerningthecourseoftheexperiment Before carrying out the experiment the height of the Sun above thehorizonaswellasand height of the weather satellite Meteosat have to be calculated. Some knowledge ofelectronicsisof advantage,butnotnecessary. 5) Sincetheexperimenttakesplacepartiallyoutsideofthebuilding,weatherproof clothingwon’tharm. 6) Pleasenotethatwehavetostartat9:00o’clockinordertofinishtheexercisesintime. 1

Experiment36 Extraterrestrialmicrowaves 1.Historicalreview,motivation,aims Thediscoveryofelectromagneticwaves Asinmostareasofphysicstheorywasaheadofexperiments:Whenin1864theEnglishmanJames ClerkMaxwelldescribedthelawsofelectrodynamicsbytheequationsnamedafterhim,experimental physics was still far from being able toconfirmthesephenomenabymeasurements.Notuntil1887 Heinrich Hertz succeeded in confirming Maxwell’s thoughts by impressive experiments: The propagationofelectromagneticwavesinemptyspacewasproven.Atthispointintimethesearchfor possibilitiestotransfermessagesviathepropagationofelectromagneticwavesbegan. Thefirsttransmissionswithshortwaves It was the ItalianGuglielmoMarcheseMarconi,whodaredtodothedecisivesteponthissearchin 1901andtriedtotransferamessagefromPoldhu(Cornwall)toSt.Johns(Newfoundland),althoughat thattimethereachofelectromagneticwaveswasgenerallystillbelievedtobelimitedtotherangeof sight. The attempt succeeded. The discovery of the potential for the world-wide transmittance of information,whichliesinthepropagationofelectromagneticwaves,isduetohisintuitionconcerning technical-physical possibilities. The transfer of a message over the Atlantic was the date of birth of shortwaveandthishappenedatapointintime,whenthemechanismofthiskindof wavepropagationoverthehorizonwasstillunknown. Thediscoveryofthe In 1902 the Englishman Oliver Heaviside and the American Arthur Kennelly, studying properties of wave propagation, independently came to the conclusion that there exists a reflecting layer in the ’s atmosphere, which has later been named Kennelly-Heaviside-layer.Thisreflectinglayer,the ionosphere, was experimentally confirmed in 1924 by the Englishman Edward Appleton when measuring the by which a radio wave is reflected. In this way one wasabletoconclude,that thereisareflectinglayerinaheightofabout170km:the“wave”wasexperimentallyproven.He detectedfurtherpropertiesoftheionosphere:Anelectronconcentrationof10 5percubiccentimetre, anellipticpolarisationofthewavesandadiminishedwavepropagationduetothesuperpositionofsky andgroundwave. The ground wave propagation of electromagnetic waves takes place along the Earth’s surface; it is largelydeterminedbythedielectricpropertiesoftheEarth’ssurfaceandbytheterritoryformation.In the following years Breit and Tuve have worked out their echo logging method, which allowed to explorefundamentalpropertiesoftheionosphere.Thustheyfound,thattheionospherereflectsradio 2 waves only up to an upper frequency limit depending upon time of the and year, that fading appears also with pure sky wave propagation and that the electron densityintheionospherevaries morediscontinuouslythandescribedbysimplephysicalmodels. Solaractivity,numberofsunspotsanddegreeofionisation Theanalysisofthereflectionperformanceoftheionosphererevealeditsdependenceupontimeofthe dayandyear;thusitwasreasonabletoassumethatthereflectionpropertiesoftheatmosphereare influencedbythesolaractivity.Thisconclusionwasconfirmedbystudiesofthereflectionproperties duringasolareclipsein1927.Soonthereafterthefollowingmodelforthereflectionperformanceof the atmosphere emerged: The top layers of the Earth’s atmosphere are partially ionized by the influenceofthesolaractivity.BesidesUV-radiationandX-raysalsotheparticleradiation,theso-called solar wind, causes ionization. This ionized layer, respectively the ionized layers, reflect the electromagneticwaves. However,thereflectionpropertiesoftheionospherearenotconstantintime.Althoughitwasobvious tosuspectavariationofthesolaractivitywithtime,ittookafairlylongtimeuntiltheprocesseswere betterunderstoodandacorrelationbetweenthesolaractivityandthenumberofsunspotswasfound. TheobservationoftheSun’ssurfaceledtointensivestudiesofthebehaviourofthesunspots. ThesunspotswerealreadyknowntotheChineseafewthousandyearsago.AlsoGalileoGalileihad seen them with his telescope and described them very accurately: He believed them to arise constantly,tovanishwithdifferentvelocitiesandtofollowtherotationoftheSunwithacirculationtime of 27 days. After ideas about the nature of the sunspots, partially quite adventuresome, had been published in the 18 th and 19 th centuries, in 1908 Dr. George E. Hale, using a spectroheliograph, succeededtoprovethatthesunspotswereactuallyhugegaswhirls. AGermanhobbyastronomer,thechemistHeinrichS.SchwabefromDessau,discoveredthesunspot cycle in the middle of the 19 th century by regularly determining the number of sunspots for a long period of time (see Fig. 1). From 1849 to 1981 the “Zürich relative sunspot number” was daily determinedandpublishedbytheSunobservatoryofZürich.Therelativesunspotnumberwasdefined byRudolphWolf,thendirectoroftheobservatory,viathefollowingequation: R=k(10g+f) with: R=relativesunspotnumber g=numberofsunspotgroups f=numberofsunspots k=correctionfactorforthemeasuringinstrumentsused Since1 st ofJanuary1981theSIDC,thesunspot-indexdatacentre,inBelgiumisresponsibleforthis job.Around1930duetocarefulobservationsDr.EdisonPettitoftheMountWilsonobservatorywas abletofindthecorrelationbetweentheUV-radiation(andtheelectrondensityintheionosphere)and therelativesunspotnumber.In1924PettitstartedmeasuringtheintensityoftheUV-radiationevery 3 day. From 1924 to 1928 he found the relative sunspot number to increase as continuously as the intensityoftheUV-radiation;from1928onthedecreaseoftheintensitywascoupledtoadecreaseof therelativesunspotnumber.Theseandsimilarresultsallowedtheconclusion,thattheintensityofthe UV-radiationemittedbytheSunwasproportionaltotherelativenumberofsunspots.

Thebeginningofintensiveshortwavecommunication Around 1930, the properties of short wave propagation were sufficiently investigated to use it as a technicalcommunicationmedium.That’swhyinthistimeaboominthedevelopmentofdevicesfor longdistancecommunicationandalsoanintensiveexplorationofrelatedphenomenatookplace. In1932,ontheoccasionofsuchinvestigationsattheUS-Bell-Laboratories,K.G.Janskydiscovered electromagneticradiationfromthecentreofourgalaxy(intherangeof15MHz). However,G.Reber’smeasurementsconcerningthedistributionoftheradiosignalsat λ=1.8minthe sky,whichheperformedwithabigparabolicreflector(10m)duringtheyears1939–1944,werethe first to convince astronomers of the existence of this phenomenon. From 1939 on, with the developmentofthesearchforradiosourcesintherangeofdmandcmbecamepossible.The 4 radiometer developed by R. H. Dicke in 1946 presented a further, essential contribution to the observationofradiosignals.Thediscoveryofthespectrallineofhydrogenandofthenitrogenradical wasastimulanttoenlargethemeasurementstotherangeofmmandbelow. 2.Basics 2.1Astronomicalcoordinatesystems As we observe the objects in the sky from the Earth rotating around its own axis it is necessary to introduceappropriatecoordinatesystems. Hint:Lookatfig.2,inparticular,andtrytoqualitativelymakecleartoyourselfthesituationatthesky. • Thehorizonsystem

Fig.2: Thehorizonsystem:Thecelestialglobe,thehorizonwithnorth,east,southandwestpoints. The(sky)meridianpassesthroughnorthpoint,pole,zenith,southpointandnadir.–Coordinates: heightandazimuth. Keep in mind that we observe the sky from a certain point on the Earth given by its longitude and latitude(Garchinglo=11.6°,la=48.2°).Forthi spointonEarththeso-calledhorizonsystemcanbe 5 used. In doing so the direction in which an object in the sky appears is given by the two azimuthandheight.Thegroundplaneofthissystemisthehorizonplaneoftheobserver.Thezenith isperpendicularabovetheobserver.Thedirectionsouth-northisdefinedbyagreatthroughthe (sky) pole (direction of the rotation axisoftheEarth)andthezenith.Thisgreatcircleiscalledlocal meridian.Inordertodeterminethecoordinatesazimuthandheightofanobject(star)intheskythe great circle passing through the zenith and the object is essential. Then the height is the angle between the horizon plane and the object (star). The azimuth indicates the angle between the southwarddirectionandthegreatcircle,whichincludestheobjectinthesky,alongthehorizonplane (seefig.2). Thiscoordinatesystemiseasytouseandofinterestforradiotelescopes,as,duetotheirdimension and weight, they are mounted in a way that azimuth and height can be adjusted directly (rotation aroundaverticalandahorizontalaxis).Ourantennaismountedinthatway,too. • Theequatorialsystem In order to easily compensate the rotation of theEartharounditsownaxistheequatorialsystemis normallyusedforastronomicalobservationsandfortabulatingpositionsofobjectsinthesky(fig.3). Inthissystem,theoftheskyisthegroundplane(extensionoftheequatoroftheEarthtothe fictitiouscelestialsphere).Thenorthernresp.southernpoleoftheskyareperpendicularaboveresp. below this ground plane. In this coordinate system the position of an object (star) in the sky is determined by the two angles, right ascension (RA) and declination ( δ). The right ascension is measuredalongtheequatorofthesky,consideringthegreatcircleincludingtheobjectandthepoles ofthesky(hourcircleofthestar,fig.3).Thezero-pointoftherightascensionangleisthepositionof theSun,when,inspring,itchangesfromtheSouthtotheNorthsideoftheequatoroftheskyonits fictitiouspathamongthefixedstarsgeneratedbytherevolutionoftheEartharoundtheSun(pointof intersection:ecliptic(=fictitiouspath)–equatorofthesky).ThispointiscalledvernalequinoxorAries point(itusedtobeinthiszodiacsign).Thedeclination( δ)indicatestheangleoftheobjectbelowor abovetheequator(-90°< δ<90°). After the zero-point of this system has been defined, all fixed stars can be tabulated with distinct coordinatesinthiscoordinatesystem(RA, δ)(inordertotakeintoaccounttheremainingchangesdue totheprecessionoftheaxisoftheEarthandpossiblepeculiar(eigen)motionsofthe“fixed”stars,the cataloguesareregeneratedevery50years). In order to establish a relation to the point of observation and to its horizon system, which is also plottedinfig.3,theterm“localsiderealtime”isneeded.Thisisthecurrentanglebetweenthelocal meridian and the vernal equinox. It is given in hours, minutes, …, and is equal to 0 h, if the vernal equinoxisexactlyintheSouthofthepointofobservation.Asour(civic)timeisconnectedtotheSun, whichmovesaheadofthefixedstarsbyabout4minutesperday,themomentarylocalsiderealtime has to be evaluated by calculation, with the help of tables or by using a suitably set sidereal time clock;thelongitudeofthepointofobservationhastobeknown. Ifonedesirestolocateanobjectintheskyatacertaintime,oneneedsitshourangleindicatinghow faronehastogoalongtheequatoroftheskyinawestwarddirectioninordertocrossthehourcircle ofthestar.Infig.3thefollowingrelationcanbeseen: 6

Hourangle=siderealtime–rightascensionRA Annotation:siderealtime=hourangleofthevernalequinox.

Fig.3:Equatorialsystemwiththecoordinates:rightascensionRA(distanceAriespoint( γ)-hourcircle ofthestarontheequatorofthesky)anddeclination δ.Houranglet=siderealtimeminusright ascensionRA.Poleheight=latitude. Most optical astronomic telescopes are mounted in a way that one axis of rotation is parallel tothe rotation axis of the Earth (parallactic mounting). The hour angle can be adjusted by rotating the telescope around this axis. The second axis is mounted perpendicular to it and directly permits the adjustmentofthetelescopetothedeclinationoftheobject. • example:objectatRA=3h,30min, δ=40°,localsiderealtime6h Thisresultsinanhourangleoftheobjectoft=2h30min. Usingaparallacticallymountedtelescopeithastobeset,startingfromthesoutherndirection,toan angle corresponding to 2h 30min, which means 37.5° to the west, and then, by rotation around the axisofdeclination,to40°abovetheequatorofth esky. 7

• Objectsinthesolarsystem In the coordinate systems never more than two angles appear because the finite extension of the Earthcanbeneglectedforthedistantobjectsinthesky.Thisistrueforthefixedstarsandstillforthe planetsandtheSun(notforMeteosat!).AlsoforthefixedstarstheannualmotionoftheEartharound the Sun plays no role for practical observations (RA and δ virtually fixed, hence the name). For practical observations, in order to handle the complicated fictitious paths of planets, comets etc. in front of the fixed stars arising from the combination of their eigen motion and the revolution of the Earth around the Sun, RA and δ of these objects are tabulated in compendia for each year (ephemeris). • Conversion:Horizon–equatorialsystem(accordingtoF.Becker,Einführungindie Astronomie,page26ff). Asourradioantenna,asmentionedbefore,isonlyadjustableinazimuthandheight,wefinallyneed the formulas to be able to adjust an object tabulated in RA and δ (-> t). Frequently used relations betweentheequatorialandhorizontalcoordinatescanbededucedfromthespherictriangle,named astronomicalornauticaltriangle,withthecorners:poleofthesky,zenith,star.With αmeaningright ascension, ϑsiderealtime,thourangle(givenbyt= ϑ-α),further δthedeclinationofthestar,Aits azimuth, zitsdistancefromthezenithand ϕtheheightabovethepole,theapplicationofthebasic formulasofspherictrigonometryonthetrianglementionedaboveleadstotwogroupsofformulasfor thetransformationbetweenthetwocoordinatesystems sinzsinA=cos δsint cosz=sin ϕsin δ+cos ϕcos δcost -sinzcosA=cos ϕsin δ-sin ϕcos δcost and cos δsint=sinzsinA sin δ=sin ϕcosz–cos ϕsinzcosA cos δcost=coszcos ϕ+sinzsin ϕcosA. 2.2Extraterrestrialsourcesofradiation Microwaves are in a frequency rangefrom1GHzupto300GHz,accordingtoawavelengthrange from30cmto1mm.Therangeofinteresttousisrestrictedtotheso-calledradiowindow(fig.4),in which the absorption of the electromagnetic waves by the atmosphere of the Earth is negligible. Extraterrestrialsourcesofradiationmayhaveacontinuousspectrum(synchrotronradiation,thermic radiation)oradiscretespectrum(e.g.the21cmHline).Thethermicradiationcanbedescribedby Planck’slawofradiationintheapproximation ν<<kT/h(Rayleigh-Jeans). 8

Fig.4:Absorptionofelectromagneticwavesintheatmosphere This radio window allows the observation of extended and point radio sources in the sky. The well- known3Kbackgroundradiationfillsouttheholeskyisotropically.Inthefollowingwewanttodealwith sources standing well out of the 3 K background and amongst them we restrict ourselves to the strongest radio sources. If you’re further interested in the methods and results of the vast field of modernradioastronomy,you’llfindadditionalliteratureinthelibraryofthephysicsdepartment.Using theequipmentofthelabsomeobjectsquotedinfig.5canbeobserved.Fig.5showsspectraofthese objects:theradioflux(inJansky)reachingtheEarthisplottedagainstthefrequency(resp.wavelength atthetopedgeofthepicture).Apartfromthesesingleobjectswecanobservethebandofourmilky wayintheradiorange,too.TheunitJanskyrepresents10 -26 W/(m²Hz).Intable1furtherradiosources arelistedtogetherwiththeirfluxat λ=20cm.Theradiofluxindicatesthepower(W)perunitarea(m 2) perpendicular to the direction of incidence and per unit frequency interval (Hz) reaching Earth. The choiceoftheunit“Jansky”alreadytellsyouthatverylowradiationpowerhastobemeasuredcorrectly intheexperiment. 9

Fig.5:Thefluxofthemostintensivesourcesasafunctionoffrequency.Theverticallineat1.7GHz correspondstoourfrequencyofobservation. 2.3Aboutthedevices • Theparabolicantennaoftheradiotelescope Aslongasd>> λ(disthediameteroftheantenna),theresolutionofthereflector,i.e.theangular distancebetweentheprimarymaximumandthefirstdiffractionminimum,isgivenby 10

P0=1.22*d(rad) ≅70* λ/d(°). Inradioastronomy,oftenthebeamwidth,i.e.thedistancebetweentwoopposingpointsatwhichthe measured power has fallen to half of its maximum value, is given instead of the resolution of the reflector.Thebeamwidthis

2*p 1/2 =1.03*d(rad) ≅59* λ/d(°).

• Theelectronicsetup Fromtheparabolicreflector(1.75mdiameter)theradiosignalgoesviaacircularwaveguide,acable of 1 m length with low attenuation (Fa. Andrews) and a circulator to a low-noise GaAs-FET preamplifier. Then a further amplifier follows, from which the signal is brought into the measuring room.Havingpassedthroughahigh-passfilterandapowerdividerthesignalisgiventoafrequency converterviaanRF-relay.Thisfrequencyconverter“converts”theinputfrequencyrange1675–1700 MHz to the range 121.5 – 146.5 MHz. In the so-called “Meteosat branch” thefrequency137.5MHz (bandwidth30kHz)isfilteredout.The“astronomybranch”worksatabout127MHz(bandwidth1.5 MHz).Furtherexplanationswillbegivenwhentheexperimentisperformed. 11

12

blockdiagramoftheelectronicassembly

13

3.Tasks Notice:Tasks1and2aretobedonebeforethedayoftheexperiment Task1:CalculateazimuthandheightoftheMeteosat-satellite!Thissatelliteisgeostationaryabove0. degreeoflongitude. Annotation:Garching:lo=11.6°(easternlongitude ),la48.2°(northernlatitude). Task2:Calculateheightandpointintime(MEZ)oftheSunpassinginfrontoftheantennaontheday ofyourexperiment! Annotationfortask2:Youcantake(withinterpolation)therightascensionanddeclinationoftheSun on the day of your experiment from the table in the appendix. You have calculated the azimuth (identicaltotheazimuthofMeteosat)ofthelab’santennaintask1.Youcanobtainheightandhour angletfromthetransformationformulasbetweenhorizonandequatorialsystem.Thesiderealtimefor theeveningofthedayoftheexperimentcanbedeterminedwiththehelpofthetableintheappendix. AssumethepositionoftheSunforthedayoftheexperimenttobefixedandneglectthedifference betweensiderealtimeandcivictimeinthecourseofonedayaswell! Task3:Calculatethe“antennatemperature”fromtheriseofthesignalwhentheSunpasses.Withthe helpofthisvaluethefluxoftheSuncanbedeterminedusingS=k*T A/A,whereSisthefluxdensity ofapointsourceatthesurfaceoftheEarthinWHz -1m -2,ktheBoltzmannconstant(1.38*10 -23 J/K),A theeffectiveareaoftheantennainm²andT Athe“antennatemperature”inK.Whatdoyouhaveto keep in mind when calculating the real flux of a source from the “antenna temperature” ? Map the obtainedvalueinfig.5oftheexperiment’sinstructionsheet. Task4:Measurethe“antennatemperature”byvaryingtheelevationoftheantennafromabout–15° (ground) to 50°(cold sky) ! The noise temperature of the receiver was determined to be 64K by a hot/cold-measurement.Maptheobtainedvaluesintoadiagram!(Theantennatemperatureisnotthe physical temperature, but the effective temperature “seen” by the antenna. In addition, there are contributionstothetemperaturefromsidelobesandlossesinthematerialoftheantenna.) Task5:Measurethevoltageattheantennaoutput(impedance50 Ω)whenreceivingthesignalfrom Meteosat (The measurements are performed with the “small” antenna. The diameter is 1.75 m, the illumination55%)! Task6:Evaluatethefluxofthe“milkyway”fromtherecorderprint-outs! Task7:Determine the opening angle θ of the radio telescope on the basis of the recorder print-out andcompare θtop 1/2 (seeSection2.3:Aboutthedevices)! 14

Task8:CalculatetheradiationtemperatureoftheSunattheobservedfrequencywiththehelpofT A and θ! Literature: 1) F.Becker,EinführungindieAstronomie,B.J.-pocketbook1966,TU-libraryGarching C.5/4(5) 2) A.Unsöld,B.Baschek,DerneueKosmos,Springer1988 3) B.Vowinkel,PassiveMikrowellenradiometrie,1988 4) W.N.Christiansen,J.A.Högbom–Radiotelescopes,CambridgeUniversityPress(1987), TU-libraryGarchingC.5/92(2)(a) 5) W.J.Altenhoff,HandbuchfuerSternfreunde,HerausgeberG.D.Roth,SpringerVerlag 1981 6) dtv-AtlaszurAstronomie1985 7) H.U.Keller,DasHimmelsjahr,Franckh-KosmosVerlags-GmbHu.Co,Stuttgart 8) Hachenberg-Vowinkel,TechnischeGrundlagenderRadioastronomie,B.J. Wissenschaftsverlag 9) KirstenRohlfs,ToolsofRadioastronomie,SpringerVerlag(1990),TU-libraryGarching c.5/101 10) H.Nyquist,ThermalAgitationofElectricChargeinConductors,Phys.Rev.32(1928) 11) J.B.Johnson,ThermalAgitationofElectricityinConductors,Phys.Rev.32(1928)97 15