<<

List of Contributors

Manfred-Josef Borens R¨udiger Hentschel Schott AG, 1 Schott AG, Mainz 1 E-mail: manfred-josef.borens E-mail: ruediger.hentschel @schott.com @schott.com

Roland Dudek Hartmut H¨oneß Schott AG, Mainz 1 Schott AG, Mainz 1 E-mail: [email protected] E-mail: hartmut.hoeness @schott.com Torsten Gabelmann Schott AG, Mainz 1 Alfred Jacobsen E-mail: torsten.gabelmann Schott AG, Mainz 1 @schott.com retired

Helga G¨otz Werner Kiefer Schott AG, Mainz 1 Schott AG, Mainz 1 E-mail: [email protected] retired

Ruban Harikantha Konrad Knapp Schott AG, Mainz 1 Schott Lithotec AG E-mail: ruban.harikantha Otto-Schott-Straße 13 @schott.com 07745

Reiner Haug Ernst-Dieter Knohl Schott AG, Mainz 1 formerly , retired 73446 Oberkochen, Wilfried Heimerl Schott AG, Mainz 1 Ioannis Kosmas retired Schott AG, Mainz 1 E-mail: [email protected]

1 Hattenbergstraße 10, 55122 Mainz, Germany 238 List of Contributors

Cora Krause Wolfgang Pannhorst Schott AG, Mainz 1 Schott AG, Mainz 1 E-mail: [email protected] E-mail: wolfgang.pannhorst @schott.com Klaus Kristen† Norbert Reisert Roland Leroux Schott AG, Mainz 1 Schott AG, Mainz 1 E-mail: [email protected] E-mail: roland.leroux @schott.com Erich W. Rodek Schott AG, Mainz 1 Thomas Marx E-mail: [email protected] Am Waldsaum 6, 58452 Witten-Bommern, Kurt Schaupert 1 Germany, Schott AG, Mainz formerly E-mail: [email protected] Schott Technologies, 400 York Avenue, Herwig Scheidler 1 Duryea, PA 18642-2036, Schott AG, Mainz USA E-mail: [email protected] Ulrich Schiffner Hans Morian 1 Schott AG, Mainz 1 Schott AG, Mainz retired E-mail: Ulrich Schiff[email protected] Hinnerk Schildt† Gerd M¨uller Fraunhofer-Institut Wolfgang Schmidbauer f¨ur Silicatforschung, Schott AG, Mainz 1 Neunerplatz 2, E-mail: wolfgang.schmidbauer 97082 W¨urzburg, @schott.com Germany Patrik Schober Rudolf M¨uller Schott AG, Mainz 1 1 Schott AG, Mainz E-mail: [email protected] E-mail: [email protected] Fritz Schr¨oder Toni M¨unch Schott AG, Mainz 1 1 Schott AG, Mainz E-mail: [email protected] E-mail: [email protected] Fritz Siebers Peter Naß Schott AG, Mainz 1 Schott AG, Mainz 1 E-mail: [email protected] E-mail: [email protected]

1 Hattenbergstraße 10, 55122 Mainz, Germany List of Contributors 239

Burkhard Speit Schott AG, Mainz 1 E-mail: [email protected]

Martin Taplan Schott AG, Mainz 1 E-mail: [email protected]

Armin Thomas Schott AG, Mainz 1 E-mail: [email protected]

Ted Wegert Schott Home Tech North America, 5680 Shepherdsville Road, Louisville, KY 40228, USA E-mail: [email protected]

Waldemar Weinberg formerly Schott AG, Mainz 1

Evelin Weiss Schott AG, Mainz 1

Dietmar Wennemann Schott AG, Mainz 1 E-mail: dietmar.wennemann @schott.com

Eva Willhauk Schott AG, Mainz 1 E-mail: [email protected]

1 Hattenbergstraße 10, 55122 Mainz, Germany Sources of Figures

We are indebted to the following editors and authors, respectively, for the kind permission to reproduce copyrighted materials.

Material Source Original Publisher

Fig. 2.20 [2.70] The American Ceramic Society, 735 Ceramic Place, Westerville, Ohio 43081-8720, USA Fig. 2.24 [2.62] The American Ceramic Society, 735 Ceramic Place, Westerville, Ohio 43081-8720, USA Fig. 2.25 [2.62] The American Ceramic Society, 735 Ceramic Place, Westerville, Ohio 43081-8720, USA Fig. 3.12 [3.3] Rinnai Corporation 2–26, Fukuzumi, Nakagawa, Nagoya, Aichi 454, Japan Fig. 3.27 [3.33] Elsevier Science B.V., Amsterdam Publishing Division, P.O. Box 521, 1000 AM Amsterdam, The Netherlands Fig. 3.33 [3.46] Deutsche Glastechnische Gesellschaft, Mendelssohnstr. 75–77, 60325 Frankfurt, Germany Fig. 3.39 [3.48] BSH Bosch und Siemens Hausger¨ate GmbH, Carl-Wery-Str. 34, 81739 M¨unchen, Germany Fig. 3.41 [3.49] TGK Fachzeitschrift, Aumann KG, Wittelsbacher Str. 23, Postfach 1625, 95100 Selb, Germany Fig. 3.42 [3.49] TGK Fachzeitschrift, Aumann KG, Wittelsbacher Str. 23, Postfach 1625, 95100 Selb, Germany Fig. 4.1 [4.7] Deutsche Glastechnische Gesellschaft, Mendelssohnstr. 75–77, 60325 Frankfurt, Germany Fig. 4.4 [4.12] Deutsche Glastechnische Gesellschaft, Mendelssohnstr. 75–77, 60325 Frankfurt, Germany Fig. 4.5 [4.12] Deutsche Glastechnische Gesellschaft, Mendelssohnstr. 75–77, 60325 Frankfurt, Germany Fig. 4.6 S. P. G. Sprechsaal Publishing Corporation, P.O. Box 2962, 96418 Coburg, Germany Fig. 4.7 Elsevier Science B.V., Amsterdam Publishing Division, P.O. Box 521, 1000 AM Amsterdam, The Netherlands 242 Sources of Figures

Fig. 4.9 [4.47] Optical Society of America, Editorial Dept., Applied , 1613 19th St., N.W. Washington, D.C. 20009, USA Index

alkali depletion of the surface 105 Ceradur 52 alkaline-boron-silicate formulation 89 ceramic color 88, 103 alumino-silicates 13, 15 – firing of 103 – framework structure 13 ceramization 41, 42, 82 – lattice constants 20 – of glass ceramics for household aluminum coating 131 appliances 102 – of 131, 216 – of  133 annealing 90, 95 – process 1, 100 – before ceramizing 150, 151, 168 ceramizing 150, 152, 175 annealing bulk stress 169, 170 Ceran 4 approved materials for space conditions – CTE 79 212 – properties 79 ARIANE 228 – – Ceran Hightrans 79 aspherical correction 206 – – Ceran Suprema 79 astronomical telescopes 219 – stress distribution during partial AXAF (Advanced X-ray Astrophysics heating 67 Facilities) 196, 201, 224 – thermal expansion 67 – trademarks bar drawing 148 – – Ceran ArcticfireTM 56, 83 base glass 84  – – Ceran Hightrans 63, 86 batch 82  – – Ceran Suprema 54, 58, 63, 79, 87 batch house 91  – – Ceran Color 63, 86 β-eucryptite 15, 17, 19–21, 23 – – Ceran Cream 83 β-quartz (high-quartz, h-quartz)  13–16 – – Ceran-Top-System 53, 59 –– Cook-BoxTM 56, 58 bioactivity 8  biocompatibility 8 – – Cook-In 56 block casting 149 chemical resistance 139 boiling-up time 61, 63, 65 chemical stability 77 bonded-grain tools 182 chemical strengthening 109 bubbles 92 chemical treatment 216 – quality 150 chipping-off 88 bulk stress 156 cleaning agents 77 coarse annealing 150 CARA (California Association for coatings, removal of 217 Research in Astronomy) 220 coefficient of thermal expansion see casting CTE – machine 149 color layer 89 – mold 149, 150, 162 colorant 86 – – contour check 155 compaction stress 74 – of blocks 149 composition range of glass ceramics – times 146 85 244 Index continuous melting 146, 148, 150 differential thermal analysis (DTA) conventional casting 158 41 conventional production techniques of dimensional stability 207 Zerodur 145, 157, 161 Direct 100 system (for interferometry) Cook-BoxTM 56, 58 206 Cook-In 56 direct casting technique 193 cooking discontinuous melting 146–148, 150, – areas 67 161 – system 52, 59 dose of particle radiation 212 – – assembly 80 downdraft tray 98 – zone 57, 68 drilling 90, 96, 154 cooktop (bulk) materials 59 cooktop panel 51, 81 edging 96 – colored 56 electrical properties of Zerodur 139 – edge design 54 electron holes 214 – frame design 54 electron irradiation 6 – installation conditions 81 electron paramagnetic resonance (EPR) – shapes 54 214 cookware 3, 81 electronic controls 78 – good-quality 61 encircled energy 205, 207 – poor-quality 61 ESA (European Space Agency) 212 cooling rate 152 ESO (European Southern Observatory) corrosive stress 105 158, 219 critical volume 156 – New Technology Telescope 205, 220 crystal density 44 etching crystal growth 100 – baths 216 crystal layer 150, 151, 161, 162, 164, – method 217 169, 173 – removal of coating 217 crystalline phase 82 – removal of notch tensions 216 crystallization 82, 84, 100 EURECA (European Retrievable CTE 23, 82, 122, 153, 156, 209 Carrier) 212 – Ceran 79 European Southern Observatory – of glass ceramic for household see ESO appliances 83 – of h-quartz- and keatite-type fiber reinforcement 6 alumino-silicates 20 fine annealing 150, 151, 153 – of quartz- and keatite-type alumino- fining agents 86 silicates 20, 23, 131, 135, 136 fireplace sight panels 105 – of specimens 156 fusion technique 190–192 – Zerodur 129, 131, 207, 209  CTS (Ceran-Top-System )53 gas burner system 54 cullets 91 gas-fired system 66 cutting 90, 95, 96 GIOTTO 223 glass ceramics 107 decoration 87, 90 – composition range 85 – colors 59 – opaque 83 deformation of mirrors by particle – translucent 82 radiation 215 – transparent 81 delay times of nucleation 30, 31, 36, 38 glass workability 84 devitrification 84, 151 glass-melting tank 82 diamond tool machining 190 global stress test 156 differential scanning calorimetry (DSC) grinding 90, 96, 154, 158 41 gyroscope, laser gyroscope 212, 227 Index 245 half energy width 205 local stress test 156 halogen heater 65 long-term stability of Zerodur 210 handling device for thin-walled hollow low-expansion glass ceramics 81 cylinders 202 handling of large thin menisci 175 machinable glass ceramics 8 heat flow 59–61, 93, 94 – bone restoration 8 heating element 65 – dental restoration 8 heating of the tank 92 machining of Zerodur 154, 182 heating-up time 62 manufacturing of glass ceramics 91 helium permeability 139, 227 matrix glass for testing 206 heterogeneous nucleation 27 mechanical bending 98 high-quartz s.s. (high-quartz solid mechanical load resistance 76 solution) 1, 44, 82, 84 mechanical processing 96 homogeneity mechanical strength 76 – of base glass 126, 129 melting 90 – of glass ceramic 131 – behavior 85 hot forming 93, 96, 148 – of Zerodur base glass 146 – NIR-based 96 – process 92 – vacuum-based 96 membrane tool technology 205, 206 hot-forming times 146  meniscus effect during cooling 161, hysteresis of Zerodur 143 173 metastability 17, 39 induction cooking 65 METEOSAT 222 Inner Burner 54 Micralign 225 Inner Burner system 66 microcracks 216 installation conditions for cooktop microcrazing 105 panels 81 microlithography 224 interferometry of polished aspherical microroughness 204 surfaces 206 optics 212, 222 ionic conductivity 21 mirror substrates 218 IR interferometer 206 MPI telescope, Calar Alto (Spain) irradiation 133, 135, 219 – by electrons 213 multilayer substrate 9 – by protons 213 ISO 9001 155 NASA (National Aeronautics and keatite 3, 13, 15, 16, 19 Space Administration) 212 – solid solution 82 NIR radiator 97 Keck Telescope 220 NIR-based hot forming 96 notch tensions, removal of 216 lapping 154 nucleating agent 2, 28, 82, 85 – of aspherical surfaces 205 nucleation 3, 82, 100 – process 182 – density 84 LAS-glass ceramic 40, 121 – kinetics 29 laser gyroscopes 5, 212, 227 – process 25, 28 length stability of Zerodur 207 nucleus development procedure 29 LEOs (low earth orbits) 212 null system for aspherical correction 206 Li2O-Al2O3-SiO2 glass ceramics 83 Li O-Al O -SiO system 103 2 2 3 2  lifting of large thin menisci 176 optical darkening of Zerodur 215  light transmission and nucleation 32, optical properties of Zerodur 138 33 oxygen hole centers (OHCs) 214 lightweight mirrors 187, 193 lightweighting 188 paramagnetic defects 213 246 Index parting compound (for protection) residual glass phase 39, 82 150, 161, 164 ribbon heater 65 penetration depth Robax 41, 42, 103, 104 – of electrons 213 – transparent glass ceramic 103 – of protons 213 ROSAT 195, 201, 204, 223, 224 permanent stress 151, 152, 168 round disks 149 petalite 17 phase separation 28, 44 sawing 154 photonucleation 1, 7, 8 scattering 100 polishing 131, 154 screen printing 99 – of aspherical surfaces 206 sensor fields 79 pouring process 162 setting down 176 powder processing 7, 9 shaping 90 precision engineering 229 shaping process 93 production in special shapes (of shrinkage velocity 211 Zerodur) 157 slumping technique 158 production techniques (conventional) of solid solution 2, 13, 17, 124  space irradiation 6 Zerodur 145, 157, 161 special geometries 157 properties of   – shapes of Zerodur 146, 157 – Ceran Hightrans 79  spectral emission of radiators 98 – Ceran Suprema 79  spin casting technique 158, 159, 161 – Ceran 79 spinning process 162, 165 – decoration colors 89  spodumene 17, 18 – Robax 104  SPOT (Solar Patrol Observing – Zerodur 136 Telescope) 222 protective panels 105 stacking 95 stopping power for electrons quality – (BK 7) 214 – (internal) of Zerodur 140, 203  – lead silicate glass (SF 6) 214 – features (geometrical) of Zerodur – Zerodur 214 198, 204 storage supports 181 – of cookware 61  stove window 81 quality assurance of Zerodur products strand-drawing process 148 155, 203 strength of Zerodur 137 stress distribution of Ceran during R.E.O.S.C. S.A. (Recherche et ´etude partial heating 67, 70 d’optique et de science connex S.A., stress reduction after machining of 91280 St. Pierre du Perray, France) Zerodur 198, 200 223  striation quality 150 radiation compaction of Zerodur suction lifter 176 215 support of large thin menisci 175, 176 radiation stability of Zerodur M 212  surface crystallization 112 radiation stability of Zerodur 212 surface notch tensions 216 range tops 3 surface strengthening 107 rapid cooling 150, 151 Swingline 98, 100 raw material 91 reaction enthalpy 45 telescope mirror blank 121, 124, 130 real-time interferometry 205, 206 telescope mirrors 3, 5 recrystallization 45 temperature distribution 67, 69 refining section 92 temperature limiter 61 reflective optics 218 temperature–time loading 63, 74 relaxation range 209, 210 temporary stress 152, 168 removal of coatings 217 tensile stress 77 Index 247 testing during polishing 206 water jet cutting 154, 190 testing of Zerodur products 155, 162 weight reduction 188, 190, 191 thermal ageing 142 thermal cycling 209 X-ray telescopes 223 thermal expansion 22, 23, 67 thermal expansion coefficient see zero thermal expansion 152, 154 CTE   Zerodur M 142, 144, 215, 216 thermal expansion of Ceran 67 – radiation stability 212 thermal shaping 98 Zerodur 5, 52, 127, 128 thermal stress 67 – ceramization 133 thermal toughening 107 – devitrification 151 thermomechanical properties 138 – electrical properties 139 thin menisci 157, 158, 175 – hysteresis 143 thin-walled cylinders 193 – internal quality 140, 203 throughput 146, 148 – length stability 207 time–temperature transformation – long-term stability 210 (TTT) diagram 19, 31, 33, 36 – machining 154, 182 time/temperature loading 64 – melting of base glass 146 top-heating device 150 – optical darkening 215 touch-sensitive surfaces 57 – optical properties 138 translucent glass ceramics 82 – production technique transmission of cooktop panels 63, 86 – – conventional 158 transparency of glass ceramics 125, – – slumping 158 127 – – spin casting 158 transparent glass ceramics 81 – properties 136 transporting of large thin menisci 176 – quality assurance 155 treatment, chemical 216 – quality of geometrical features 198, turning device for VLTs 178 204 ultrasonic drilling/cutting 154, 190 – radiation compaction 215 UNIRAD (program name) 212 – radiation stability 212 – special geometries 146, 157 vacuum lifting device for large thin – stopping power for electrons 214 menisci 176, 178 – strength 137 vacuum-based hot forming 96 – stress reduction after machining Very Large Telescope (VLT) 158, 221 198, 200 – thermal expansion coefficient (CTE) wall panels 9 207, 209