Atmospheric Layers

Total Page:16

File Type:pdf, Size:1020Kb

Atmospheric Layers Enviropedia Climate Change Global Warming Ozone Air Pollution Weather & Climate Sustainability Kids INFORMATION Navigate Home Contents Atmospheric Layers Atmosphere Although air is well mixed throughout the atmosphere, the atmosphere itself is not Introduction physically uniform but has significant variations in temperature and pressure with Atmospheric Layers altitude, which define a number of atmospheric layers. These include the Composition troposphere (0 to 16 km), stratosphere (16 to 50 km), mesosphere (50 to 80km) and thermosphere (80 to 640km). The boundaries between these four layers are Weather defined by abrupt changes in temperature, and include respectively the Movement of Energy tropopause, stratopause and mesopause. In the troposphere and mesosphere, Physical Attributes temperature generally falls with increasing altitude, whilst in the stratosphere and Movement of Air thermosphere, temperature rises with increasing altitude. Atmospheric Moisture Dew, Frost and Fog In addition to temperature, other criteria can be used to define different layers in Clouds and Rain the atmosphere. The ionosphere, for example, which occupies the same region of High Pressure Systems the atmosphere as the thermosphere, is defined by the presence of ions, a Synoptic Charts physico-chemical criterion. The region beyond the ionosphere is known as the exosphere. The ionosphere and the exosphere together make up the upper Climate atmosphere (or thermosphere). The magnetosphere is the region above the Global Climate Earth's surface in which charged particles are affected by the Earth's magnetic Patterns of Climate field. British Climate Climate Change Another well-known layer of the atmosphere is the ozone layer, occupying much of the stratosphere. This layer is defined by its chemical composition - where ozone LINKS is especially abundant. Add Your Link Defra Layers of the Atmosphere EcoIQ EcoSpeakers EcoFootage EcoPhotos Eco-Portal EnviroInfo Environmental Information Geography World Hereford Weather Swedish NGO Secretariat Weather Online Troposphere The lowest layer of the atmosphere is called the troposphere. It ranges in thickness from 8km at the poles to 16km over the equator. The troposphere is bounded above by the tropopause, a boundary marked by stable temperatures. Above the troposphere is the stratosphere. Although variations do occur, temperature usually declines with increasing altitude in the troposphere. Hill walkers know that it will be several degrees cooler on the top of a mountain than in the valley below. The troposphere is denser than the layers of the atmosphere above it (because of the weight compressing it), and it contains up to 75% of the mass of the atmosphere. It is primarily composed of nitrogen (78%) and oxygen (21%) with only small concentrations of other trace gases. Nearly all atmospheric water vapour or moisture is found in the troposphere. The troposphere is the layer where most of the world's weather takes place. Since temperature decreases with altitude in the troposphere, warm air near the surface of the Earth can readily rise, being less dense than the colder air above it. In fact air molecules can travel to the top of the troposphere and back down again in a just a few days. Such vertical movement or convection of air generates clouds and ultimately rain from the moisture within the air, and gives rise to much of the weather which we experience. The troposphere is capped by the tropopause, a region of stable temperature. Air temperature then begins to rise in the stratosphere. Such a temperature increase prevents much air convection beyond the tropopause, and consequently most weather phenomena, including towering cumulonimbus thunderclouds, are confined to the troposphere. Sometimes the temperature does not decrease with height in the troposphere, but increases. Such a situation is known as a temperature inversion. Temperature inversions limit or prevent the vertical mixing of air. Such atmospheric stability can lead to air pollution episodes with air pollutants emitted at ground level becoming trapped underneath the temperature inversion. Stratosphere The stratosphere is the second major layer of the atmosphere. It lies above the troposphere and is separated from it by the tropopause. It occupies the region of atmosphere from about 12 to 50 km, although its lower boundary tends to be higher nearer the equator and lower nearer the poles. The stratosphere defines a layer in which temperatures rises with increasing altitude. At the top of the stratosphere the thin air may attain temperatures close to 0°C. This rise in temperature is caused by the absorption of ultraviolet (UV) radiation from the Sun by the ozone layer. Such a temperature profile creates very stable atmospheric conditions, and the stratosphere lacks the air turbulence that is so prevalent in the troposphere. Consequently, the stratosphere is almost completely free of clouds or other forms of weather. The stratosphere provides some advantages for long-distant flight because it is above stormy weather and has strong, steady, horizontal winds. The stratosphere is separated from the mesosphere above by the stratopause. Mesosphere The mesosphere (literally middle sphere) is the third highest layer in our atmosphere, occupying the region 50 km to 80 km above the surface of the Earth, above the troposphere and stratosphere, and below the thermosphere. It is separated from the stratosphere by the stratopause and from the thermosphere by the mesopause. Temperatures in the mesosphere drop with increasing altitude to about -100°C. The mesosphere is the coldest of the atmospheric layers. In fact it is colder then Antarctica's lowest recorded temperature. It is cold enough to freeze water vapor into ice clouds. You can see these clouds if sunlight hits them after sunset. They are called Noctilucent Clouds (NLC). NLCs are most readily visible when the Sun is from 4 to 16 degrees below the horizon. The mesosphere is also the layer in which a lot of meteors burn up while entering the Earth's atmosphere. From the Earth they are seen as shooting stars. The dark blue layer next to the blackness of space in the image below is the mesosphere. In fact the upper atmosphere extends much further out, into the thermosphere. Thermosphere The thermosphere (literally "heat sphere") is the outer layer of the atmosphere, separated from the mesosphere by the mesopause. Within the thermosphere temperatures rise continually to well beyond 1000°C. The few molecules that are present in the thermosphere receive extraordinary amounts of energy from the Sun, causing the layer to warm to such high temperatures. Air temperature, however, is a measure of the kinetic energy of air molecules, not of the total energy stored by the air. Therefore, since the air is so thin within the thermosphere, such temperature values are not comparable to those of the troposphere or stratosphere. Although the measured temperature is very hot, the thermosphere would actually feel very cold to us because the total energy of only a few air molecules residing there would not be enough to transfer any appreciable heat to our skin. The lower part of the thermosphere, from 80 to 550 km above the Earth's surface, contains the ionosphere. Beyond the ionosphere extending out to perhaps 10,000 km is the exosphere or outer thermosphere, which gradually merges into space. Ionosphere The ionosphere is a layer of ionized air in the atmosphere extending from almost 80 km above the Earth's surface altitudes of 600 km and more. Technically, the ionosphere is not another atmospheric layer. It occupies the same region of the upper atmosphere as the thermosphere. In this region of the atmosphere the Sun's energy is so strong that it breaks apart molecules and atoms of air, leaving ions (atoms with missing electrons) and free-floating electrons. The ionosphere is the region of the atmosphere where the aurorae occur. Ionisation of air molecules in the ionosphere is produced by ultraviolet radiation from the Sun, and to a lesser extent by high-energy particles from the Sun and from cosmic rays. Aurora On certain nights at high latitudes shifting patterns of light may been seen in the sky. These are the aurorae. The bright lights are caused by high-energy particles streaming out from the Sun - the solar wind - striking the Earth's upper atmosphere or ionosphere. Energy from these electrically charged particles is converted into light, forming visible glows, rays, arcs, bands and veils. This light is usually greenish, but is sometimes red as well. The charged particles are attracted by the Earth's magnetic field. Near the magnetic poles, the Earth's magnetic field becomes much stronger. Consequently, it is nearer the magnetic poles that the aurorae are most frequently witnessed. The power of aurorae depends mostly on the strength of the solar wind. During an intense solar storm, the wind can intensify very strongly, and aurorae may be seen at lower latitudes further from the magnetic poles. Every 11 years, at the peak of the sunspot cycle there is an increase in intensity of the solar wind, and with it, an increase in frequency and intensity of auroral displays. Aurorae occur in both the Northern and Southern Hemispheres. In the Northern Hemisphere, the display is known as the aurora borealis, or northern lights. In the Southern Hemisphere, it is called the aurora australis, or southern lights. The term aurora polaris, polar lights, is a general name for both. Aurorae are usually visible from within the Arctic or Antarctic circles - Antarctica, Greenland, Iceland and Northern regions of Canada, Alaska, Scandinavia and Russia. During times of more intense activity on the Sun, auroral storms can be viewed at lower latitudes such as northern Scotland and most of Norway, Sweden and Finland. Very rarely displays can be seen from northerly parts of Europe and the United States. The large number of free electrons in the ionosphere allows the propagation of electromagnetic waves.
Recommended publications
  • Climate Change and Human Health: Risks and Responses
    Climate change and human health RISKS AND RESPONSES Editors A.J. McMichael The Australian National University, Canberra, Australia D.H. Campbell-Lendrum London School of Hygiene and Tropical Medicine, London, United Kingdom C.F. Corvalán World Health Organization, Geneva, Switzerland K.L. Ebi World Health Organization Regional Office for Europe, European Centre for Environment and Health, Rome, Italy A.K. Githeko Kenya Medical Research Institute, Kisumu, Kenya J.D. Scheraga US Environmental Protection Agency, Washington, DC, USA A. Woodward University of Otago, Wellington, New Zealand WORLD HEALTH ORGANIZATION GENEVA 2003 WHO Library Cataloguing-in-Publication Data Climate change and human health : risks and responses / editors : A. J. McMichael . [et al.] 1.Climate 2.Greenhouse effect 3.Natural disasters 4.Disease transmission 5.Ultraviolet rays—adverse effects 6.Risk assessment I.McMichael, Anthony J. ISBN 92 4 156248 X (NLM classification: WA 30) ©World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dis- semination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications—whether for sale or for noncommercial distribution—should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Fog and Low Clouds As Troublemakers During Wildfi Res
    When Our Heads Are in the Clouds Sometimes water droplets do not freeze in below- Detecting fog from space Up to 60,000 ft (18,000m) freezing temperatures. This happens if they do not have Weather satellites operated by the National Oceanic The fog comes a surface (like a dust particle or an ice crystal) upon and Atmospheric Administration (NOAA) collect data on on little cat feet. which to freeze. This below-freezing liquid water becomes clouds and storms. Cirrus Commercial Jetliner “supercooled.” Then when it touches a surface whose It sits looking (36,000 ft / 11,000m) temperature is below freezing, such as a road or sidewalk, NOAA operates two different types of satellites. over harbor and city Geostationary satellites orbit at about 22,236 miles Breitling Orbiter 3 the water will freeze instantly, making a super-slick icy on silent haunches (34,000 ft / 10,400m) Cirrocumulus coating on whatever it touches. This condition is called (35,786 kilometers) above sea level at the equator. At this and then moves on. Mount Everest (29,035 ft / 8,850m) freezing fog. altitude, the satellite makes one Earth orbit per day, just Carl Sandburg Cirrostratus as Earth rotates once per day. Thus, the satellite seems to 20,000 feet (6,000 m) Cumulonimbus hover over one spot below and keeps its “birds’-eye view” of nearly half the Earth at once. Altocumulus The other type of NOAA satellites are polar satellites. Their orbits pass over, or nearly over, the North and South Clear and cloudy regions over the U.S.
    [Show full text]
  • Potential European Contributions to Europa Lander Mission
    The Europa Initiative for ESA’s M5 mission Report to OPAG Michel Blanc, Geraint Jones, Olga Prieto-Ballesteros, Veerle Sterken, Javier Gomez-Elvira, David Mimoun, Adam Masters, Sascha Kempf, Luciano Iess, John Cooper, Zita Martins, Ralph Lorenz, Jérémie lasue, Nicolas André, Bruce Bills, Gael Choblet, Geoff Collins, Philippe Garnier, Kevin Hand, Paul Hartogh, Krishan Khurana, Andrea Longobardo, Katrin Stephan, Federico Tosi, Steve Vance, Tim van Hoolst, Roland Wagner, Frances Westall, Martin Wolverk, William Desprats, Ryan Russell, Georges Balmino, Julien Laurent-Varin and the Europa Initiative team August 11th, 2016 1 EI WORKING SCHEME Europa M5 for an ESA contribution to the Europa Lander mission Initiative Penetrator Contribution to Cubesat? Orbiter or… NASA lander A – GLOBAL GEOPHYSICSMagnetospheric interactions CHARACTERIZE EUROPA AS A COMPLEX DYNAMICAL SYSTEM B – ExosphereOF COUPLED LAYERS(neutrals, dust, plumes) FROM CORE TO PLASMA ENVELOPE THROUGH OCEAN AND CRYOSPHERE dimension RESPONDING TO E – Geophysics (internalJUPITER SYSTEM FORCING: TIDAL, MAGNETOSPHERICstructure, incl. Characterization of the ocean) themes ASTROBIOLOGY CONTRIBUTE TO NASA’s LANDER SCIENCE Science AND PROVIDE AN ADDITIONAL ELEMENT (AWL) As resources permit « Spacecraft » dimension EI contribution to EUROPA LanDer : SubmitteD LOI’s Joint Europa Mission (Blanc/Prieto-Ballesteros) • Baseline: Carrier-Orbiter + lander joint NASA/ESA mission: – P1a: Carrier-Orbiter provided by ESA, operated by NASA; – P1b: Alternative option: Carrier-Orbiter provided and operated by NASA; science platform (+ sub-systems?) provided by ESA – Science platform open to both ESA member states and NASA • Option 1: Augmented surface science: Astrobiology Wet Laboratory (AWL) provided by ESA + Member States to enhance landing site exploration. • Option 2: Augmented orbital science - cubesat released from carrier.
    [Show full text]
  • Nighttime Secondary Ozone Layer During Major Stratospheric Sudden Warmings in Specified-Dynamics WACCM Olga V
    JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES, VOL. 118, 8346–8358, doi:10.1002/jgrd.50651, 2013 Nighttime secondary ozone layer during major stratospheric sudden warmings in specified-dynamics WACCM Olga V. Tweedy,1,2 Varavut Limpasuvan,1 Yvan J. Orsolini,3,4 Anne K. Smith,5 Rolando R. Garcia,5 Doug Kinnison,5 Cora E. Randall,6,7 Ole-Kristian Kvissel,8 Frode Stordal,8 V. Lynn Harvey,6,7 and Amal Chandran 9 Received 26 March 2013; revised 5 July 2013; accepted 15 July 2013; published 9 August 2013. [1] A major stratospheric sudden warming (SSW) strongly impacts the entire middle atmosphere up to the thermosphere. Currently, the role of atmospheric dynamics on polar ozone in the mesosphere-lower thermosphere (MLT) during SSWs is not well understood. Here we investigate the SSW-induced changes in the nighttime “secondary” (90–105 km) ozone maximum by examining the dynamics and distribution of key species (like H and O) important to ozone. We use output from the National Center for Atmospheric Research Whole Atmosphere Community Climate Model with “Specified Dynamics” (SD-WACCM), in which the simulation is constrained by meteorological reanalyses below 1 hPa. Composites are made based on six major SSW events with elevated stratopause episodes. Individual SSW cases of temperature and MLT nighttime ozone from the model are compared against the Sounding of the Atmosphere using Broadband Emission Radiometry observations aboard the NASA’s Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite. The evolution of ozone and major chemical trace species is associated with the anomalous vertical residual motion during SSWs and consistent with photochemical equilibrium governing the MLT nighttime ozone.
    [Show full text]
  • Photochemically Driven Collapse of Titan's Atmosphere
    REPORTS has escaped, the surface temperature again Photochemically Driven Collapse decreases, down to about 86 K, slightly of Titan’s Atmosphere above the equilibrium temperature, because of the slight greenhouse effect resulting Ralph D. Lorenz,* Christopher P. McKay, Jonathan I. Lunine from the N2 opacity below (longward of) 200 cm21. Saturn’s giant moon Titan has a thick (1.5 bar) nitrogen atmosphere, which has a These calculations assume the present temperature structure that is controlled by the absorption of solar and thermal radiation solar constant of 15.6 W m22 and a surface by methane, hydrogen, and organic aerosols into which methane is irreversibly converted albedo of 0.2 and ignore the effects of N2 by photolysis. Previous studies of Titan’s climate evolution have been done with the condensation. As noted in earlier studies assumption that the methane abundance was maintained against photolytic depletion (5), when the atmosphere cools during the throughout Titan’s history, either by continuous supply from the interior or by buffering CH4 depletion, the model temperature at by a surface or near surface reservoir. Radiative-convective and radiative-saturated some altitudes in the atmosphere (here, at equilibrium models of Titan’s atmosphere show that methane depletion may have al- ;10 km for 20% CH4 surface humidity) lowed Titan’s atmosphere to cool so that nitrogen, its main constituent, condenses onto becomes lower than the saturation temper- the surface, collapsing Titan into a Triton-like frozen state with a thin atmosphere.
    [Show full text]
  • Ozone Layer Depletion (PDF)
    United States Air and Radiation EPA 430-F-10-027 Environmental Protection 6205J August 2010 Agency www.epa.gov/ozone/strathome.html Ozone Layer Depletion The stratospheric ozone layer forms a thin shield in the upper atmosphere, protecting life on Earth from the sun’s ultraviolet (UV) rays. It has been called the Earth’s sunscreen. In the 1980s, scientists found evidence that the ozone layer was being depleted. Depletion of the ozone layer results in increased UV radiation reaching the Earth’s surface, which in turn leads to a greater chance of overexposure to UV radiation and the related health effects of skin cancer, cataracts, and immune suppression. This fact sheet explains the importance of protecting the stratospheric ozone layer. What is Stratospheric Ozone? Ozone is a naturally-occurring gas that can be good or bad for your health and the environment depending on its location in the atmosphere. In the layer near the Earth’s surface—the troposphere— ground-level or “bad” ozone is an air pollutant that is a key ingredient of urban smog. But higher up, in the stratosphere, “good” ozone protects life on Earth by absorbing some of the sun’s UV rays. An easy way to remember this is the phrase “good up high, bad nearby.” Ozone Layer Depletion Compounds that contain chlorine and bromine molecules, such as methyl chloroform, halons, and chlorofluorocarbons (CFCs), are stable and have atmospheric lifetimes long enough to be transported by winds into Ozone “up high” in the stratosphere protects the Earth, while ozone close to the Earth’s surface is harmful.
    [Show full text]
  • Global Ionosphere-Thermosphere-Mesosphere (ITM) Mapping Across Temporal and Spatial Scales a White Paper for the NRC Decadal
    Global Ionosphere-Thermosphere-Mesosphere (ITM) Mapping Across Temporal and Spatial Scales A White Paper for the NRC Decadal Survey of Solar and Space Physics Andrew Stephan, Scott Budzien, Ken Dymond, and Damien Chua NRL Space Science Division Overview In order to fulfill the pressing need for accurate near-Earth space weather forecasts, it is essential that future measurements include both temporal and spatial aspects of the evolution of the ionosphere and thermosphere. A combination of high altitude global images and low Earth orbit altitude profiles from simple, in-the-medium sensors is an optimal scenario for creating continuous, routine space weather maps for both scientific and operational interests. The method presented here adapts the vast knowledge gained using ultraviolet airglow into a suggestion for a next-generation, near-Earth space weather mapping network. Why the Ionosphere, Thermosphere, and Mesosphere? The ionosphere-thermosphere-mesosphere (ITM) region of the terrestrial atmosphere is a complex and dynamic environment influenced by solar radiation, energy transfer, winds, waves, tides, electric and magnetic fields, and plasma processes. Recent measurements showing how coupling to other regions also influences dynamics in the ITM [e.g. Immel et al., 2006; Luhr, et al, 2007; Hagan et al., 2007] has exposed the need for a full, three- dimensional characterization of this region. Yet the true level of complexity in the ITM system remains undiscovered primarily because the fundamental components of this region are undersampled on the temporal and spatial scales that are necessary to expose these details. The solar and space physics research community has been driven over the past decade toward answering scientific questions that have a high level of practical application and relevance.
    [Show full text]
  • Marina Galand
    Thermosphere - Ionosphere - Magnetosphere Coupling! Canada M. Galand (1), I.C.F. Müller-Wodarg (1), L. Moore (2), M. Mendillo (2), S. Miller (3) , L.C. Ray (1) (1) Department of Physics, Imperial College London, London, U.K. (2) Center for Space Physics, Boston University, Boston, MA, USA (3) Department of Physics and Astronomy, University College London, U.K. 1." Energy crisis at giant planets Credit: NASA/JPL/Space Science Institute 2." TIM coupling Cassini/ISS (false color) 3." Modeling of IT system 4." Comparison with observaons Cassini/UVIS 5." Outstanding quesAons (Pryor et al., 2011) SATURN JUPITER (Gladstone et al., 2007) Cassini/UVIS [UVIS team] Cassini/VIMS (IR) Credit: J. Clarke (BU), NASA [VIMS team/JPL, NASA, ESA] 1. SETTING THE SCENE: THE ENERGY CRISIS AT THE GIANT PLANETS THERMAL PROFILE Exosphere (EARTH) Texo 500 km Key transiLon region Thermosphere between the space environment and the lower atmosphere Ionosphere 85 km Mesosphere 50 km Stratosphere ~ 15 km Troposphere SOLAR ENERGY DEPOSITION IN THE UPPER ATMOSPHERE Solar photons ion, e- Neutral Suprathermal electrons B ion, e- Thermal e- Ionospheric Thermosphere Ne, Nion e- heang Te P, H * + Airglow Neutral atmospheric Exothermic reacAons heang IS THE SUN THE MAIN ENERGY SOURCE OF PLANERATY THERMOSPHERES? W Main energy source: UV solar radiaon Main energy source? EartH Outer planets CO2 atmospHeres Exospheric temperature (K) [aer Mendillo et al., 2002] ENERGY CRISIS AT THE GIANT PLANETS Observed values at low to mid-latudes solsce equinox Modeled values (Sun only) [Aer
    [Show full text]
  • Stratosphere-Troposphere Coupling: a Method to Diagnose Sources of Annular Mode Timescales
    STRATOSPHERE-TROPOSPHERE COUPLING: A METHOD TO DIAGNOSE SOURCES OF ANNULAR MODE TIMESCALES Lawrence Mudryklevel, Paul Kushner p R ! ! SPARC DynVar level, Z(x,p,t)=− T (x,p,t)d ln p , (4) g !ps x,t p ( ) R ! ! Z(x,p,t)=− T (x,p,t)d ln p , (4) where p is the pressure at the surface, R is the specific gas constant and g is the gravitational acceleration s g !ps(x,t) where p is the pressure at theat surface, the surface.R is the specific gas constant and g is the gravitational acceleration Abstract s Geopotentiallevel, Height Decomposition Separation of AM Timescales p R ! ! at the surface. This time-varying geopotentialZ( canx,p,t be)= decomposed− T into(x,p a,t cli)dmatologyln p , and anomalies from the(4) climatology AM timescales track seasonal variations in the AM index’s decorrelation time6,7. For a hydrostatic fluid, geopotential height may be describedg !p sas(x ,ta) function of time, pressure level Timescales derived from Annular Mode (AM) variability provide dynamical and ashorizontalZ(x,p,t position)=Z (asx,p a )+temperatureδZ(x,p,t integral). Decomposing from the Earth’s the temperature surface to a andgiven surface pressure pressure fields inananalogous insight into stratosphere-troposphere coupling and are linked to the strengthThis of time-varying level, geopotentialwhere can beps is decomposed the pressure at into the a surface, climatologyR is the and specific anomalies gas constant from and theg is climatology the gravitational acceleration NCEP, 1958-2007 level: ^ a) o (yL ) d) o AM responses to climate forcings.
    [Show full text]
  • First Results from the Solar Mesosphere Explorer
    N_A_ru_RE_v_o_L_JOS_I _SEPTE__ MB_E_R_I_98_3 ---------- NEWSANDVIEWS------------------15 and changes in environmental variables demonstrating the complementarity of the getic particles - caused by a solar proton (such as food density) are well known. two approaches. 0 event4, for example. The largest event in Previously, comparative studies and op­ the current solar cycle occurred on 13 July timality theory have addressed rather dif­ 1982, and the notable decrease of ozone ferent kinds of ethological issue. The ap­ Paul H. Harvey is a lecturer in the School of concentration it caused was measured by plication of optimal foraging models to Biological Sciences, University of Sussex, SME. Proton events of this kind inject large data on interspecies differences in territory BrightonBN19RH, andGeorginaM. Mace is a research associate at London Zoo and at the numbers of high-energy protons into the size may throw light on the precise form of Department of Anthropology, University Col­ middle atmosphere, changing the concen­ cross-species relationships, as well as lege ofLondon, London WCIE 6BT. trations of ionized hydrogen, nitrogen and oxygen, and thus the ozone destruction rate and density. SME's near-infrared Atmospheric chemistry spectrometer observed ozone depletion reaching 70 per cent at 65° latitude, 78 km altitude, on the morning side and 10-20 per First results from the cent on the afternoon side. All the observations, including those of Solar Mesosphere Explorer the proton event, have been satisfactorily from Guy Brasseur compared with a particularly elaborate two-dimensional model which takes into THE first results from the Solar Meso­ foreseen by the Chapman theory in 1930, account most chemical reactions related to sphere Explorer (SME), a satellite designed and show that atmospheric temperature is the mesosphere and the fundamental specially to study atmospheric ozone, are the principal cause of changes in ozone dynamical mechanisms5•6 • now becoming available (Geophys.
    [Show full text]
  • Hohonu Volume 5 (PDF)
    HOHONU 2007 VOLUME 5 A JOURNAL OF ACADEMIC WRITING This publication is available in alternate format upon request. TheUniversity of Hawai‘i is an Equal Opportunity Affirmative Action Institution. VOLUME 5 Hohonu 2 0 0 7 Academic Journal University of Hawai‘i at Hilo • Hawai‘i Community College Hohonu is publication funded by University of Hawai‘i at Hilo and Hawai‘i Community College student fees. All production and printing costs are administered by: University of Hawai‘i at Hilo/Hawai‘i Community College Board of Student Publications 200 W. Kawili Street Hilo, Hawai‘i 96720-4091 Phone: (808) 933-8823 Web: www.uhh.hawaii.edu/campuscenter/bosp All rights revert to the witers upon publication. All requests for reproduction and other propositions should be directed to writers. ii d d d d d d d d d d d d d d d d d d d d d d Table of Contents 1............................ A Fish in the Hand is Worth Two on the Net: Don’t Make me Think…different, by Piper Seldon 4..............................................................................................Abortion: Murder-Or Removal of Tissue?, by Dane Inouye 9...............................An Etymology of Four English Words, with Reference to both Grimm’s Law and Verner’s Law by Piper Seldon 11................................Artifacts and Native Burial Rights: Where do We Draw the Line?, by Jacqueline Van Blarcon 14..........................................................................................Ayahuasca: Earth’s Wisdom Revealed, by Jennifer Francisco 16......................................Beak of the Fish: What Cichlid Flocks Reveal About Speciation Processes, by Holly Jessop 26................................................................................. Climatic Effects of the 1815 Eruption of Tambora, by Jacob Smith 33...........................Columnar Joints: An Examination of Features, Formation and Cooling Models, by Mary Mathis 36....................
    [Show full text]
  • Aviation Glossary
    AVIATION GLOSSARY 100-hour inspection – A complete inspection of an aircraft operated for hire required after every 100 hours of operation. It is identical to an annual inspection but may be performed by any certified Airframe and Powerplant mechanic. Absolute altitude – The vertical distance of an aircraft above the terrain. AD - See Airworthiness Directive. ADC – See Air Data Computer. ADF - See Automatic Direction Finder. Adverse yaw - A flight condition in which the nose of an aircraft tends to turn away from the intended direction of turn. Aeronautical Information Manual (AIM) – A primary FAA publication whose purpose is to instruct airmen about operating in the National Airspace System of the U.S. A/FD – See Airport/Facility Directory. AHRS – See Attitude Heading Reference System. Ailerons – A primary flight control surface mounted on the trailing edge of an airplane wing, near the tip. AIM – See Aeronautical Information Manual. Air data computer (ADC) – The system that receives and processes pitot pressure, static pressure, and temperature to present precise information in the cockpit such as altitude, indicated airspeed, true airspeed, vertical speed, wind direction and velocity, and air temperature. Airfoil – Any surface designed to obtain a useful reaction, or lift, from air passing over it. Airmen’s Meteorological Information (AIRMET) - Issued to advise pilots of significant weather, but describes conditions with lower intensities than SIGMETs. AIRMET – See Airmen’s Meteorological Information. Airport/Facility Directory (A/FD) – An FAA publication containing information on all airports, seaplane bases and heliports open to the public as well as communications data, navigational facilities and some procedures and special notices.
    [Show full text]