Printmgr File

Total Page:16

File Type:pdf, Size:1020Kb

Load more

This document is not an offer for sale or a solicitation to buy securities and has not been approved by any supervisory authority anywhere in the world. This document is in all material respects a convenience translation of the original German-language listing prospectus, which is the legally relevant document under German law; only the German-language version has been approved by the German Federal Financial Supervisory Authority (Bundesanstalt für Finanzdienstleistungsaufsicht). Listing Prospectus for admission to trading on the regulated market (Regulierter Markt) of the Frankfurt Stock Exchange and the Munich Stock Exchange with simultaneous admission to the sub-segment of the Frankfurt Stock Exchange with additional post-admission obligations (Prime Standard) of 104,689,400 no-par value registered shares (entire share capital upon effectiveness of the capital increase in connection with the spin-off of an indirect 80.5% shareholding in OSRAM GmbH by way of transfer of all shares in OSRAM Beteiligungen GmbH to OSRAM Licht AG under issuing shares to the shareholders of Siemens AG) – each representing a notional share in the share capital of €1.00 per no-par value share and carrying full dividend rights from October 1, 2012 onwards – of OSRAM Licht AG, Munich – International Securities Identification Number (ISIN): DE000LED4000 – – German Securities Identification Number: LED 400 – – Common Code: 089579422 – June 21, 2013 TABLE OF CONTENTS SUMMARY OF THE PROSPECTUS ........................................................ 1 A – INTRODUCTION AND WARNINGS ........................................................ 1 B – THE ISSUER ........................................................................ 1 C – SECURITIES ........................................................................ 22 D – RISKS ............................................................................. 23 E – OFFER ............................................................................. 27 RISK FACTORS ......................................................................... 30 RISKS RELATING TO OUR INDUSTRY AND OUR BUSINESS ........................................ 30 REGULATORY RISKS ..................................................................... 49 RISKS ASSOCIATED WITH OUR SHAREHOLDER STRUCTURE AND THE SPIN-OFF ....................... 53 RISKS RELATING TO THE COMMENCEMENT OF TRADING OF OUR SHARES ........................... 55 GENERAL INFORMATION ............................................................... 57 DOCUMENTS AVAILABLE FOR INSPECTION ................................................... 57 SUBJECT MATTER OF THIS PROSPECTUS ..................................................... 57 FORWARD-LOOKING STATEMENTS .......................................................... 57 CURRENCY PRESENTATION ............................................................... 58 PRESENTATION OF SOURCES OF MARKET DATA; ADDITIONAL FINANCIAL AND NUMERICAL DATA ........ 58 PRESENTATION OF FINANCIAL INFORMATION ................................................. 59 THE SPIN-OFF .......................................................................... 62 CORPORATE STRUCTURE PRIOR TO THE SPIN-OFF .............................................. 62 SPIN-OFF PROCEDURE ................................................................... 62 STATUTORY AUDITOR FOR THE SPIN-OFF .................................................... 63 CONTRIBUTIONS IN KIND AND POST-FORMATION AUDIT ......................................... 63 TRUSTEE, ALLOTMENT RATIO, ALLOTMENT, SETTLEMENT ....................................... 63 ADR PROGRAM ......................................................................... 66 ADMISSION TO STOCK EXCHANGE AND COMMENCEMENT OF TRADING ............................. 66 SUBSIDIZED ACQUISITION OF SHARES BY EMPLOYEES .......................................... 66 TIMETABLE FOR THE SPIN-OFF ............................................................. 67 DESIGNATED SPONSORS .................................................................. 67 INTERESTS OF PARTICIPATING PARTIES IN THE SPIN-OFF ........................................ 67 DILUTION ............................................................................. 68 LISTING AGREEMENT; FEES; INDEMNITY; LOCK UP ............................................. 68 OTHER RELATIONSHIPS BETWEEN THE BANKS, SIEMENS AG AND THE COMPANY ..................... 68 REASONS FOR THE SPIN-OFF; COST OF ISSUANCE ........................................ 69 REASONS FOR THE SPIN-OFF .............................................................. 69 COST OF ISSUANCE ...................................................................... 69 DIVIDEND POLICY ..................................................................... 71 GENERAL PROVISIONS RELATING TO PROFIT ALLOCATION AND DIVIDEND PAYMENTS ................. 71 DIVIDEND POLICY AND EARNINGS PER SHARE ................................................ 71 CAPITALIZATION AND NET INDEBTEDNESS .............................................. 73 CAPITALIZATION ....................................................................... 73 NET FINANCIAL INDEBTEDNESS ............................................................ 74 FINANCIAL COMMITMENTS AND CONTINGENT LIABILITIES ....................................... 74 STATEMENT ON WORKING CAPITAL ......................................................... 74 NO SIGNIFICANT CHANGE OF FINANCIAL POSITION ............................................. 74 i SELECTED FINANCIAL AND OTHER INFORMATION ...................................... 75 MANAGEMENT’S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS .................................................................... 83 OVERVIEW ........................................................................... 83 BASISOFPRESENTATION ................................................................ 86 KEY FACTORS AFFECTING THE RESULTS OF OPERATIONS ....................................... 90 NON-GAAP MEASURES .................................................................. 98 DISCUSSION OF INDIVIDUAL ITEMS IN THE COMBINED STATEMENTS OF INCOME ..................... 103 COMPARISON OF OPERATING RESULTS ..................................................... 105 INFORMATION ON COMBINED STATEMENTS OF FINANCIAL POSITION OF OSRAM LICHT GROUP .......... 133 LIQUIDITY AND CAPITAL RESOURCES ...................................................... 133 CRITICAL ACCOUNTING ESTIMATES ........................................................ 144 DISCLOSURE ABOUT MARKET AND OTHER FINANCIAL RISKS .................................... 146 INFORMATION FROM THE ANNUAL FINANCIAL STATEMENTS OF OSRAM GMBH AND OSRAM LICHT AG IN ACCORDANCE WITH THE GERMAN COMMERCIAL CODE FOR THE FISCAL YEAR 2012 ............... 148 TECHNOLOGICAL BACKGROUND, INDUSTRY AND COMPETITIVE OVERVIEW ............. 149 TECHNOLOGICAL BACKGROUND .......................................................... 149 THE GLOBAL LIGHTING MARKET .......................................................... 152 COMPETITION AND MARKET POSITION ..................................................... 160 BUSINESS ............................................................................ 162 OUR HISTORY ......................................................................... 162 OVERVIEW ........................................................................... 162 OUR SEPARATION FROM SIEMENS ......................................................... 165 COMPETITIVE STRENGTHS ............................................................... 165 STRATEGY ........................................................................... 168 PRODUCTS AND SERVICES ............................................................... 172 SALES AND MARKETING ................................................................. 175 PROCUREMENT ........................................................................ 176 INFORMATION TECHNOLOGY ............................................................. 177 PRODUCTION ......................................................................... 178 RESEARCH AND DEVELOPMENT ........................................................... 179 INTELLECTUAL PROPERTY RIGHTS ......................................................... 181 EMPLOYEES .......................................................................... 183 INSURANCE .......................................................................... 184 RISK MANAGEMENT AND COMPLIANCE ..................................................... 184 LEGAL AND ARBITRATION PROCEEDINGS ................................................... 186 MATERIAL CONTRACTS ................................................................. 193 REGULATION ......................................................................... 198 ENVIRONMENT RELATED REGULATIONS .................................................... 198 CROSS BORDER IMPORT AND EXPORT LAWS ................................................. 205 GOVERNMENT SUBSIDIES ................................................................ 206 LIGHTING REGULATION IN THE UNITED STATES .............................................. 206 CERTAIN RELATIONSHIPS AND RELATED PARTY TRANSACTIONS ........................ 207 RELATIONSHIP WITH THE SIEMENS GROUP .................................................. 207 RELATIONSHIP WITH ASSOCIATES AND JOINT VENTURES ....................................... 220 RELATIONSHIP WITH MEMBERS OF THE MANAGING BOARD AND THE SUPERVISORY BOARD
Recommended publications
  • Recommended Pick and Place Tools for Leds from OSRAM Opto Semiconductors

    Recommended Pick and Place Tools for Leds from OSRAM Opto Semiconductors

    www.osram.com/os Application Note No. AN037 Recommended pick and place tools for LEDs from OSRAM Opto Semiconductors Application Note Valid for: all SMT LEDs from OSRAM Opto Semiconductors Abstract OSRAM Opto Semiconductors SMT devices are developed for assembly by automatic placement machines. To achieve a damage-free processing of LEDs, appropriate and individual pick and place tools (the nozzles) must be used. The following pages provide information about important parameters that should be considered for LED assembly. Furthermore a recommended nozzle design for each LED in the OSRAM Opto Semiconductors portfolio is given. Authors: Retsch Stefanie / Lang Kurt-Jürgen 2021-06-22 | Document No.: AN037 1 / 21 www.osram.com/os Table of contents A.Pick-and-place process .......................................................................................... 2 B.Overview of recommended nozzle designs ............................................................ 2 A. Pick-and-place process As is the standard for SMT devices, all SMT LEDs from OSRAM Opto Semiconductors are designed for an automated pick and place process. To receive optimal process results, it is necessary to set the pick and place machine properly. In the initial production run, it must be ensured that the LED package can be grabbed by the nozzle and sucked out of the tape pocket. Therefore, an appropriate nozzle (pipette or pick-up tool) has to be used. This application note gives an overview on the recommended nozzles and the dimensions. An appropriate nozzle not only ensures a good pick and place process, it also helps to prevent damage to the LED. To avoid any damage during the pick-up process, the pick-up position should be controlled and adjusted during the set-up.
  • SSA-434534: Memory Protection Bypass Vulnerability in SIMATIC S7-1200 and S7-1500 CPU Families

    SSA-434534: Memory Protection Bypass Vulnerability in SIMATIC S7-1200 and S7-1500 CPU Families

    Siemens Security Advisory by Siemens ProductCERT SSA-434534: Memory Protection Bypass Vulnerability in SIMATIC S7-1200 and S7-1500 CPU Families Publication Date: 2021-05-28 Last Update: 2021-09-14 Current Version: V1.1 CVSS v3.1 Base Score: 8.1 SUMMARY SIMATIC S7-1200 and S7-1500 CPU products contain a memory protection bypass vulnerability that could allow an attacker to write arbitrary data and code to protected memory areas or read sensitive data to launch further attacks. Siemens has released updates for several affected products and strongly recommends to update to the latest versions. Siemens recommends specific countermeasures for products where updates are not, or not yet available. AFFECTED PRODUCTS AND SOLUTION Affected Product and Versions Remediation SIMATIC Drive Controller family: Update to V2.9.2 or later version All versions < V2.9.2 https://support.industry.siemens.com/cs/ww/en/ view/109773914/ SIMATIC ET 200SP Open Controller CPU Update to V21.9 or later version 1515SP PC2 (incl. SIPLUS variants): https://support.industry.siemens.com/cs/ww/en/ All versions < V21.9 view/109759122/ SIMATIC ET 200SP Open Controller CPU See recommendations from section Workarounds 1515SP PC (incl. SIPLUS variants): and Mitigations All versions SIMATIC S7-1200 CPU family (incl. SIPLUS vari- Update to V4.5.0 or later version ants): https://support.industry.siemens.com/cs/ww/en/ All versions < V4.5.0 view/109793280/ SIMATIC S7-1500 CPU family (incl. related ET200 Update to V2.9.2 or later version CPUs and SIPLUS variants): https://support.industry.siemens.com/cs/ww/en/
  • Joint Spin-Off Report

    Joint Spin-Off Report

    This report is a non-binding convenience translation of the German-language original report, which is the legally relevant document under German law. Joint Spin-off Report of the Managing Boards of Siemens Aktiengesellschaft, Berlin and Munich, and OSRAM Licht AG, Munich, on the Spin-off of a Majority Participation in OSRAM pursuant to Section 127 sentence 1 German Transformation Act (Umwandlungsgesetz) I. Introduction ................................................................................................................ 11 II. Starting situation – The legal entities involved in the Spin-off and the Siemens Group prior to the Spin-off ....................................................................................... 14 1. Overview of the Siemens Group ................................................................................ 14 2. Siemens AG as the transferring entity...................................................................... 16 a) Registered office and fiscal year .................................................................... 16 b) Capital stock and shares ................................................................................ 16 c) Warrant bonds ................................................................................................ 16 d) Stock-based compensation programs and employee participation programs – authorization to purchase treasury shares .............................. 17 e) Shareholder structure and trading on the stock exchange ......................... 18 f) Managing
  • Photonic Glass-Ceramics: Consolidated Outcomes and Prospects Brigitte Boulard1, Tran T

    Photonic Glass-Ceramics: Consolidated Outcomes and Prospects Brigitte Boulard1, Tran T

    Photonic glass-ceramics: consolidated outcomes and prospects Brigitte Boulard1, Tran T. T. Van2, Anna Łukowiak3, Adel Bouajaj4, Rogéria Rocha Gonçalves5, Andrea Chiappini6, Alessandro Chiasera6, Wilfried Blanc7, Alicia Duran8, Sylvia Turrell9, Francesco Prudenzano10, Francesco Scotognella11, Roberta Ramponi11, Marian Marciniak12, Giancarlo C. Righini13,14, Maurizio Ferrari6,13,* 1 Institut des Molécules et Matériaux du Mans, UMR 6283, Equipe Fluorures, Université du Maine, Av. Olivier Messiaen, 72085 Le Mans cedex 09, France. 2 University of Science Ho Chi Minh City, 227 Nguyen Van Cu, Dist.5, HCM Vietnam. 3 Institute of Low Temperature and Structure Research, PAS, ul. Okolna 2, 50-950 Wroclaw, Poland. 4 Laboratory of innovative technologies, LTI, ENSA–Tangier, University Abdelmalek Essaâdi, Tangier, Morocco. 5 Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo - Av. Bandeirantes, 3900, CEP 14040-901, Ribeirão Preto/SP, Brazil 6 CNR-IFN, CSMFO Lab., Via alla Cascata 56/c, Povo, 38123 Trento, Italy. 7 Université Nice Sophia Antipolis, CNRS LPMC, UMR 7336, 06100 Nice, France. 8 Instituto de Ceramica y Vidrio (CSIC), C/Kelsen 5, Campus de Cantoblanco, 28049 Madrid, Spain. 9 LASIR (CNRS, UMR 8516) and CERLA, Université Lille 1, 59650 Villeneuve d’Ascq, France. 10 Politecnico di Bari, DEI, Via E. Orabona 4, Bari, 70125, Italy. 11 IFN-CNR and Department of Physics, Politecnico di Milano, p.zza Leonardo da Vinci 32, 20133 Milano, Italy 12 National Institute of Telecommunications, 1 Szachowa Street, 04 894 Warsaw, Poland. 13 Centro di Studi e Ricerche “Enrico Fermi”, Piazza del Viminale 2, 00184 Roma, Italy. 14 MipLAB. IFAC - CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
  • PDF Exhibitor Testimonials

    PDF Exhibitor Testimonials

    glasstec 2018 – Exhibitor Quotes SCHOTT AG The 25th glasstec was a special highlight for SCHOTT. A new booth concept invited visitors to discover and experience glass. Our feedback was excellent both quantitatively and qualitatively. And, of course, glasstec again offered a perfect platform for networking." Salvatore Ruggiero, Vice President Marketing and Communication, SCHOTT AG NSG Pilkington NSG Group, the owner of the Pilkington brand, celebrated a very successful exhibition at glasstec 2018. But this success was not the only reason for celebration – this year is also the Group’s 100th anniversary as well as glasstec’s 25th. “The Glasstec event presented the dynamic evolution of glass applications in the world and we were very pleased to be part of such a successful show. Visitors were able to view a wide range of design options and realise the enormous development in dynamic façade solutions, which, by focusing on energy generation, enable building designers to enhance inhabitants’ comfort and well-being. “This is the generation of products for today and tomorrow and NSG Group presented a variety of products, which are fulfilling these “future” market demands. glasstec 2018 was an excellent platform on which to showcase the Group’s capabilities to the world.” Sing Koo, Managing Director Germany & VA Manager Europe Merck KGaA This year, Merck joined Glasstec for the first time. After the opening of our production plant in Veldhoven, The Netherlands, nearly one year ago, we found with Glasstec the right platform to successfully launch our new brand for dynamic liquid crystal windows EYRISE™ as well as our new product for dynamic solar control EYRISE™ s350 into the market.
  • The Corning Museum of Glass Annual Report, 2006

    The Corning Museum of Glass Annual Report, 2006

    The Corning Museum of Glass Annual Report 2006 Cover: Officers The Fellows of The Corning The Fellows of The Corning Museum of Glass Museum of Glass are among Peacock vase, blown; E. Marie McKee the world’s leading glass col- silver-gilt mount. U.S., President Carole Allaire lectors, scholars, dealers, and Corona, NY, Tiffany Gary E. Baker glassmakers. The objectives Amory Houghton Jr. Studios, 1898–1899. Renée E. Belfer of this organization are (1) Vice President H. 14.1 cm (2006.4.161). Robert A. Belfer to disseminate knowledge James R. Houghton Mike Belkin about the history and art of Vice President William W. Boeschenstein* glassmaking and (2) to sup- port the acquisitions program Alan L. Cameros Denise A. Hauselt of the Museum’s Rakow Secretary Lt. Gen. Christian Clausen, retired Research Library. Admission Thomas P. Dimitroff to the fellowship is intended James B. Flaws Jay R. Doros to recognize accomplishment, Treasurer David Dowler and is by invitation. Robert J. Grassi Max Erlacher Assistant Treasurer Christopher T. G. Fish Barbara U. Giesicke David B. Whitehouse William Gudenrath Executive Director Jirˇí Harcuba+ Douglas Heller Trustees A. C. Hubbard Jr. Roger G. Ackerman* Kenneth L. Jobe + Peter S. Aldridge Dorothy-Lee Jones Thomas S. Buechner Leo Kaplan Van C. Campbell* Helena Koenigsmarková + Dale Chihuly Michael Kovacek Patricia T. Dann Dwight P. Lanmon + Robert Duke Harvey K. Littleton James B. Flaws Louise Luther John P. Fox Jr. Kenneth W. Lyon Polly W. Guth Josef Marcolin Ben W. Heineman* John H. Martin + Amory Houghton Jr.* Gregory A. Merkel Arthur A. Houghton III Barbara H.
  • Complementary Lighting and Container Glass

    Complementary Lighting and Container Glass

    FOCUSFOCUS ON ON VIETNAM THAILAND FOCUS ON VIETNAM OFFICIAL JOURNAL Complementary lighting and container glass expertise Somchai Ovuthitham, Chief Executive Officer at Thailand’s L Lighting Glass, spoke to official AFGM journal, Glass Worldwide, about the growing importance of glass container manufacture to his business, in parallel with its original lighting glass manufacturing expertise. Further expansion is planned for early 2017. Founded in 1974, Chachoengsao- produce glass for lighting applications production and furnace operation. “We already based L Lighting Glass Co Ltd is a and continues to produce for manufactured tubes long before this co-operation but second generation family business, fluorescent, incandescent and we wanted to develop and improve our quality and currently managed by Somchai automotive lamps. Approximately technology” Somchai Ovuthitham explains. Having VieglassOvuthitham, was represented Chief Executive last year at theOfficer. 39th ASEAN Glass80% Conference of output by Nguyenis exported Huy Thang to and40 Tran Quoc Thaisuccessfully (centre, front established row). its own expertise, however, His father, Udom Ovuthitham was different countries as far afield as the the Thai glassmaker set out on its own again and now responsible for the company’s USA, Europe, China and India, as well manufactures its own production equipment, including creation and focus but at 90 years of as South East Asia. Some 20 million mandrel drivers, drawing machines and cutting equipment. age,Addressing he now enjoys a well-earned automotive challenges bulb shells alone are “In the field of lighting, our technology is world class.” retirement. The company employs exported every month, to the likes of 700 people in total, including Mr Philips in China and India, Osram in NEED FOR DIVERSIFICATION Somchai’sin oldestVietnam and second Korea, Europe and China and General The international lighting industry’s evolution towards LED daughters, who maintain the family’s Electric in the USA.
  • BSH 2010 English.Indd

    BSH 2010 English.Indd

    1 Corporate Social Responsibility Report 2010 BSH IKIAKES SYSKEVES A.B.E CONTENTS 3 1. Introduction Page 4 2. Managing Directors’ Message Page 5 The Company 3. BSH IKIAKES SYSKEVES A.B.E.: The Company Page 6 3.1. History Page 6 3.2. Plants in Athens Page 7 3.3. History of Pitsos Page 7 Corporate Social 4. BSH Ikiakes Syskeves A.B.E” and Corporate Social Responsibility (CSR) Page 8 Responsibility 4.1. The Company’s Philosophy and Sustainability Page 8 4.2 Corporate Governance Page 9 4.3. Code of Business Conduct Page 10 4.4. Mapping our Stakeholders Page 10 4.5. Memberships in Associations and Business Organisations Page 11 Human Resources 5. Acting Responsibly: Our People Page 12 5.1. Policy Page 12 5.2. Equal Opportunities at the Workplace Page 12 5.3. Health & Safety Policy Page 13 5.4. Employee Development and Training Page 14 5.5. Volunteer Work Page 15 5.6. Communicating with our Employees Page 15 The Market 6. Acting Responsibly: the Market Page 16 6.1. Policy Page 16 6.2. Products and Services Page 16 6.3. Supply Chain & Partners & Contribution to Community Page 18 6.4. Customer and Partner Satisfaction Page 18 Environment 7. Acting Responsibly: The Environment and Society Page 20 and Society 7.1. Policy Page 20 7.2. Environmental Management Page 20 7.3. Raw Material Consumption Page 21 7.4. Paper Consumption Page 21 7.5. Energy Consumption Page 21 7.6. Greenhouse Gas Emissions Reduction Page 22 7.7. Water Management and Consumption Page 23 7.8.
  • ZERODUR® K20 Glass Ceramic with Low Thermal Expansion for High Temperature Applications

    ZERODUR® K20 Glass Ceramic with Low Thermal Expansion for High Temperature Applications

    ZERODUR® K20 Glass ceramic with low thermal expansion for high temperature applications Product Information The high temperature ZERODUR® K20 glass ceramic material contains a crystal phase of more than 90 % Keatite, pro- duced by thermal transformation from the semitransparent ZERODUR® material. ZERODUR® K20 can be used at higher application temperatures compared to ZERODUR®. The material has high tem- perature stability and low thermal ex- pansion and does not change its proper- ties during multiple temperature cycles. Properties • Low coefficient of thermal expansion together with high longterm tempe- rature stability up to 850 °C • Can be matched with low thermal Forms of Supply expansion metal alloys, e. g. Invar® • Complex, customized CNC-manufactured products • Excellent homogeneity and in ternal • Serial production and prototype manu facturing quality • A remission of more than 90 % in the Properties ZERODUR® K20 ZERODUR® visible with a matt brilliant white finish Density [g/cm3] 2.53 2.53 • Free of pores and polishable to very Young’s Modulus E [GPa] 84.7 90.3 low surface roughness levels • Large-scale parts can be produced Poisson’s Ratio µ 0.25 0.24 with dimensions in the meter range Knoop Hardness [HK 0.1/20] 620 620 Expansion Coefficient (20 – 700 °C) [10–6/K] 2.4 0.2 Applications Expansion Coefficient (20 – 300 °C) [10–6/K] 2.2 – • Mechanical and optical components 0 ± 0.007 within high energy laser systems 0 ± 0.010 • Diffuse reflectors for laser-cavities Expansion Coefficient (0 – 50 °C) [10–6/K] 1.6 0 ± 0.020 • Mold material in hot forming pro cesses 0 ± 0.050 0 ± 0.100 (glass, plastic etc.) 0.90 • High precision manufactured compo- Heat Capacity c (20 °C) [J/(gK)] 0.80 p (extrapolated) nents Thermal Conductivity (90 °C) [W/(mK)] 1.63 1.46 • Ceramic engine components • Calibration standards for optical and Max.
  • (FTO-Free) Graphene Cathode for Co-Mediated Dye-Sensiti

    (FTO-Free) Graphene Cathode for Co-Mediated Dye-Sensiti

    Low-temperature Fabrication of Highly-Efficient, Optically-Transparent (FTO-free) Graphene Cathode for Co-Mediated Dye-Sensitized Solar Cells with Acetonitrile-free Electrolyte Solution Ladislav Kavan1,2*, Paul Liska1, Shaik M. Zakeeruddin1 and Michael Graetzel1 1Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland 2J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-18223 Prague 8, Czech Republic *e-mail: [email protected] ABSTRACT Propionitrile electrolyte solutions mixed with sulfolane or with 1-ethyl 3-methyl imidazolium tetracyanoborate (ionic liquid) are optimized for Co(bpy)3+/Co(bpy)2+-mediated DSCs working at low illumination intensity. Highly-active cathode catalysts based on graphene oxide, either pure or mixed with graphene nanoplatelets or with stacked graphene fibers, can be prepared at temperatures ≤200oC. The catalytic layers are well adhering to the substrates, i.e. to FTO or to stainless-steel surfaces, both the flat steel sheet and the steel wires in woven fabric consisting of transparent polyester (PEN) fibers in warp and stainless steel wires in weft (Sefar B23). The dye- sensitized solar cells with various cathodes, fabricated either from Pt or from optimized graphene-based catalysts, and supported by either FTO or by stainless-steel/PEN fabric show similar solar conversion efficiencies between 6.9 and 7.9 % at 0.25 sun illumination. KEYWORDS: dye sensitized solar cell; electrochemical impedance spectroscopy; stainless- steel; woven fabric; Co-mediator 1 1. Introduction The dye sensitized solar cell (DSC) also called the Graetzel cell [1,2] is an efficient, low-cost photovoltaic device achieving competitive parameters on the lab-scale, but its pervasive commercialization still requires some improvements.
  • Project Final Report

    Project Final Report

    PROJECT FINAL REPORT Grant Agreement number: 215934 Project acronym: COMBOLED Project title: Combined Organic LED Technology for Large Area Transparent and low cost lighting Applications Funding Scheme: STREP Period covered: from 1-1-2008 to 28-2-2011 Name of the scientific representative of the project's co-ordinator1, Title and Organisation: Dr. Marc Philippens OSRAM Opto Semiconductors GmbH Leibnizstr. 4 93055 Regensburg Germany Tel: +49 941 850 1624 Fax: +49 941 850 444 1624 E-mail: [email protected] Project website address: www.comboled-project.eu 1 Usually the contact person of the coordinator as specified in Art. 8.1. of the Grant Agreement. Table of contents: 1 Publishable summary......................................................................................................... 3 1.1 Executive summary.................................................................................................... 3 1.2 Description of project context and objectives............................................................ 4 1.3 Main S&T results/foregrounds................................................................................... 6 1.4 The potential impact and the main dissemination activities and exploitation of results 11 1.5 Consortium / Website............................................................................................... 16 1 Publishable summary 1.1 Executive summary The goal of CombOLED was to combine new device structures, advantageous manufacturing approaches and less complex materials with the aim to achieve cost effective OLED lighting solutions. The cost reduction, together with transparency as a device feature, will enable a huge penetration of the organic light-emitting device (OLED) technology into the lighting market. This will help European lighting companies to maintain their leadership in this market at worldwide level. One of todays cost drivers for OLED is the substrate cost. Therefore one focus was on the development of low cost substrates. Three low cost substrate techniques were developed.
  • Susan Ascher Olga Brook Christopher

    Susan Ascher Olga Brook Christopher

    The following planners, managers and reviewers have no financial relationships to disclose: Susan Ascher Olga Brook Christopher Francois Desiree Morgan Andrew Rosenkrantz Aarti Sekhar Jennifer Sheehan Alexis LaCount Ramesh Iyer Bojan Petrovic Lindsay Scott The following planners and managers reported the following financial relationships or relationships to products or devices they or thei spouse/partner have with commercial interests related to the content of this CME activity: First Name Last Name Commercial Interest Explanation/Other Mustafa Bashir No No Yes Research Grants Siemens Healthcare , NGM Biopharmaceuticals, Metacrine Inc, ProSciento Inc, Pinnacle Clinical Research, CymaBay Matthew Davenport No No No Royalties: Wolters Kluwer and uptodate.com Ross Filice No No Yes Stock Options, Ownership/Partnership, Research am an advisor to and have a 0.5% equity stake in BunkerHill Grants, Consultant Health, Inc. I am a co-founder of DexNote, LLC. I have also received an academic GPU grant from Nvidia Corporation. None of these relate directly to any of my roles at SCBT-MR. Avinash Kambadakone Ramesh No No Yes Research Grants Phillips Healthcare, GE Healthcare Jeffrey Maki No No Yes Research Grants Bracco Elizabeth McFarland No No Yes Speakers Bureau Bard Biopsy Systems Eric Tamm No No Yes Research Grants GE Healthcare Scott Reeder No No No Consultant for ArTara Therapeutics, and has ownership interests in Calimetrix, Reveal Pharmaceuticals Cellectar Biosciences, and Elucent Medical. The University of Wisconsin receives research support