Precision Glass and Glass-Ceramics Influence Signal Strength

Total Page:16

File Type:pdf, Size:1020Kb

Precision Glass and Glass-Ceramics Influence Signal Strength Schott at the Sharp Edge Precision glass and glass-ceramics influence signal strength oday’s geospatial reality involves mobile installations, the importance of them in Germany. In 2019 it reported a world awash with sensors. As sensor encasement grows. annual revenues of €2.2b, of which T developers seek to embed lidar None of this is new to German glass 87% was generated outside Germany. technology in ever smaller, increasingly manufacturer Schott, which is part of Schott is well known in the geospatial the Carl Zeiss Stiftung, the foundation community, because its glass has been that includes also the famous Carl Zeiss widely used in lenses for surveying company. and photogrammetric instruments. Headquartered in Mainz, Germany, Publisher Allen Cheves and managing Schott AG specializes in the editor Stewart Walker, therefore, were manufacture of glass and glass-ceramics. delighted to receive an invitation to The company employs over 16,000 visit the Schott facility, a few kilometers people in 34 countries, almost 40% of from the spot where Johannes BY ALLEN CHEVES & DR. A. STEWART WALKER Displayed with permission • LIDAR Magazine • Vol. 10 No. 4 • Copyright 2020 Spatial Media • www.lidarmag.com Schott at the Schott’s headquarters in Mainz, Germany, established in 1952 after the business was Sharp Edge moved from Jena after World War II. Gutenberg’s movable-type printing stained-glass window, lit by the morning bent and folded, and fiber optics. We press revolutionized the transmission of sun. We enjoyed a guided tour of the marveled at the application areas, which knowledge some 580 years prior. remarkable museum, marveling at Schott categorizes as home appliances, the range of glass and glass-ceramic life sciences, astronomy, pharma, Schott headquarters in Mainz products created by the company since electronics and automotive. Our hosts were Christine Fuhr, its foundation. Indeed, “museum” isn’t The various technical developments innovation/technology communications quite the right word, as the extensive for which Schott is renowned are too manager, entering her 30th year with space includes superb displays of the numerous to describe here, but there’s Schott, and Jonas Spitra, latest Schott products and concepts. a fine list on the website1. While most manager corporate The innovation and ingenuity of and innovation Schott’s top-class engineers have clearly 1 https://www.us.schott.com/english/ communication. endured throughout the company’s company/corporate_history/milestones. html#block166818 On entering the more than 135-year history. We building, we saw amazing technologies, such admired as glass with almost zero thermal the huge expansion, glass that can be Displayed with permission • LIDAR Magazine • Vol. 10 No. 4 • Copyright 2020 Spatial Media • www.lidarmag.com LIDAR Magazine readers are focused and low price2. Schott is extremely primarily on the geospatial, Schott’s willing to become involved in lidar and glass products are used in a myriad of can contribute a great deal in terms of applications. Kitchen stove tops, for materials and components, which Boris example, are a gigantic market. There summarized in the message, “Glass, are, of course, other high-quality optical glass-ceramic, and glass-to-metal sealed glass manufacturers, but products components protect lidar sensors, such as Schott’s BK7 (now N-BK7) are while maintaining a high optical recognized by almost anyone in the performance”. This includes protective optical industry. Hexagon Geosystems, windows; filters, mirror substrates and for example, uses BK7/N-BK7 in lenses for the optical path; and hermetic important components of several of its packaging for harsh conditions. Schott systems, for example optical windows. explains much of this on its website, When it comes to focal optics, the with a focus on automotive applications, designers have a large number of glass Boris Eichhorn, managing Schott’s charge though the company’s interest extends into lidar types to choose from. They use glass beyond AVs to robotics and many other with specific characteristics for each applications related to geological and individual lens in a system, balancing industrial uses. In order to reach the optical and mechanical characteristics mass market, however, manufacturers with the particular prescription desired Glass, glass-ceramic, need components that meet exact for the element to produce an optimal and glass-to-metal performance standards economically. overall design. Companies such as “ High-quality protective windows Schott target specific characteristics, sealed components must be tough to withstand unforgiving for example, transmission wavelength protect lidar sensors, conditions. A lidar sensor has to function range, scattering and refractive index reliably at a high level to provide a (among many others), in order to while maintaining continuous situational picture, so it offer products that can ultimately be a high optical needs protection from rain, temperature employed across the widest possible performance. fluctuations and impacts from stones range of optical devices. ” and other debris. Protective windows, moreover, must feature high transmission Enter lidar at lidar wavelengths that allows near Schott is interested in lidar. To learn infrared (NIR) to pass through, while more about Schott’s lidar strategy and mentioned glass solutions for protective attenuating visible ambient light. positions, we were joined for lunch windows as well as the optical paths and For the optical path of a lidar by Boris Eichhorn, senior manager hermetic packaging for laser diodes, system, filters, substrates and lenses new ventures. Coming to Schott from MEMS mirrors and photo diodes. As a must provide high performance. The Siemens in 2017, he had worked on result of its development path, Schott is precision of the interacting components Schott’s initiatives in augmented reality able to occupy different positions in the is key, because the laser beam cannot before specializing in lidar. He explained value chains of companies,whether they afford any loss of photons. Lidar sensors that Schott has built a growth platform, are component and sensor providers, must deliver long-lasting, high image which causes customers and prospective system integrators or tier 1s. quality regardless of temperature differ- customers to come to the company, According to a market study by Yole ences or aggressive climate conditions. looking for solutions. Schott can play Développement of Lyon, France, 70% High transmission and an athermal lens a proactive consultancy role, i.e. go of the lidar market will be automotive beyond being a materials supplier. He by 2025, characterized by high volume 2 http://www.yole.fr/Lidar_Market_Status.aspx Displayed with permission • LIDAR Magazine • Vol. 10 No. 4 • Copyright 2020 Spatial Media • www.lidarmag.com MIRROR MECHANICAL 360° MECHANICAL FLASH MEMS Schematic diagrams of Schott solutions in several varieties of automotive lidar (top four views). The bottom diagram shows the various Schott components that could be deployed in a MEMS lidar. system design are typically taken into against internal condensation and The component quality has a tremendous account. Overall, lidar sensors require challenging external elements of the impact on system performance. superior imaging quality, while they driving environment in all types of lidar Used as an entrance window, must be compact and lightweight. sensor devices. Schott believes that BOROFLOAT provides extremely high Hermetic packages protect and professional support and consulting light transmission while remaining power lidar sensors to withstand is needed when it comes to product strong, lightweight, and resistant to demanding conditions like vibrations, size, shape, materials, technology, potential corrosive environments or shock, dust, moisture and extreme and all-round R&D support as well as thermal changes. High transmission temperatures. The use of the best solutions optimized for competitive, at the relevant laser wavelength is suited glass, for example, could high-volume manufacturing. especially important as it ensures that ameliorate some of the problems lidar BOROFLOAT®33, a technical float light passes unimpeded through the experiences in conditions such as snow glass from Schott, is gaining traction in entrance window, which serves as a and ice. Laser diodes, photo diodes lidar applications because of its excellent protective cover for the components and MEMS mirrors must be protected material properties at reasonable prices. inside. If the entrance window Displayed with permission • LIDAR Magazine • Vol. 10 No. 4 • Copyright 2020 Spatial Media • www.lidarmag.com impairs the lidar signal, it will not see its surroundings accurately. BOROFLOAT’s high transmission properties stem from the use of extremely pure raw materials. It features greater than 92% light transmittance in the NIR wavelength range, outstanding colorless visual Fabrication of the 4.25 m diameter secondary mirror for the Extremely Large Telescope, appearance, low auto-fluorescence, the centerpiece of the European Southern Observatory in Chile. The material used was ZERODUR, which has proved efficacious in Schott’s astronomy market. high resistance to solarization, and a low refractive index. BOROFLOAT also has a very strong microstructure, Lidar systems use lasers of a specific the wavelength of interest to be transmitted resulting in high material hardness, wavelength, typically 905 or 1550 nm. or received. BOROFLOAT glass
Recommended publications
  • The World of SCHOTT 3
    The World of SCHOTT 3 SCHOTT is a leading international technology group in the areas of specialty glass and glass-ceramics. With more than 130 years of outstanding development, materials and technology expertise we offer a broad portfolio of high-quality products and intelligent solutions that contribute to our customers’ success. Our true passion for glass is sparked by imagination and fueled by expertise. Whatever you envision, we will find a way to realize it. We reinvent glass in all its numerous properties. We can bend it, roll it up and off, combine it with metal, light it up, make it round, turn it into glass powder or make it ultra-thin. SCHOTT creates solutions that bring unique products and novel applications to life – “glass made of ideas”. The memorial next to the Atocha station in Madrid, Spain: An elliptical cylinder that is made solely of highly transparent and temperature- resistant borosilicate glass blocks from SCHOTT conveys the idea of preserving an intangible moment and creates a translucent space for reflection. 4 5 The SCHOTT Group A team of experts providing innovations you can rely on. The chemistry was right in every sense when glass chemist Otto Schott teamed up with physicist Ernst Abbe and mechanic Carl Zeiss. In 1884, Otto Schott was the first to develop and apply scientifically-based methods to glass making, a revolutionary concept that enabled him to develop completely new optical and technical glasses. He achieved matchless quality levels in glass manufacturing and enhanced the design of new glasses, such as the now well- known borosilicate glass, for groundbreaking solutions.
    [Show full text]
  • Quarterly Journal of the All India Glass Manufacturers' Federation
    Vol. 3 | No. 4 | January - March 2016 Quarterly Journal of The All India Glass Manufacturers’ Federation Bi-lingual www.aigmf.com Technical Articles Prof. (Dr.) A. K. Bandyopadhyay Prof. (Dr.) A Sustainable 50 for postage postage for 50 ` ASS ASS www.aigmf.com Building and Packaging material An Publication - GlASS Gl Gl 500 (within India) + + India) (within 500 ` ` Kanch | Vol. 3 | No. 4 | January-March 2016 2 Overseas: US$ 60 (including postage and bank charges) bank and postage (including 60 US$ Overseas: Order Print Copies: Print Order Price: Price: www.aigmf.com President SANJAY GANJOO Sr. Vice President ARUN KUMAR DUKKIPATI Vice President RAJ KUMAR MITTAL Hon. General Secretary BHARAT SOMANY Hon. Treasurer SANJAY AGARWAL Member Editorial Board A K Bandyopadhyay Quarterly Journal of THE ALL INDIA GLASS MANUFACTURERS’ FEDERATION Former Principal, Govt. College of Engineering & Ceramic Technology-GCECT, Kolkata DEVENDRA KUMAR Prof. & HOD, Dept. of Ceramic, Indian Institute of Technology (Banaras Hindu University) Vol. 3 | No. 4 | January-March 2016 K K SHARMA President, NIGMA and Plant Head, HNG Neemrana, Rajasthan MEMBER ASSOCIatIONS EASTERN INDIA GLASS MANUFACTURERS’ ASSOCIATION (EIGMA) Contents c/o La Opala RG Ltd. Chitrakoot, 10th Floor, 230 A, A.J.C. Bose Road From President's Desk 5 Kolkata - 700 020 President - Sushil Jhunjhunwala Glass as Vital Building Material for Smart / Solar Cities NORTHERN INDIA GLASS MANUFACTURERS’ ASSOCIATION (NIGMA) & c/o Hindustan National Glass & Industries Limited 6 Post Office - Bahadurgarh, Jhajjar, Haryana-124 507 Book Launch: “Glass - A Sustainable Building and Packaging President - KK Sharma Material” Vice President - Jimmy Tyagi Honorary General Secretary - NN Goyal Glass News 13 Secretary & Treasurer - JB Bhardwaj SOUTH INDIA GLASS MANUFACTURERS’ ASSOCIATION (SIGMA) Smart City and Glasses for Flat-Screen Products – Part II 21 c/o AGI Glasspac (An SBU of HSIL Ltd.) Glass Factory Road, Off.
    [Show full text]
  • Photonic Glass-Ceramics: Consolidated Outcomes and Prospects Brigitte Boulard1, Tran T
    Photonic glass-ceramics: consolidated outcomes and prospects Brigitte Boulard1, Tran T. T. Van2, Anna Łukowiak3, Adel Bouajaj4, Rogéria Rocha Gonçalves5, Andrea Chiappini6, Alessandro Chiasera6, Wilfried Blanc7, Alicia Duran8, Sylvia Turrell9, Francesco Prudenzano10, Francesco Scotognella11, Roberta Ramponi11, Marian Marciniak12, Giancarlo C. Righini13,14, Maurizio Ferrari6,13,* 1 Institut des Molécules et Matériaux du Mans, UMR 6283, Equipe Fluorures, Université du Maine, Av. Olivier Messiaen, 72085 Le Mans cedex 09, France. 2 University of Science Ho Chi Minh City, 227 Nguyen Van Cu, Dist.5, HCM Vietnam. 3 Institute of Low Temperature and Structure Research, PAS, ul. Okolna 2, 50-950 Wroclaw, Poland. 4 Laboratory of innovative technologies, LTI, ENSA–Tangier, University Abdelmalek Essaâdi, Tangier, Morocco. 5 Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo - Av. Bandeirantes, 3900, CEP 14040-901, Ribeirão Preto/SP, Brazil 6 CNR-IFN, CSMFO Lab., Via alla Cascata 56/c, Povo, 38123 Trento, Italy. 7 Université Nice Sophia Antipolis, CNRS LPMC, UMR 7336, 06100 Nice, France. 8 Instituto de Ceramica y Vidrio (CSIC), C/Kelsen 5, Campus de Cantoblanco, 28049 Madrid, Spain. 9 LASIR (CNRS, UMR 8516) and CERLA, Université Lille 1, 59650 Villeneuve d’Ascq, France. 10 Politecnico di Bari, DEI, Via E. Orabona 4, Bari, 70125, Italy. 11 IFN-CNR and Department of Physics, Politecnico di Milano, p.zza Leonardo da Vinci 32, 20133 Milano, Italy 12 National Institute of Telecommunications, 1 Szachowa Street, 04 894 Warsaw, Poland. 13 Centro di Studi e Ricerche “Enrico Fermi”, Piazza del Viminale 2, 00184 Roma, Italy. 14 MipLAB. IFAC - CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
    [Show full text]
  • PDF Exhibitor Testimonials
    glasstec 2018 – Exhibitor Quotes SCHOTT AG The 25th glasstec was a special highlight for SCHOTT. A new booth concept invited visitors to discover and experience glass. Our feedback was excellent both quantitatively and qualitatively. And, of course, glasstec again offered a perfect platform for networking." Salvatore Ruggiero, Vice President Marketing and Communication, SCHOTT AG NSG Pilkington NSG Group, the owner of the Pilkington brand, celebrated a very successful exhibition at glasstec 2018. But this success was not the only reason for celebration – this year is also the Group’s 100th anniversary as well as glasstec’s 25th. “The Glasstec event presented the dynamic evolution of glass applications in the world and we were very pleased to be part of such a successful show. Visitors were able to view a wide range of design options and realise the enormous development in dynamic façade solutions, which, by focusing on energy generation, enable building designers to enhance inhabitants’ comfort and well-being. “This is the generation of products for today and tomorrow and NSG Group presented a variety of products, which are fulfilling these “future” market demands. glasstec 2018 was an excellent platform on which to showcase the Group’s capabilities to the world.” Sing Koo, Managing Director Germany & VA Manager Europe Merck KGaA This year, Merck joined Glasstec for the first time. After the opening of our production plant in Veldhoven, The Netherlands, nearly one year ago, we found with Glasstec the right platform to successfully launch our new brand for dynamic liquid crystal windows EYRISE™ as well as our new product for dynamic solar control EYRISE™ s350 into the market.
    [Show full text]
  • ZERODUR® K20 Glass Ceramic with Low Thermal Expansion for High Temperature Applications
    ZERODUR® K20 Glass ceramic with low thermal expansion for high temperature applications Product Information The high temperature ZERODUR® K20 glass ceramic material contains a crystal phase of more than 90 % Keatite, pro- duced by thermal transformation from the semitransparent ZERODUR® material. ZERODUR® K20 can be used at higher application temperatures compared to ZERODUR®. The material has high tem- perature stability and low thermal ex- pansion and does not change its proper- ties during multiple temperature cycles. Properties • Low coefficient of thermal expansion together with high longterm tempe- rature stability up to 850 °C • Can be matched with low thermal Forms of Supply expansion metal alloys, e. g. Invar® • Complex, customized CNC-manufactured products • Excellent homogeneity and in ternal • Serial production and prototype manu facturing quality • A remission of more than 90 % in the Properties ZERODUR® K20 ZERODUR® visible with a matt brilliant white finish Density [g/cm3] 2.53 2.53 • Free of pores and polishable to very Young’s Modulus E [GPa] 84.7 90.3 low surface roughness levels • Large-scale parts can be produced Poisson’s Ratio µ 0.25 0.24 with dimensions in the meter range Knoop Hardness [HK 0.1/20] 620 620 Expansion Coefficient (20 – 700 °C) [10–6/K] 2.4 0.2 Applications Expansion Coefficient (20 – 300 °C) [10–6/K] 2.2 – • Mechanical and optical components 0 ± 0.007 within high energy laser systems 0 ± 0.010 • Diffuse reflectors for laser-cavities Expansion Coefficient (0 – 50 °C) [10–6/K] 1.6 0 ± 0.020 • Mold material in hot forming pro cesses 0 ± 0.050 0 ± 0.100 (glass, plastic etc.) 0.90 • High precision manufactured compo- Heat Capacity c (20 °C) [J/(gK)] 0.80 p (extrapolated) nents Thermal Conductivity (90 °C) [W/(mK)] 1.63 1.46 • Ceramic engine components • Calibration standards for optical and Max.
    [Show full text]
  • Glass Technology" Plansee Session Session "Laser Applications"
    ftO "*S9<1 C8C) TIB/UB Hannover E 11th S Conference G together with 86 Annual Meeting of the DGG ICG Annual Meeting Glass Trend Seminar "Glass Technology" Plansee Session Session "Laser Applications" Maastricht, The Netherlands 3-6 June 2012 Abstracts National Committee German Society Netherlands' of Glass Glass Industry Technology CONTENTS 11th ESG Conference & 86. GLASTECHNISCHE TAGUNG ICG Annual Meeting, Glass Trend Seminar, Plansee Session, Session "Laser Applications" KEYNOTE LECTURE S. 26-27 L. L. Hench Emeritus Professor University of Florida, USA Bioactive Glasses: From Concept to Clinic, a 45th Year Celebration SESSION 1 S. 28 - 35 Batch, melting & sintering processes R. Conradt Institute of Mineral Engineering, Department of Glass and Ceramic Composites, RWTH Aachen University, Aachen, Germany How to overcome the chemical constraints of glass melting W. Jatmiko, R. Conrad Institute of Mineral Engineering, Department of Glass and Ceramic Composites, RWTH Aachen University, Aachen, Germany Experimental assessment of batch melting behavior M. Lindig Nikolaus Sorg GmbH & Co. KG, Lohr am Main, Germany Sorg Batch Handling Concept - updated report and future development R. Conradt Institute of Mineral Engineering, Department of Glass and Ceramic Composites, RWTH Aachen University, Aachen, Germany Assessment of batch melting behavior - trying to close the gap between lab and industrial scale C. Pust1, M. Rohmann1, S.-R. Kahl2 1Rheinkalk GmbH, Wulfrath, Germany 2Ardagh Glass Dongen B.V., Dongen, The Netherlands Decrepitation of Dolomite from batch blankets in glass furnaces 1 R. Clasen Chair of Powder Technology of Glass and Ceramics, Saarland University, Saarbriicken, Germany The preparation of glasses via a sintering route - state of the art and perspectives S.
    [Show full text]
  • SCHOTT Technical Glasses
    SCHOTT Technical Glasses Physical and technical properties Foreword part from its application in optics, glass as a technical material exerted a A formative influence on the development of important technological fields such as chemistry, pharmaceutics, automotive, optoelectronics and renewable energy such as solar thermal or photovoltaics. Traditional areas of technical application for glass, such as laboratory apparatus, flat panel displays and light sources with their various requirements on chemicophysical properties, led to the development of a great variety of special glass types. By new fields of application, particularly in optoelectronics, this variety of glass types and their modes of application have been continually enhanced, and new forming processes have been developed. The hermetic encapsulation of electronic components gave decisive impetus to development activities. Finally, the manufacture of high-quality glass ceramics from glass has opened entirely new dimensions, setting new standards for various technical applications. To continuously optimize all commercial glasses and glass articles for existing applications and to develop glasses and processes for new applications is the constant endeavor of SCHOTT research. For such dynamic development it is mandatory to be in close contact with the customers and to keep them as well informed as possible about glass. SCHOTT Technical Glasses offers pertinent information in concise form. It contains general information for the determination and evaluation of important glass properties and also informs about specific chemical and physical characteristics and possible applications of the commercial technical glasses produced by SCHOTT. With this brochure we intend to assist scientists, engineers, and design- ers in making the appropriate choice and optimum use of SCHOTT products.
    [Show full text]
  • 3Rd Annoucement.Indd
    INTERNATIONAL COMMISSION ON GLASS ICG 2007 XXIst International Congress on Glass STRASBOURG July 1-6, 2007 Palais des Congrès Strasbourg France « rdAnnouncement www.icg2007.org and preliminary program 3 1/24 ICG 2007 PRELIMINARY LIST OF SPONSORS THE INTERNATIONAL COMMISSION ON GLASS « The International Commission on Glass (ICG) was founded in 1933 with the purpose of promoting international collaboration and facilitating the exchange of information within the glass community. Nowadays, it gathers reknown universities, scientific establishements, glass industries as well as suppliers. The ICG leads technical committees upon different aspects of glass science and technology. One of the ICG’s projects is organising the triennial International Congress on Glass. The event was last held in France in 1971. Hervé Arribart Jean-Pierre Houdaer ICG President Congress Chairman ICG 2/24 3/24 ICG 2007 2007 THE CONGRESS THE COMMITTEES « « INTERNATIONAL CONFERENCE CHAIRMAN The up-coming International Congress on ADVISORY BOARD Jean-Pierre Houdaer Glass 2007 will take place in Strasbourg from M. Aegerter (Inst. für Neue Materialen, Germany) (Glass Expert, Formerly Directeur Général, 1st to 6th July 2007. R. Akçakaya (Şişecam, Turkey) Institut du Verre, France) R. Almeida (IST Lisbonne, Portugal) This triennial event, organized under the M.H. Chopinet (Saint-Gobain, France) SCIENTIFIC COMMITTEE auspices of the International Commission on M. Delaney (Owens-Illinois, USA) Glass (ICG) will bring together key players in N. Greaves (Univ. of Wales, United Kingdom) R. Vacher (CNRS, France), Chairman glass science, technology and production: R. Hand (Sheffield Univ., United Kingdom) H. Arribart (Saint-Gobain, France) glass manufacturers, providers, researchers, K. Hirao (Kyoto Univ., Japan) K.
    [Show full text]
  • SCHOTT History: Historical & Technological Milestones
    SCHOTT History Historical and Technological Milestones 1 2 3 Historical Milestones 1884 Otto Schott, Ernst Abbe and Carl and Roderich Zeiss found the Schott & Associates Glass Tech- nology Laboratory in Jena, Germany. 1889 1889 Ernst Abbe founds the Carl-Zeiss-Stiftung (Carl Zeiss Foundation). 1891/1919 The glassworks in Jena become a foundation- owned enterprise. Its sole owner is the Carl- Zeiss-Stiftung. 1900 Export share already about 50%. 1927/1930 The first subsidiaries: Farbenglaswerk Zwiesel (1927), Deutsche Spiegelglas AG (DESAG) in Grünenplan (1930), Glaswerk Mitterteich (1930). 1945 “The Odyssey of 41 Glass makers”: After the end of World War ll, American troops bring the management and selected experts from Jena to West Germany. 1948 The original factory in Jena (Soviet zone of occupation/GDR as of 1949) is expropriated and converted into a state-owned company (VEB). 1952 The foundation enterprise is rebuilt in Mainz (Federal Republic of Germany) under the direction of Erich Schott, the son of the company’s founder. 1. Otto Schott 2. Ernst Abbe 3. Original plant in Jena 4. Restart in Mainz 4 5 5. Erich Schott 1952 Mainz becomes the head quarters and main production site of the SCHOTT Group. 1954 First production subsidiary outside of Germany (Vitrofarma in Rio de Janeiro, Brazil). As of 1963 Establishment of production plants and sales offices in Western and Southern Europe. A sales office is opened in the U.S. (New York City). SCHOTT grows to become an international group of companies. 1966 First sales office in Asia (Tokyo). 1969 First production plant in the U.S.
    [Show full text]
  • SCHOTT – Ultra Low Expansion Glass Ceramic ZERODUR® Improvements in Properties, Understanding and Production
    SCHOTT – Ultra low expansion glass ceramic ZERODUR® Improvements in properties, understanding and production MPI für Astronomie, Heidelberg Astro Tech Talk 30.1.2015 Peter Hartmann SCHOTT AG Advanced Optics 2 What is ZERODUR®? 2 Advanced Optics 3 1957 Glass Ceramic discovered by Donald S. Stookey (Corning) From mishap during development of light sensitive glass Furnace became much too hot. Advanced Optics 4 ZERODUR®– Work of Two Pioneers The first 4 m Zerodur Mirror 3,6 m Telescope Calar Alto Hans Elsässer Jürgen MPI Astronomy Petzold Initiator and SCHOTT Customer Developer of glass ceramics 1973 Cast of the first 4 m glass ceramic mirror blank for the Max-Planck-Insitute for Astronomy Heidelberg Germany Advanced Optics 5 ZERODUR® - Zero Expansion Glass Ceramic Zerodur is a Li-Al-Si glass ceramic a composite of 70 – 78 vol-% microcrystallites embedded in a glass phase Size and number of the negative CTE microcrystallites are adjusted to achieve a net zero thermal expansion Scanning microscope image of Zerodur microcrystallites Size: 30 – 50 nm Advanced Optics 6 ZERODUR® is molten like Optical Glass Therefore it is . Extremely homogeneous . Isotropic down to sub microscopic scale Free from rings, layers Seams, flaws, pores . Highly polishable . In transmission inspectable no surprises . Highly reproducible 1.5 m Blank with outstanding in all properties homogeneity and striae quality Advanced Optics 7 Coefficient of thermal expansion CTE 7 Advanced Optics 8 Coefficient of Thermal Expansion (CTE) Narrower tolerances have been added CTE Absolute Values New Class CTE [1/K] Class CTE [1/K] 2 ± 0.10 · 10-6 0 Special ± 0.010 · 10-6 1 ± 0.05 · 10-6 0 Extreme ± 0.007 · 10-6 0 ± 0.02 · 10-6 Taylored Adapted to specific temperature profile Advanced Optics ZERODUR® TAILORED 9 The CTE at a specific temperature T might differ from the mean value determined by the slope of the expansion between 0° and 50°C.
    [Show full text]
  • ZERODUR : Deterministic Approach for Strength Design
    ZERODUR®: deterministic approach for strength design Peter Hartmann Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 01/04/2013 Terms of Use: http://spiedl.org/terms Optical Engineering 51(12), 124002 (December 2012) ZERODUR®: deterministic approach for strength design Peter Hartmann Abstract. There is an increasing request for zero expansion glass SCHOTT AG ceramic ZERODUR® substrates being capable of enduring higher opera- D-55122 Mainz, Germany tional static loads or accelerations. The integrity of structures such E-mail: [email protected] as optical or mechanical elements for satellites surviving rocket launches, filigree lightweight mirrors, wobbling mirrors, and reticle and wafer stages in microlithography must be guaranteed with low failure probability. Their design requires statistically relevant strength data. The traditional ap- proach using the statistical two-parameter Weibull distribution suffered from two problems. The data sets were too small to obtain distribution parameters with sufficient accuracy and also too small to decide on the validity of the model. This holds especially for the low failure probability levels that are required for reliable applications. Extrapolation to 0.1% fail- ure probability and below led to design strengths so low that higher load applications seemed to be not feasible. New data have been collected with numbers per set large enough to enable tests on the applicability of the three-parameter Weibull distribution. This distribution revealed to provide much better fitting of the data. Moreover it delivers a lower threshold value, which means a minimum value for breakage stress, allowing of removing statistical uncertainty by introducing a deterministic method to calculate design strength. Considerations taken from the theory of fracture mechan- ics as have been proven to be reliable with proof test qualifications of del- icate structures made from brittle materials enable including fatigue due to stress corrosion in a straight forward way.
    [Show full text]
  • Low Thermal Expansion Glass Ceramics Schott Series on Glass and Glass Ceramics Science, Technology, and Applications
    Low Thermal Expansion Glass Ceramics Schott Series on Glass and Glass Ceramics Science, Technology, and Applications Low Thermal Expansion Glass Ceramics ISBN 3-540-24111-6 FibreOpticsandGlassIntegratedOptics ISBN 3-540-58595-8 The Properties of Optical Glass ISBN 3-540-58357-2 Thin Films on Glass ISBN 3-540-58597-4 Electrochemistry of Glasses and Glass Melts, Including Glass Electrodes ISBN 3-540-58608-3 SurfaceAnalysisofGlassesandGlass Ceramics, and Coatings ISBN 3-540-58609-1 Analysis of the Composition and Structure of Glass and Glass Ceramics ISBN 3-540-58610-5 Mathematical Simulation in Glass Technology ISBN 3-540-43204-3 Hans Bach Dieter Krause Editors Low Thermal Expansion Glass Ceramics Second Edition With 156 Figures and 21 Tables 123 Editors Dr. Hans Bach Prof. Dr. Dieter Krause Schott AG Hattenbergstraße 10 D-55122 Mainz, Germany Library of Congress Control Number: 2004116340 ISBN-10 3-540-24111-6 Springer Berlin Heidelberg New York ISBN-13 978-3-540-24111-9 Springer Berlin Heidelberg New York ISBN 3-540-58598-2 1st ed. Springer-Verlag Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad- casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law.
    [Show full text]