Springer Handbook of Glass

Total Page:16

File Type:pdf, Size:1020Kb

Springer Handbook of Glass Springer Handbook of Glass Springer Handbooks provide a concise compilation of approved key information on methods of research, general principles, and functional relationships in physical and applied sciences. The world’s leading experts in the fields of physics and engineering will be as- signed by one or several renowned editors to write the chapters com- prising each volume. The content is selected by these experts from Springer sources (books, journals, online content) and other systematic and approved recent publications of scientific and technical information. The volumes are designed to be useful as readable desk book to give a fast and comprehensive overview and easy retrieval of essential re- liable key information, including tables, graphs, and bibliographies. References to extensive sources are provided. HandbookSpringer of Glass J. David Musgraves, Juejun Hu, Laurent Calvez (Eds.) With 1450 Figures and 224 Tables HK Editors J. David Musgraves Rochester Precision Optics, LLC West Henrietta, NY, USA Juejun Hu Dept. of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, MA, USA Laurent Calvez UMR 6226 – Institut des Sciences Chimiques de Rennes University of Rennes I Rennes, France ISBN 978-3-319-93726-7 e-ISBN 978-3-319-93728-1 https://doi.org/10.1007/978-3-319-93728-1 © Springer Nature Switzerland AG 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG, part of Springer Nature. The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland V Dedicated to the memory of Neville Greaves VII Preface As you’ll get a chance to see in Chap. 1 of this book, ing experts in the field. The handbook is aimed at senior glass is a fascinating topic, in part because while we undergraduate and graduate students, researchers, and human beings have been manufacturing glass for thou- professionals working in the field of glass science. The sands of years now, the discipline of glass science chapters provide the necessary background and up-to- is only 100 years old. This means that humanity has date knowledge in a wide range of topics, with in-depth developed the technology of glassmaking—the tem- references to the journal literature for those seeking peratures, times, ingredients, processes, etc., needed to greater depth in a particular subfield. In general, the make good window and plate glass—over the course book is structured to provide basic information on the of dozens or even hundreds of generations, and we particular glass families at the beginning, followed by have a great wealth of acquired knowledge of how to specific applications later. Because each glass family make glass. Compare this enormous amount of know- has applications, and each application is associated with how to the idea of glass science as a distinct scientific some glass family, there is necessarily a good deal of discipline, focused in part on why certain things make crossover between various chapters. For example, spec- glass, and what exactly is a glass, which has only a troscopic information regarding chalcogenide glasses few generations of students and masters contributing to can be found in the chapters on chalcogenide glasses, its advance. What we see when we combine these two optical spectroscopy, and infrared sensing; the hope is ideas of glass is fascinating: humanity knows quite a lot that seeing these materials in a variety of contexts will about how to make glass, but we are only just begin- help the reader grasp the interdisciplinary nature of ning to understand what makes a glass a glass, from the glass science. perspective of basic physics. The editors are very grateful to all of the authors Because of the sheer breadth of the discipline, there who, out of the generosity of their scientific spirit, con- has been no single textbook in the glass science field that tributed their time and expertise to this handbook. We has attempted to cover all its aspects. There exist a hand- know this was a long process, and we’d like to thank ful of excellent basic glass science textbooks that will each and every one of the authors for their participa- be referenced widely in this book, but these are all con- tion in this journey together. Our deepest thanks go to fined to their individual subdisciplines. The goal of this Judith Hinterberg and Sara Kate Heukerott at Springer book is to serve as the starting point for any exploration for their tireless efforts in keeping this project on track. into the field of glass science; indeed, we have chap- During the process of making this book, we’ve had a ters on the technical aspects of all of the major glass- few births, a near-death, and almost every other project- forming families, but we also have chapters devoted to derailing experience you could imagine, and they have the architectural, archeological, and geological aspects kept the program moving the entire way. Without them, of glass science. No one textbook can hope to encom- the center could not have held, and we appreciate every pass the entirety of a modern scientific field, especially bit of their effort. one as rapidly developing as glass science at the begin- Finally, the editors would like to thank their fami- ning of the 21st century, but the hope is that each of lies (Jessica, Di, Helius, Selena and Eos, Anne-Laure, the chapters in the book serves as a place for the reader Youna and Norah) for all of their support during this to get grounded, understand the basics (and the com- project. We do this for them, and we couldn’t do it with- plications!), and find resources in the primary scientific out them. literature where they can go and learn in more depth. The Springer Handbook of Glass is intended to be J. David Musgraves a comprehensive overview of the diverse field of glass Juejun Hu science, with each chapter written by one or more work- Laurent Calvez IX About the Editors J. David Musgraves received his bachelor’s degree in Physics from Pomona, followed by his PhD in Materials Science from the University of Arizona. His first time melting and quenching glass was in the laboratory of Kathleen Richardson at Clemson Uni- versity, where he began a postdoc in 2010 and ultimately became a Research Assistant Professor. His research was focused on the integration of quantum computational mod- eling, optical spectroscopy, and thermal analysis as a means to evaluate the evolution of amorphous structure across multiple-length scales and to correlate this emergent structure with material properties. After founding IRradiance Glass, Inc. in 2012, he left Clemson University to become President and CEO of the company. IRradiance Glass was purchased in 2018 by Rochester Precision Optics (RPO), where Dr. Mus- graves is now Chief Scientist. Dr. Musgraves moves to the frozen northlands with his wife and two dogs, who are his near-constant companions. Juejun (JJ) Hu received his degrees in Materials Science and Engineering from Tsinghua University and Massachusetts Institute of Technology (MIT). He is currently Associate Professor at MIT’s Department of Materials Science and Engineering. His primary research interest is the field of integrated optics and photonics. Prior to joining MIT, he was Assistant Professor at the University of Delaware. He has been recog- nized with the National Science Foundation (NSF) Faculty Early Career Development Award, the Robert L. Coble Award from the American Ceramic Society, the Defense Advanced Research Projects Agency (DARPA) Young Faculty Award, the Gerard J. Mangone Young Scholars Award, and the University of Delaware Excellence in Teach- ing Award, among others. His research focuses on optical glass materials and their applications in integrated optics and photonics. Laurent Calvez graduated from the University of Rennes and was awarded a DGA grant to pursue a PhD, which he obtained with honors. He completed a postdoc at the Arizona Materials Laboratory at the University of Arizona, before joining the faculty of the University of Rennes in 2007, where he currently heads the Energy Conversion and Storage group at the Institut des Sciences Chimiques de Rennes. His current re- search focuses on the generation of active nanoparticles in chalcogenide glasses and glass-ceramics to tailor material properties to accommodate specific optical and elec- trical designs and manufacturing. He was awarded the Young Brittany Research Award for his work on photosensitivity of glasses and innovative glass-ceramics. He received the French Academy of Sciences Lamb prize in 2016 and was recently accepted into the prestigious University Institute of France. Despite a lack of time, he is still improv- ing his topspin in table tennis.
Recommended publications
  • Photonic Glass-Ceramics: Consolidated Outcomes and Prospects Brigitte Boulard1, Tran T
    Photonic glass-ceramics: consolidated outcomes and prospects Brigitte Boulard1, Tran T. T. Van2, Anna Łukowiak3, Adel Bouajaj4, Rogéria Rocha Gonçalves5, Andrea Chiappini6, Alessandro Chiasera6, Wilfried Blanc7, Alicia Duran8, Sylvia Turrell9, Francesco Prudenzano10, Francesco Scotognella11, Roberta Ramponi11, Marian Marciniak12, Giancarlo C. Righini13,14, Maurizio Ferrari6,13,* 1 Institut des Molécules et Matériaux du Mans, UMR 6283, Equipe Fluorures, Université du Maine, Av. Olivier Messiaen, 72085 Le Mans cedex 09, France. 2 University of Science Ho Chi Minh City, 227 Nguyen Van Cu, Dist.5, HCM Vietnam. 3 Institute of Low Temperature and Structure Research, PAS, ul. Okolna 2, 50-950 Wroclaw, Poland. 4 Laboratory of innovative technologies, LTI, ENSA–Tangier, University Abdelmalek Essaâdi, Tangier, Morocco. 5 Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo - Av. Bandeirantes, 3900, CEP 14040-901, Ribeirão Preto/SP, Brazil 6 CNR-IFN, CSMFO Lab., Via alla Cascata 56/c, Povo, 38123 Trento, Italy. 7 Université Nice Sophia Antipolis, CNRS LPMC, UMR 7336, 06100 Nice, France. 8 Instituto de Ceramica y Vidrio (CSIC), C/Kelsen 5, Campus de Cantoblanco, 28049 Madrid, Spain. 9 LASIR (CNRS, UMR 8516) and CERLA, Université Lille 1, 59650 Villeneuve d’Ascq, France. 10 Politecnico di Bari, DEI, Via E. Orabona 4, Bari, 70125, Italy. 11 IFN-CNR and Department of Physics, Politecnico di Milano, p.zza Leonardo da Vinci 32, 20133 Milano, Italy 12 National Institute of Telecommunications, 1 Szachowa Street, 04 894 Warsaw, Poland. 13 Centro di Studi e Ricerche “Enrico Fermi”, Piazza del Viminale 2, 00184 Roma, Italy. 14 MipLAB. IFAC - CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
    [Show full text]
  • PDF Exhibitor Testimonials
    glasstec 2018 – Exhibitor Quotes SCHOTT AG The 25th glasstec was a special highlight for SCHOTT. A new booth concept invited visitors to discover and experience glass. Our feedback was excellent both quantitatively and qualitatively. And, of course, glasstec again offered a perfect platform for networking." Salvatore Ruggiero, Vice President Marketing and Communication, SCHOTT AG NSG Pilkington NSG Group, the owner of the Pilkington brand, celebrated a very successful exhibition at glasstec 2018. But this success was not the only reason for celebration – this year is also the Group’s 100th anniversary as well as glasstec’s 25th. “The Glasstec event presented the dynamic evolution of glass applications in the world and we were very pleased to be part of such a successful show. Visitors were able to view a wide range of design options and realise the enormous development in dynamic façade solutions, which, by focusing on energy generation, enable building designers to enhance inhabitants’ comfort and well-being. “This is the generation of products for today and tomorrow and NSG Group presented a variety of products, which are fulfilling these “future” market demands. glasstec 2018 was an excellent platform on which to showcase the Group’s capabilities to the world.” Sing Koo, Managing Director Germany & VA Manager Europe Merck KGaA This year, Merck joined Glasstec for the first time. After the opening of our production plant in Veldhoven, The Netherlands, nearly one year ago, we found with Glasstec the right platform to successfully launch our new brand for dynamic liquid crystal windows EYRISE™ as well as our new product for dynamic solar control EYRISE™ s350 into the market.
    [Show full text]
  • ZERODUR® K20 Glass Ceramic with Low Thermal Expansion for High Temperature Applications
    ZERODUR® K20 Glass ceramic with low thermal expansion for high temperature applications Product Information The high temperature ZERODUR® K20 glass ceramic material contains a crystal phase of more than 90 % Keatite, pro- duced by thermal transformation from the semitransparent ZERODUR® material. ZERODUR® K20 can be used at higher application temperatures compared to ZERODUR®. The material has high tem- perature stability and low thermal ex- pansion and does not change its proper- ties during multiple temperature cycles. Properties • Low coefficient of thermal expansion together with high longterm tempe- rature stability up to 850 °C • Can be matched with low thermal Forms of Supply expansion metal alloys, e. g. Invar® • Complex, customized CNC-manufactured products • Excellent homogeneity and in ternal • Serial production and prototype manu facturing quality • A remission of more than 90 % in the Properties ZERODUR® K20 ZERODUR® visible with a matt brilliant white finish Density [g/cm3] 2.53 2.53 • Free of pores and polishable to very Young’s Modulus E [GPa] 84.7 90.3 low surface roughness levels • Large-scale parts can be produced Poisson’s Ratio µ 0.25 0.24 with dimensions in the meter range Knoop Hardness [HK 0.1/20] 620 620 Expansion Coefficient (20 – 700 °C) [10–6/K] 2.4 0.2 Applications Expansion Coefficient (20 – 300 °C) [10–6/K] 2.2 – • Mechanical and optical components 0 ± 0.007 within high energy laser systems 0 ± 0.010 • Diffuse reflectors for laser-cavities Expansion Coefficient (0 – 50 °C) [10–6/K] 1.6 0 ± 0.020 • Mold material in hot forming pro cesses 0 ± 0.050 0 ± 0.100 (glass, plastic etc.) 0.90 • High precision manufactured compo- Heat Capacity c (20 °C) [J/(gK)] 0.80 p (extrapolated) nents Thermal Conductivity (90 °C) [W/(mK)] 1.63 1.46 • Ceramic engine components • Calibration standards for optical and Max.
    [Show full text]
  • SCHOTT Technical Glasses
    SCHOTT Technical Glasses Physical and technical properties Foreword part from its application in optics, glass as a technical material exerted a A formative influence on the development of important technological fields such as chemistry, pharmaceutics, automotive, optoelectronics and renewable energy such as solar thermal or photovoltaics. Traditional areas of technical application for glass, such as laboratory apparatus, flat panel displays and light sources with their various requirements on chemicophysical properties, led to the development of a great variety of special glass types. By new fields of application, particularly in optoelectronics, this variety of glass types and their modes of application have been continually enhanced, and new forming processes have been developed. The hermetic encapsulation of electronic components gave decisive impetus to development activities. Finally, the manufacture of high-quality glass ceramics from glass has opened entirely new dimensions, setting new standards for various technical applications. To continuously optimize all commercial glasses and glass articles for existing applications and to develop glasses and processes for new applications is the constant endeavor of SCHOTT research. For such dynamic development it is mandatory to be in close contact with the customers and to keep them as well informed as possible about glass. SCHOTT Technical Glasses offers pertinent information in concise form. It contains general information for the determination and evaluation of important glass properties and also informs about specific chemical and physical characteristics and possible applications of the commercial technical glasses produced by SCHOTT. With this brochure we intend to assist scientists, engineers, and design- ers in making the appropriate choice and optimum use of SCHOTT products.
    [Show full text]
  • 3Rd Annoucement.Indd
    INTERNATIONAL COMMISSION ON GLASS ICG 2007 XXIst International Congress on Glass STRASBOURG July 1-6, 2007 Palais des Congrès Strasbourg France « rdAnnouncement www.icg2007.org and preliminary program 3 1/24 ICG 2007 PRELIMINARY LIST OF SPONSORS THE INTERNATIONAL COMMISSION ON GLASS « The International Commission on Glass (ICG) was founded in 1933 with the purpose of promoting international collaboration and facilitating the exchange of information within the glass community. Nowadays, it gathers reknown universities, scientific establishements, glass industries as well as suppliers. The ICG leads technical committees upon different aspects of glass science and technology. One of the ICG’s projects is organising the triennial International Congress on Glass. The event was last held in France in 1971. Hervé Arribart Jean-Pierre Houdaer ICG President Congress Chairman ICG 2/24 3/24 ICG 2007 2007 THE CONGRESS THE COMMITTEES « « INTERNATIONAL CONFERENCE CHAIRMAN The up-coming International Congress on ADVISORY BOARD Jean-Pierre Houdaer Glass 2007 will take place in Strasbourg from M. Aegerter (Inst. für Neue Materialen, Germany) (Glass Expert, Formerly Directeur Général, 1st to 6th July 2007. R. Akçakaya (Şişecam, Turkey) Institut du Verre, France) R. Almeida (IST Lisbonne, Portugal) This triennial event, organized under the M.H. Chopinet (Saint-Gobain, France) SCIENTIFIC COMMITTEE auspices of the International Commission on M. Delaney (Owens-Illinois, USA) Glass (ICG) will bring together key players in N. Greaves (Univ. of Wales, United Kingdom) R. Vacher (CNRS, France), Chairman glass science, technology and production: R. Hand (Sheffield Univ., United Kingdom) H. Arribart (Saint-Gobain, France) glass manufacturers, providers, researchers, K. Hirao (Kyoto Univ., Japan) K.
    [Show full text]
  • SCHOTT History: Historical & Technological Milestones
    SCHOTT History Historical and Technological Milestones 1 2 3 Historical Milestones 1884 Otto Schott, Ernst Abbe and Carl and Roderich Zeiss found the Schott & Associates Glass Tech- nology Laboratory in Jena, Germany. 1889 1889 Ernst Abbe founds the Carl-Zeiss-Stiftung (Carl Zeiss Foundation). 1891/1919 The glassworks in Jena become a foundation- owned enterprise. Its sole owner is the Carl- Zeiss-Stiftung. 1900 Export share already about 50%. 1927/1930 The first subsidiaries: Farbenglaswerk Zwiesel (1927), Deutsche Spiegelglas AG (DESAG) in Grünenplan (1930), Glaswerk Mitterteich (1930). 1945 “The Odyssey of 41 Glass makers”: After the end of World War ll, American troops bring the management and selected experts from Jena to West Germany. 1948 The original factory in Jena (Soviet zone of occupation/GDR as of 1949) is expropriated and converted into a state-owned company (VEB). 1952 The foundation enterprise is rebuilt in Mainz (Federal Republic of Germany) under the direction of Erich Schott, the son of the company’s founder. 1. Otto Schott 2. Ernst Abbe 3. Original plant in Jena 4. Restart in Mainz 4 5 5. Erich Schott 1952 Mainz becomes the head quarters and main production site of the SCHOTT Group. 1954 First production subsidiary outside of Germany (Vitrofarma in Rio de Janeiro, Brazil). As of 1963 Establishment of production plants and sales offices in Western and Southern Europe. A sales office is opened in the U.S. (New York City). SCHOTT grows to become an international group of companies. 1966 First sales office in Asia (Tokyo). 1969 First production plant in the U.S.
    [Show full text]
  • SCHOTT – Ultra Low Expansion Glass Ceramic ZERODUR® Improvements in Properties, Understanding and Production
    SCHOTT – Ultra low expansion glass ceramic ZERODUR® Improvements in properties, understanding and production MPI für Astronomie, Heidelberg Astro Tech Talk 30.1.2015 Peter Hartmann SCHOTT AG Advanced Optics 2 What is ZERODUR®? 2 Advanced Optics 3 1957 Glass Ceramic discovered by Donald S. Stookey (Corning) From mishap during development of light sensitive glass Furnace became much too hot. Advanced Optics 4 ZERODUR®– Work of Two Pioneers The first 4 m Zerodur Mirror 3,6 m Telescope Calar Alto Hans Elsässer Jürgen MPI Astronomy Petzold Initiator and SCHOTT Customer Developer of glass ceramics 1973 Cast of the first 4 m glass ceramic mirror blank for the Max-Planck-Insitute for Astronomy Heidelberg Germany Advanced Optics 5 ZERODUR® - Zero Expansion Glass Ceramic Zerodur is a Li-Al-Si glass ceramic a composite of 70 – 78 vol-% microcrystallites embedded in a glass phase Size and number of the negative CTE microcrystallites are adjusted to achieve a net zero thermal expansion Scanning microscope image of Zerodur microcrystallites Size: 30 – 50 nm Advanced Optics 6 ZERODUR® is molten like Optical Glass Therefore it is . Extremely homogeneous . Isotropic down to sub microscopic scale Free from rings, layers Seams, flaws, pores . Highly polishable . In transmission inspectable no surprises . Highly reproducible 1.5 m Blank with outstanding in all properties homogeneity and striae quality Advanced Optics 7 Coefficient of thermal expansion CTE 7 Advanced Optics 8 Coefficient of Thermal Expansion (CTE) Narrower tolerances have been added CTE Absolute Values New Class CTE [1/K] Class CTE [1/K] 2 ± 0.10 · 10-6 0 Special ± 0.010 · 10-6 1 ± 0.05 · 10-6 0 Extreme ± 0.007 · 10-6 0 ± 0.02 · 10-6 Taylored Adapted to specific temperature profile Advanced Optics ZERODUR® TAILORED 9 The CTE at a specific temperature T might differ from the mean value determined by the slope of the expansion between 0° and 50°C.
    [Show full text]
  • ZERODUR : Deterministic Approach for Strength Design
    ZERODUR®: deterministic approach for strength design Peter Hartmann Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 01/04/2013 Terms of Use: http://spiedl.org/terms Optical Engineering 51(12), 124002 (December 2012) ZERODUR®: deterministic approach for strength design Peter Hartmann Abstract. There is an increasing request for zero expansion glass SCHOTT AG ceramic ZERODUR® substrates being capable of enduring higher opera- D-55122 Mainz, Germany tional static loads or accelerations. The integrity of structures such E-mail: [email protected] as optical or mechanical elements for satellites surviving rocket launches, filigree lightweight mirrors, wobbling mirrors, and reticle and wafer stages in microlithography must be guaranteed with low failure probability. Their design requires statistically relevant strength data. The traditional ap- proach using the statistical two-parameter Weibull distribution suffered from two problems. The data sets were too small to obtain distribution parameters with sufficient accuracy and also too small to decide on the validity of the model. This holds especially for the low failure probability levels that are required for reliable applications. Extrapolation to 0.1% fail- ure probability and below led to design strengths so low that higher load applications seemed to be not feasible. New data have been collected with numbers per set large enough to enable tests on the applicability of the three-parameter Weibull distribution. This distribution revealed to provide much better fitting of the data. Moreover it delivers a lower threshold value, which means a minimum value for breakage stress, allowing of removing statistical uncertainty by introducing a deterministic method to calculate design strength. Considerations taken from the theory of fracture mechan- ics as have been proven to be reliable with proof test qualifications of del- icate structures made from brittle materials enable including fatigue due to stress corrosion in a straight forward way.
    [Show full text]
  • SCHOTT Specialty Glass for More Than 130 Years Our Competence Lies in the Areas of Specialty Glass and Glass-Ceramics
    Discover SCHOTT Specialty glass for more than 130 years Our competence lies in the areas of specialty glass and glass-ceramics. The company’s founder Otto Schott is considered the founder of the specialty glass industry. Since Otto Schott, innovations have always been a part of SCHOTT’s DNA. Innovations in specialty glass 1884 Optical glasses 1887/1893 Invention of borosilicate glass 1911 FIOLAX® glass tubing for pharmaceutical packaging 1939 Glass-to-metal seals 1964 Fiber optic components for light and image guides 1968 ZERODUR® glass-ceramic for telescope mirror substrates 1973 CERAN® glass-ceramic cooktop panels 1994 BOROFLOAT® Borosilicate glasses with the microfloat process 2002 NEXTERION® coated substrates for Microarrays 2009 Xensation® Cover glass for touch applications 2016 Ultra-thin glass was awarded the German Industry Innovation Award 2017 iQTM platform for pharmaceutical packaging Innovations in specialty glass Coated optical More than Optical glasses Filter glasses Laser glass glasses 120 optical 1884 1900 1974 1938 glasses Fiber optics components 1964 PYRAN® BOROFLOAT® NEXTERION® Borosilicate glass FIOLAX® Ampoules 1978 1994 2002 1887/1893 1911 1923 Glass-to-metal seals Ceramic-to-metal seals 1939 2001 SCHOTT Aluminosilicate Thin glass Xensation® Ultra-thin glass AS 87 eco glass 1993 2009 2013 2017 Glass-ceramics ZERODUR® CERAN® ROBAX® NEXTREMA® CERAN Miradur® 1965 1968 1973 1979 2011 2017 Historic milestones 1884 Founding of the company in Jena 1889 Ernst Abbe founds the Carl Zeiss Foundation 1891/1919 SCHOTT becomes a foundation company Sole owner: the Carl Zeiss Foundation 1948 After World War II the original factory in Jena was expropriated and the company was divided into east and west 1952 Rebuilding of the foundation company in Mainz, Mainz becomes the headquarters of the SCHOTT Group As of 1963 Continuous internationalization 1991/1995 After German Reunification, SCHOTT also seized the opportunity to reunification.
    [Show full text]
  • Technical Program Overview Keynote Talks @ 45 Mins + Discussion of Each Talk @ 30 Mins
    Functional Glasses: Properties and Applications for Energy & Information January 6-11, 2013, Siracusa, Sicily, Italy Technical Program Overview Keynote Talks @ 45 mins + Discussion of each talk @ 30 mins Monday, January 7, 2013 1. Morning Session: Applications of Glass in Energy Technology Broad Topic: Lighting Speaker: Dr. Mehran Arbab, Director of Research and Technology, Glass and Fiber Glass, PPG Industries, USA, 'Integrated Glass Substrates for OLED Lighting' Discussion Leader: Dr. Klaus Bange, (Ex-Schott), MK Consulting, GmbH, Germany Broad Topic: Photovoltaics Speaker: Dr. Sener Oktik, President, Research and Technological Development, Sisecam, Turkey, “Photovoltaic Industry & Role of Glass for Reducing the Cost of Solar Energy" Discussion Leader: Dr. Driss Lamine, Project Manager, Saint Gobain, France Broad Topic: Coatings Speaker: Dr. Joachim Deubener, Professor and Director of Institute of Non-Metallic Materials, Clausthal University of Technology, Germany, “Alterations of Glass Surfaces & Functional Coatings for Energy Conversion Systems” Discussion Leader: Dr. Roland Langfeld, Research Fellow, Schott AG, Germany. 2. Afternoon Session: Applications of Glass in Information Technology Broad Topic: Roll-to-roll thin glass Speaker: Dr. Sean Garner, Scientist, Corning, USA. “Ultra-Slim Flexible Glass for Electronic Applications “ Discussion Leader: Dr. Richard Brow, Curators' Professor, Dept. of Materials Science & Engineering, Missouri Broad Topic: Fiber Speaker: Dr. Philip Russell, Director, Max Planck Inst. for the Science of Light, Erlangen, Germany, "Microstructured Optical Fibres: Opportunities and Challenges" Discussion Leader: Dr. Younes Messaddeq, Professor, Dept of Physics, Engineering Physics and Optics, Laval Uni., Canada. Also Canada Excellence Research Chair in Enabling Photonic Innovations for Information and Communication Broad Topic: Transparent Conductive Materials Speaker: Dr. Driss Lamine, Project Manager, Saint Gobain, France, “A general introduction for the use and needs of TCMs in glass industry".
    [Show full text]
  • Glass-Ceramics and Realization of the Unobtainable: Property Combinations That Push the Envelope
    Glass-ceramics and realization of the unobtainable: Property combinations that push the envelope Mark J. Davis and Edgar D. Zanotto , Guest Editors Materials designed and engineered for technical applications must invariably meet or exceed multiple key specifi cations. Even if commercial realization is not intended, scientifi c interest is piqued if a challenging combination of properties is achieved, particularly if they are mutually exclusive for certain classes of materials. For example, the combination of mechanical toughness, chemical durability, and high thermal-shock resistance, with pore-free, smooth, aesthetically beautiful surfaces simultaneously realized in certain glasses that are crystallized in a controlled manner—glass-ceramics—have enabled two distinct, decades- long applications, cookware and fl at cooktop panels. Other special glass-ceramic materials have been developed for electronic, photonic, dental, and biomedical applications. No other class of material could combine these properties in such an advantageous and economically feasible manner. This issue highlights six very different innovative applications of glass- ceramics, all of which owe their importance and continuing interest to “hard-to-combine” properties. Introduction with granite, a classic example. However, to the glass-ceramic Materials undergo some type of fundamental change during researcher, either academic or industrial, the chemistry and preparation from the raw materials to their fi nal state. Prepared realized crystal phases are far less constrained than they metals and ceramics date back nearly 12,000 years. Glassmaking are in the natural world. So too are the resulting physical, dates back about one-half of that timespan, 4500 to 6000 years, chemical, and optical properties. Figure 1 2 shows an optical whereas polymers, semiconductors, and graphene, for instance, micrograph of a glass-ceramic containing one crystal phase are more recent additions, less than a century or even recent dispersed in a residual glass matrix.
    [Show full text]
  • Technical Information for Cylindrical Curved Glass
    Technical information for cylindrical curved glass Cylindrical curved float glass Cylindrical curved insulating glass Min. radius 50 mm 100 mm Max. angle 180° 150° Max. dimensions girth x height/width girth x height/width 3210 x 8000 * 3210 x 8000 * * The table shows the max. theoretically possible dimensions. Sizes can vary depending on used glass (thickness/function) and shape. Min. dimensions on request on request Max. pitch 1200 mm moreover on request 1200 mm moreover on request Max. weight 2000 kg 2000 kg Glass thickness 2–19 mm 4–34 mm moreover on request Bendable glass • Low-iron extra-clear glass, e.g. Diamant (Saint-Gobain), see float glass types* Optiwhite (Pilkington) The following glass types can be used for the production • Tinted float glass (e.g. Parsol) of curved double glazed units: • Anti-reflective glass e.g. Amiran®, Conturan® (Schott AG) • Mirror with chrome coating MIRASTAR® (Saint-Gobain) • Solar control glass with hard coatings, e.g. ANTELIO, • Self-cleaning glass: Bioclean® (Saint-Gobain) COOL-LITE® ST, STOPSOL, Sunergy, Silverstar • Cast glass and rolled glass (with some limitations) Sunstop T or with combined solar and thermal control • Antique sheet glass coatings e.g. COOL-LITE®SKN*, SunGuard® HS, • Wired glass SunGuard® HP, SunGuard® Solar • Screen printed glass (screen print on the inside) • Heat protection glass • Decoration glass Planitherm Ultra N II (soft coating), • Frosted glass K-Glass (hard coating) • Mattfinished glass (partial or completely) • Acoustic protection glass compositions with "Stadip • Etched and sandblasted glass, also with CLEAR-SHIELD® Silence" (sound insulation interlayer) are also available • Bevelled glass • Safety termal insulating glass in connection with • Enamelled float glass he at protection, acoustic protection, sun protection • Shatter-resistant with security window films and special laminated safety glass combinations with • Partial or complete coverage with coloured glass different resistance class according to DIN EN 356 painting.
    [Show full text]