Summary of a Program Review Held at Huntsville, Alabama October 19-21, 1982
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hohonu Volume 5 (PDF)
HOHONU 2007 VOLUME 5 A JOURNAL OF ACADEMIC WRITING This publication is available in alternate format upon request. TheUniversity of Hawai‘i is an Equal Opportunity Affirmative Action Institution. VOLUME 5 Hohonu 2 0 0 7 Academic Journal University of Hawai‘i at Hilo • Hawai‘i Community College Hohonu is publication funded by University of Hawai‘i at Hilo and Hawai‘i Community College student fees. All production and printing costs are administered by: University of Hawai‘i at Hilo/Hawai‘i Community College Board of Student Publications 200 W. Kawili Street Hilo, Hawai‘i 96720-4091 Phone: (808) 933-8823 Web: www.uhh.hawaii.edu/campuscenter/bosp All rights revert to the witers upon publication. All requests for reproduction and other propositions should be directed to writers. ii d d d d d d d d d d d d d d d d d d d d d d Table of Contents 1............................ A Fish in the Hand is Worth Two on the Net: Don’t Make me Think…different, by Piper Seldon 4..............................................................................................Abortion: Murder-Or Removal of Tissue?, by Dane Inouye 9...............................An Etymology of Four English Words, with Reference to both Grimm’s Law and Verner’s Law by Piper Seldon 11................................Artifacts and Native Burial Rights: Where do We Draw the Line?, by Jacqueline Van Blarcon 14..........................................................................................Ayahuasca: Earth’s Wisdom Revealed, by Jennifer Francisco 16......................................Beak of the Fish: What Cichlid Flocks Reveal About Speciation Processes, by Holly Jessop 26................................................................................. Climatic Effects of the 1815 Eruption of Tambora, by Jacob Smith 33...........................Columnar Joints: An Examination of Features, Formation and Cooling Models, by Mary Mathis 36.................... -
The Stratopause Evolution During Different Types of Sudden Stratospheric Warming Event
Clim Dyn DOI 10.1007/s00382-014-2292-4 The stratopause evolution during different types of sudden stratospheric warming event Etienne Vignon · Daniel M. Mitchell Received: 18 February 2014 / Accepted: 5 August 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Recent work has shown that the vertical struc- Keywords Stratopause · Sudden stratospheric warming · ture of the Arctic polar vortex during different types of MERRA data · Polar vortex · sudden stratospheric warming (SSW) events can be very Middle atmospheric circulation distinctive. Specifically, SSWs can be classified into polar vortex displacement events or polar vortex splitting events. This paper aims to study the Arctic stratosphere during 1 Introduction such events, with a focus on the stratopause using the Mod- ern Era-Restrospective analysis for Research and Applica- The stratopause is characterised by a reversal of the atmos- tions reanalysis data set. The reanalysis dataset is compared pheric lapse rate at around 50 km (~1 hPa). While strato- against two independent satellite reconstructions for valida- spheric ozone heating is responsible for the stratopause pres- tion purposes. During vortex displacement events, the strat- ence at sunlit latitudes, westward gravity wave drag (and to opause temperature and pressure exhibit a wave-1 structure a lesser extent, stationary gravity wave drag) maintains the and are in quadrature whereas during vortex splitting events stratopause in the polar night jet (Hitchman et al. 1989). they exhibit a wave-2 structure. For both types of SSW the Indeed, the westward and stationary gravity wave (GW) temperature anomalies at the stratopause are shown to be breaking induces a mesospheric meridional flow toward the generated by ageostrophic vertical motions. -
Earth's Atmospheric Layers
Earth's atmospheric layers Earth's atmospheric layers Lesson plan (Polish) Lesson plan (English) Earth's atmospheric layers Source: licencja: CC 0, [online], dostępny w internecie: www.pixabay.pl. Link to the lesson Before you start you should know what the place of the atmosphere is in relation to the lithosphere, hydrosphere, biosphere and pedosphere; that the Earth's atmosphere is the part of the Earth and moves with it. You will learn explain the term „atmosphere”; name gases that form the air and their percentage share; name permanent and variable components of atmospheric air; name the layers of the atmosphere; discuss the role of the ozone layer; characterize the effects of the ozone hole and the greenhouse effect. Nagranie dostępne na portalu epodreczniki.pl nagranie abstraktu What layers is the atmosphere built of? In the Earth's atmosphere we distinguish 5 main layers characterized by specific features and 4 intermediate layers called pauses. The boundaries between them are conventional and change depending on the geographical latitude, terrain and season of the year. The closest one to the surface of the earth is the troposphere. Its thickness ranges from 7 km (in winter) to 10 km (in summer) above the poles, and 15‐18 km above the equator. The main feature that allows determining the boundary of the troposphere is the drop in the air temperature with an increase of about 0,6°C per 100 m. In the upper layer of the troposphere, the temperature reaches -55°C (above arctic regions) to -70°C (above equatorial regions). Above this layer there is a thin tropopause with the constant temperature, and above it there is the stratosphere extending up to a height of about 50 km, in which the air temperature rises to reach 0°C. -
Methods of Oabservation at Sea Meteorological Soundings in The
WORLD METEOROLOGICAL ORGANIZATION WORLD METEOROLOGICAL ORGANIZATION TECHNICAL NOTE No. 2 TECHNICAL NOTE No. 60 METHODS OF OABSERVATION AT SEA METEOROLOGICAL SOUNDINGS IN THE PARTUPPER I – SEA SURFACEATMOSPHERE TEMPERATURE by W.W. KELLOGG WMO-No.WMO-No. 153. 26. TP. 738 Secretariat of the World Meteorological Organization – Geneva – Switzerland THE WMO The WOTld :Meteol'ological Organization (Wl\IO) is a specialized agency of the United Nations of which 125 States and Territories arc Members. It was created: to facilitate international co~operation in the establishment of networks of stations and centres to provide meteorological services and observationsI to promote the establishment and maintenance of systems for the rapid exchange of meteorological information, to promote standardization of meteorological observations and ensure the uniform publication of observations and statistics. to further the application of rneteol'ology to Rviatioll, shipping, agricultul"C1 and other human activities. to encourage research and training in meteorology. The machinery of the Organization consists of: The World Nleteorological Congress, the supreme body of the o.rganization, brings together the delegates of all Members once every four years to determine general policies for the fulfilment of the purposes of the Organization, to adopt Technical Regulations relating to international meteorological practice and to determine the WMO programme, The Executive Committee is composed of 21 dil'cetors of national meteorological services and meets at least once a yeae to conduct the activities of the Organization and to implement the decisions taken by its Members in Congress, to study and make recommendations Oll matters affecting international meteorology and the opel'ation of meteorological services. -
Boundary Layer Experiment—1983 Edwin W
Roland B. Stull and Boundary Layer Experiment—1983 Edwin W. Eloranta Department of Meteorology University of Wisconsin Madison, WI 53706 Abstract flat pasture by ANL. This system measured the three components of velocity, as well as the thermal structure Interactions between fair-weather cumulus clouds and mixed-layer of the lowest 1.5 km of the boundary layer. ANL also thermals were the focus of a one-month field experiment in Oklahoma. erected a 5 m tower equipped with chemistry and fast- This experiment, called Boundary Layer Experiment—1983 (BLX83), response turbulence sensors, installed a net radiometer, combined remote sensors, surface observations, balloon platforms, and aircraft measurements to study the kinematics at the top of the and launched kytoons that provided profiles of the daytime convective boundary layer. Emphasis was placed on the lowest 800 m of the boundary layer. In addition, a stereo study of the entrainment zone, and on the relationship between indi- camera system was used at the ANL site to provide vidual thermals as identified by lidar and turbulent motions and photographs of local cloud conditions. fluxes as measured by aircraft and sodar. 2) An unmanned Portable Automated Mesonet (PAM II) station, which was designed and operated by NCAR, and also was located at the ANL site. In addition to the 1. Introduction standard variables of mean pressure, temperature, hu- midity, rainfall, and wind speed and direction, this sta- A field experiment was conducted in Oklahoma for the pur- tion provided net radiation data. pose of measuring the interaction between the boundary 3) The UW lidar system (Kunkel et al, 1977; Sroga et al., layer and fair-weather cumulus clouds. -
The Earth's Atmosphere
A Resource Booklet for SACE Stage 1 Earth and Environmental Science The following pages have been prepared by practicing teachers of SACE Earth and Environmental Science. The six Chapters are aligned with the six topics described in the SACE Stage 1 subject outline. They aim to provide an additional source of contexts and ideas to help teachers plan to teach this subject. For further information, including the general and assessment requirements of the course see: https://www.sace.sa.edu.au/web/earth-and-environmental- science/stage-1/planning-to-teach/subject-outline A Note for Teachers The resources in this booklet are not intended for ‘publication’. They are ‘drafts’ that have been developed by teachers for teachers. They can be freely used for educational purposes, including course design, topic and lesson planning. Each Chapter is a living document, intended for continuous improvement in the future. Teachers of Earth and Environmental Science are invited to provide feedback, particularly suggestions of new contexts, field-work and practical investigations that have been found to work well with students. Your suggestions for improvement would be greatly appreciated and should be directed to our project coordinator:: [email protected] Preparation of this booklet has been coordinated and funded by the Geoscience Pathways Project, under the sponsorship of the Geological Society of Australia (GSA) and the Teacher Earth Science Education Program (TESEP). In-kind support has been provided by the SA Department of Energy and Mining (DEM) and the Geological Survey of South Australia (GSSA). FAIR USE: The teachers named alongside each chapter of this document have researched available resources, selected and collated these notes and images from a wide range of sources. -
Layers of the Atmosphere
Name ________________________ Layers of the Atmosphere By Jack Fearing, Lincoln Junior High School, Hibbing, Minnesota OBJECTIVE: To discover how the atmosphere can be divided into layers based on temperature changes at different heights, by making a graph. BACKGROUND: The atmosphere can be divided into four layers based on temperature variations. The layer closest to the Earth is called the troposphere. Above this layer is the stratosphere, followed by the mesosphere, then the thermosphere. The upper boundaries between these layers are known as the tropopause, the stratopause, and the mesopause, respectively. Temperature variations in the four layers are due to the way solar energy is absorbed as it moves downward through the atmosphere. The Earth’s surface is the primary absorber of solar energy. Some of this energy is reradiated by the Earth as heat, which warms the overlying troposphere. The global average temperature in the troposphere rapidly decreases with altitude until the tropopause, the boundary between the troposphere and the stratosphere. The temperature begins to increase with altitude in the stratosphere. This warming is caused by a form of oxygen called ozone (O3) absorbing ultraviolet radiation from the sun. Ozone protects us from most of the sun’s ultraviolet radiation, which can cause cancer, genetic mutations, and sunburn. Scientists are concerned that human activity is contributing to a decrease in stratospheric ozone. Nitric oxide, which is the exhaust of high-flying jets, and chlorofluorocarbons (CFCs), which are used as refrigerants, may contribute to ozone depletion. At the stratopause, the temperature stops increasing with altitude. The overlying mesosphere does not absorb solar radiation, so the temperature decreases with altitude. -
Satellite Observations of Middle Atmosphere Gravity Wave Absolute Momentum flux and of Its Vertical Gradient During Recent Stratospheric Warmings
Atmos. Chem. Phys., 16, 9983–10019, 2016 www.atmos-chem-phys.net/16/9983/2016/ doi:10.5194/acp-16-9983-2016 © Author(s) 2016. CC Attribution 3.0 License. Satellite observations of middle atmosphere gravity wave absolute momentum flux and of its vertical gradient during recent stratospheric warmings Manfred Ern1, Quang Thai Trinh1, Martin Kaufmann1, Isabell Krisch1, Peter Preusse1, Jörn Ungermann1, Yajun Zhu1, John C. Gille2,3, Martin G. Mlynczak4, James M. Russell III5, Michael J. Schwartz6, and Martin Riese1 1Institut für Energie- und Klimaforschung, Stratosphäre (IEK–7), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany 2Center for Limb Atmospheric Sounding, University of Colorado at Boulder, Boulder, Colorado, USA 3National Center for Atmospheric Research, Boulder, Colorado, USA 4NASA Langley Research Center, Hampton, Virginia, USA 5Center for Atmospheric Sciences, Hampton University, Hampton, Virginia, USA 6Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA Correspondence to: Manfred Ern ([email protected]) Received: 30 March 2016 – Published in Atmos. Chem. Phys. Discuss.: 25 April 2016 Revised: 18 July 2016 – Accepted: 20 July 2016 – Published: 9 August 2016 Abstract. Sudden stratospheric warmings (SSWs) are cir- potential drag at the top of the jet likely contributes to the culation anomalies in the polar region during winter. They downward propagation of both the jet and the new elevated mostly occur in the Northern Hemisphere and affect also sur- stratopause. During PJO events, we also -
Potential Temperature Manuel Baumgartner1,2, Ralf Weigel2, Ulrich Achatz4, Allan H
https://doi.org/10.5194/acp-2020-361 Preprint. Discussion started: 4 May 2020 c Author(s) 2020. CC BY 4.0 License. Reappraising the appropriate calculation of a common meteorological quantity: Potential Temperature Manuel Baumgartner1,2, Ralf Weigel2, Ulrich Achatz4, Allan H. Harvey3, and Peter Spichtinger2 1Zentrum für Datenverarbeitung, Johannes Gutenberg University Mainz, Germany 2Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Germany 3Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, USA 4Institut für Atmosphäre und Umwelt, Goethe-Universität Frankfurt, Frankfurt am Main, Germany Correspondence: Manuel Baumgartner ([email protected]) Abstract. The potential temperature is a widely used quantity in atmospheric science since it is conserved for air’s adiabatic changes of state. Its definition involves the specific heat capacity of dry air, which is traditionally assumed as constant. However, the literature provides different values of this allegedly constant parameter, which are reviewed and discussed in this study. Furthermore, we derive the potential temperature for a temperature-dependent parameterization of the specific heat capacity of 5 dry air, thus providing a new reference potential temperature with a more rigorous basis. This new reference shows different values and vertical gradients in the upper troposphere and the stratosphere compared to the potential temperature that assumes constant heat capacity. The application of the new reference potential temperature to the prediction of gravity wave breaking altitudes reveals that the predicted wave breaking height may depend on the definition of the potential temperature used. 1 Introduction 10 According to the book Thermodynamics of the Atmosphere by Alfred Wegener (1911), the first published use of the expression potential temperature in meteorology is credited to Wladimir Köppen (1888)1 and Wilhelm von Bezold (1888), both following the conclusions of Hermann von Helmholtz (1888) (Kutzbach, 2016). -
General Circulation of the Tropical Lower Stratosphere
REVIEWSOF GEOPHYSICSAND SPACE PHYSICS, VOL. 11, No. 2, PP. 191-222, MAY 1973 General Circulation of the Tropical Lower Stratosphere JOHN M. WALLACE1 Department o[ AtmosphericSciences, University of Washington Seattle, Washington 98105 The zonally symmetric flow in the tropical lower stratosphere exhibits three types of variability: (1) an annual cycle that has odd symmetry about the equator with easterliesin the summer hemisphereand westefiies in the winter hemisphere, (2) a semiannual oscillation with a rather complex distribution of amplitude and phase, and (3) irregular long-period fluctuations with an average period of somewhat >2 years and even symmetry about the equator, successiveeasterly and westerly wind regimesof this so-calledquasi-biennial oscillation being observed to propagatedownward at a rate of •1 km month-•. Superposedon the zonally symmetriccirculation are two types of planetary scale wave disturbanceswhich propagateboth zonally and vertically with periodsof 10-15 days and 4-5 days, respectively.These have been identified with the gravest modesof the family of forced zonally propagatingwaves on a rotatingsphere. The first type is an atmospheric'Kelvin wave,'which bears some similarity to the shallowwater wave that propagatesalong coastlines.The second type is a 'mixed Rossby-gravitywave.' Both waves transportenergy upward whichsuggests a troposphericenergy source. The wavesare capableof modifying the zonally symmetricflow in the stratospherethrough the vertical transport of zonal momentum. Considerationof the interactions -
Representation of the Equatorial Stratopause Semiannual Oscillation in Global Atmospheric Reanalyses Yoshio Kawatani1, Toshihiko Hirooka2, Kevin Hamilton3,4, Anne K
https://doi.org/10.5194/acp-2020-73 Preprint. Discussion started: 9 March 2020 c Author(s) 2020. CC BY 4.0 License. Representation of the Equatorial Stratopause Semiannual Oscillation in Global Atmospheric Reanalyses Yoshio Kawatani1, Toshihiko Hirooka2, Kevin Hamilton3,4, Anne K. Smith5, Masatomo Fujiwara6 1Japan Agency for Marine-Earth Science and Technology, Yokohama, 236-0001, Japan 5 2Faculty of Science, Kyushu University, Fukuoka, 819-0395, Japan 3International Pacific Research Center, University of Hawaii, Honolulu, 96822, USA 4Department of Atmospheric Sciences, University of Hawaii, Honolulu, 96822, USA 5National Center for Atmospheric Research, Boulder, 80307, USA 6Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan 10 Correspondence to: Y. Kawatani ([email protected]) Abstract. This paper reports on a project to compare the representation of the semiannual oscillation (SAO) in the equatorial stratosphere and lower mesosphere among six major global atmospheric reanalysis datasets and with recent satellite SABER and MLS observations. All reanalyses have a good representation of the quasi-biennial oscillation (QBO) in the equatorial lower and middle stratosphere and each displays a clear SAO centered near the stratopause. However, the differences among 15 reanalyses are much more substantial in the SAO region than in the QBO dominated region. The degree of disagreement among the reanalyses is characterized by the standard deviation (SD) of the monthly-mean zonal wind and temperature; this depends on latitude, longitude, height, and time. The zonal wind SD displays a prominent equatorial maximum that increases with height, while the temperature SD is minimum near the equator and largest in the polar regions. -
P1.16 the National Severe Storms Laboratory: 40 Years Young and Going Strong
P1.16 THE NATIONAL SEVERE STORMS LABORATORY: 40 YEARS YOUNG AND GOING STRONG Rodger A. Brown Keli Tarp NOAA, National Severe Storms Laboratory NOAA Public Affairs Norman, Oklahoma Norman, Oklahoma 1. INTRODUCTION WSR-57 radar was monitoring the storms In 1964, a small group of researchers started continuously and measuring the reflectivity. This a new organization that would forever change the research led to improved commercial airline safety severe storm scene in the United States and guidelines in the vicinity of thunderstorms that are around the world. The U.S. Weather Bureau’s still in use today. National Severe Storms Project (NSSP) moved from Kansas City to Norman, Oklahoma and 3. WEATHER RADAR RESEARCH AND changed its name to the National Severe Storms DEVELOPMENT LEADING TO WSR-88D Laboratory (NSSL). The mission of the laboratory is to increase scientific understanding of severe The very foundation of today’s National storms that leads to better forecasts and warnings Severe Storms Laboratory lies in weather radar of hazardous weather conditions. research and development that began before its During its first 25 years, NSSL continued formation in 1964. Part of NSSL’s initial role was NSSP’s (and its predecessors’) long-standing to maximize the use of the WSR-57 surveillance tradition of improving understanding of severe radar for the Weather Bureau. NSSL continues to storms by conducting a data collection program push the weather research community to the edge each spring that included surface and upper air through its research and development efforts such mesonetworks, research aircraft, and radars. as Doppler radar, operational WSR-88D Doppler Over the years, Doppler radars (including dual radar and now dual polarization and phased array polarization), an instrumented TV transmitter radar.