Readingsample

Total Page:16

File Type:pdf, Size:1020Kb

Readingsample Springer Handbook of Condensed Matter and Materials Data Bearbeitet von Werner Martienssen, Hans Warlimont 1. Auflage 2005. Buch. xviii, 1121 S. Hardcover ISBN 978 3 540 44376 6 Format (B x L): 21 x 27,9 cm Gewicht: 2367 g Weitere Fachgebiete > Technik > Werkstoffkunde, Mechanische Technologie Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. 523 Glasses 3.4. Glasses 3.4.1 Properties of Glasses – This chapter has been conceived as a source General Comments ............................. 526 of information for scientists, engineers, and technicians who need data and commercial- 3.4.2 Composition and Properties of Glasses . 527 product information to solve their technical task 3.4.3 Flat Glass and Hollowware .................. 528 by using glasses as engineering materials. It is not 3.4.3.1 Flat Glass ............................... 528 intended to replace the comprehensive scientific 3.4.3.2 Container Glass ....................... 529 literature. The fundamentals are merely sketched, to provide a feeling for the unique behavior of this 3.4.4 Technical Specialty Glasses .................. 530 widely used class of materials. 3.4.4.1 Chemical Stability of Glasses ..... 530 The properties of glasses are as versatile as 3.4.4.2 Mechanical their composition. Therefore only a selection of and Thermal Properties............ 533 3.4.4.3 Electrical Properties ................. 537 data can be listed, but their are intended to cover 3.4.4.4 Optical Properties.................... 539 the preferred glass types of practical importance. Part 3 Wherever possible, formulas, for example for the 3.4.5 Optical Glasses ................................... 543 optical and thermal properties, are given with 3.4.5.1 Optical Properties.................... 543 3.4.5.2 Chemical Properties................. 549 their correct constants, which should enable the 4 reader to calculate the data needed for a specific 3.4.5.3 Mechanical Properties.............. 550 situation by him/herself. 3.4.5.4 Thermal Properties .................. 556 For selected applications, the suitable glass 3.4.6 Vitreous Silica..................................... 556 types and the main instructions for their processing 3.4.6.1 Properties of Synthetic Silica..... 556 are presented. Owing to the availability of the 3.4.6.2 Gas Solubility information, the products of Schott AG have and Molecular Diffusion ........... 557 a certain preponderance here. The properties of 3.4.7 Glass-Ceramics ................................... 558 glass types from other manufacturers have been included whenever available. 3.4.8 Glasses for Miscellaneous Applications . 559 3.4.8.1 Sealing Glasses ....................... 559 3.4.8.2 Solder and Passivation Glasses.. 562 3.4.8.3 Colored Glasses ....................... 565 3.4.8.4 Infrared-Transmitting Glasses... 568 References .................................................. 572 Glasses are very special materials that are formed general, generic expression in comparison with the only under suitable thermodynamic conditions; these term “glass”. Many different technological routes are conditions may be natural or man-made. Most glass described in [4.1]. products manufactured on a commercial scale are made Glasses are also very universal engineering mater- by quenching a mixture of oxides from the melt ials. Variation of the composition results in a huge (Fig. 3.4-1). variety of glass types, families, or groups, and a cor- For some particular applications, glasses are also responding variety of properties. In large compositional made by other technologies, for example by chemical areas, the properties depend continuously on compos- vapor deposition to achieve extreme purity, as required ition, thus allowing one to design a set of properties to in optical fibers for communication, or by roller chilling fit a specific application. In narrow ranges, the prop- in the case of amorphous metals, which need extremely erties depend linearly on composition; in wide ranges, high quenching rates. The term “amorphous” is a more nonlinearity and step-function behavior have to be con- 524 Part 3 Classes of Materials Volume 1 Q[2] 2 Glass formation curve Q[2] [3] Q[3/432] 3 Q[3] [3] Q[4/433] [3/432] Q 4 Crystallization curve Q[4/4333] [4] Tg Ts Temperature Q[4] [3] Q [4] Fig. 3.4-1 Schematic volume–temperature curves for glass Q formation along path 1–2–3 and crystallization along path 1–4. Ts, melting temperature; Tg, transformation temperature. 1, liquid; 2, supercooled liquid; 3, glass; Part 3 4, crystal Fig. 3.4-2 Fragment of a sodium silicate glass structure. The SiO2 tetrahedra are interconnected by the bridging sidered. The most important engineering glasses are oxygen atoms, thus forming a three-dimensional network. 4 mixtures of oxide compounds. For some special require- Na2O units form nonbridging oxygen atoms and act as ments, for example a particular optical transmission network modifiers which break the network. The Q[i/klmn] window or coloration, fluorides, chalcogenides, and col- nomenclature describes the connectivity of different atom loidal (metal or semiconductor) components are also shells around a selected central atom (after [4.2]) used. A very special glass is single-component silica, properties change with time and temperature, but in SiO2,which is a technological material with extraordin- most cases at an extremely low rate which cannot be ary properties and many important applications. observed under the conditions of classical applications On a quasi-macroscopic scale (> 100 nm), glasses (in the range of ppm, ppb, or ppt per year at room seem to be homogeneous and isotropic; this means that temperature). However, if the material is exposed to all structural effects are, by definition, seen only as a higher temperature during processing or in the final average properties. This is a consequence of the manu- application, the resulting relaxation may result in unac- facturing process. If a melt is rapidly cooled down, there ceptable deformation or internal stresses that then limit is not sufficient time for it to solidify into an ideal, its use. crystalline structure. A structure with a well-defined If a glass is reheated, the quasi-solid material short-range order (on a scale of less than 0.5 nm, to ful- softens and transforms into a liquid of medium vis- fill the energy-driven bonding requirements of structural cosity in a continuous way. No well-defined melting elements made up of specific atoms) [4.2] and a highly point exists. The temperature range of softening is disturbed long-range order (on a scale of more than 2 nm, called the “transition range”. By use of standardized disturbed by misconnecting lattice defects and a mixture measurement techniques, this imprecise characteriza- of different structural elements) (Fig. 3.4-2). tion can be replaced by a quasi-materials constant, the Crystallization is bypassed. We speak of a frozen-in, “transformation temperature” or “glass temperature” Tg, supercooled, liquid-like structure. This type of quasi- which depends on the specification of the procedure static solid structure is thermodynamically controlled (Fig. 3.4-3). but not in thermal equilibrium and thus is not absolutely As illustrated in Fig. 3.4-4, the continuous variation stable; it tends to relax and slowly approach an “equi- of viscosity with temperature allows various technolo- librium” structure (whatever this may be in a complex gies for hot forming to be applied, for example casting, multicomponent composition, it represents a minimum floating, rolling, blowing, drawing, and pressing, all of of the Gibbs free enthalpy). This also means that all which have a specific working point. 544 Part 3 Classes of Materials v d 90 85 80 75 70 65 60 55 55 45 40 35 30 25 20 n nd d 2.00 Description of symbols 2.00 Circles All glasses except short flint glasses (KZFS) 1.95 KZFS 1.95 Only N-type (lead-free and arsenic-free type) 66 1.90 N-type and conventional type 46 1.90 Conventional type 31 LASF 1.85 9 57 1.85 41 40 SF 45 44 43 6 1.80 32 36 11 1.80 21 33 56 34 14 33 A LAF 4 7 1.75 35 2 1.75 34 10 LAK 10 8 3 1 64 64 1.70 14 12 15 1.70 9 8 12 BASF 5 10 2 19 5 1.65 7 22 5 51 2 1.65 21 SSK BAF 11 15 10 2 2 Part 3 53 16 8 4 4 2 52 4 1.60 14 SK 4 5 1.60 5 BALF F PSK 3 5 1 4 4 11 2 LF 3 5 4.5 1.55 BAK 1 1.55 2 LLF 51 KF 5 9 PK 7 7 K 10 1.50 52 A 10 BK ZK7 1.50 51 5 FK 1.45 1.45 90 85 80 75 70 65 60 55 55 45 40 35 30 25 20 vd Fig. 3.4-25 Abbe diagram of glass families Table 3.4-13 Examples of glass codes Refractive index nd ν 2.00 Glass nd d Density Glass code Remarks KzF glasses: SiO2-Sb2O3-B2O3 type 1.95 KzFS glasses: B2O3-PbO-Al2O2 (gcm−3) 1.90 MmOn: ZrO2, Ta2O5, Nb2O5, ... B2O3-La2O3 N-SF6 1.80518 25.36 3.37 805 254.337 Lead- and ar- 1.85 MO: MgO, CaO, SrO, BaO, ZnO -MmOn SiO2- PbO- M O senic-free glass 1.80 M2O: Li2O, Na2O, K2O, Cs2O 2 SF6 1.80518 25.43 5.18 805 254.518 Classical lead 1.75 (B2O3,SiO2)- La O -MO silicate glass 1.70 2 3 (SiO2,B2O3) 1.65 SiO2-B2O3- -BaO-PbO BaO SiO2- P2O5- M O- The designation of each glass type here is composed of 1.60 Al O - 2 2 3 SiO2- TiO MO- BaO-M O SiO2 2- 2 -PbO an abbreviated family designation and a number.
Recommended publications
  • Ocean Drilling Program Initial Reports Volume
    Sigurdsson, H., Leckie, R.M., Acton, G.D., et al., 1997 Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 165 2. EXPLANATORY NOTES1 Shipboard Scientific Party2 INTRODUCTION Shipboard Scientific Procedures Numbering of Sites, Holes, Cores, and Samples In this chapter, we have assembled information that documents our scientific methods. This information concerns only shipboard Drilling sites are numbered consecutively from the first site methods described in the site reports in the Initial Reports volume of drilled by the Glomar Challenger in 1968. A site number refers to the Leg 165 Proceedings of the Ocean Drilling Program (ODP). one or more holes drilled while the ship was positioned over one Methods for shore-based analyses of Leg 165 data will be described acoustic beacon. Multiple holes may be drilled at a single site by pull- in the individual scientific contributions to be published in the Scien- ing the drill pipe above the seafloor (out of the hole), moving the ship tific Results volume. some distance from the previous hole, and then drilling another hole. Coring techniques and core handling, including the numbering of In some cases, the ship may return to a previously occupied site to sites, holes, cores, sections, and samples were the same as those re- drill additional holes. ported in previous Initial Reports volumes of the Proceedings of the For all ODP drill sites, a letter suffix distinguishes each hole Ocean Drilling Program with two exceptions: The core sections drilled at the same site. For example, the first hole drilled is assigned from Holes 1002D and 1002E in the Cariaco Basin were not split dur- the site number modified by the suffix "A," the second hole takes the ing Leg 165; instead, they were transported to the Gulf Coast Repos- site number and suffix "B," and so forth.
    [Show full text]
  • Thermal Behaviour and Excess Entropy of Bioactive Glasses and Zn-Doped Glasses
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HAL-Rennes 1 Thermal behaviour and excess entropy of bioactive glasses and Zn-doped glasses. Eric Wers, Hassane Oudadesse To cite this version: Eric Wers, Hassane Oudadesse. Thermal behaviour and excess entropy of bioactive glasses and Zn-doped glasses.. Journal of Thermal Analysis and Calorimetry, Springer Verlag (Germany), 2013, pp.1-8. <10.1007/s10973-013-3280-3>. <hal-00914284> HAL Id: hal-00914284 https://hal.archives-ouvertes.fr/hal-00914284 Submitted on 5 Dec 2013 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. J Therm Anal Calorim (2013) p: 1–8 DOI 10.1007/s10973-013-3280-3 Thermal behaviour and excess entropy of bioactive glasses and Zn-doped glasses E. Wers, H. Oudadesse ( ✉) Received: 22 March 2013 / Accepted: 4 June 2013 E. Wers, H. Oudadesse ( ✉) SCR, UMR CNRS 6226, University of Rennes 1, 263 av. du Général Leclerc, 35042 Rennes Cedex, France Abstract Bioactive glasses prepared in SiO 2–CaO–Na 2O and P 2O5 system are used as biomaterials in orthopaedic and maxillofacial surgery.
    [Show full text]
  • Journal of Orthodontics and Craniofacial Research
    Journal of Orthodontics and Craniofacial Research Masood H. J Orthod Craniofac Res 2: 109. Research Article DOI: 10.29011/JOCR-109.100109 The Effect of Bioactive Glasses in Air Abrasion Procedures Masood H, Gillam D*, Hill RG Oral Bioengineering, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University, London, UK *Corresponding author: David Gillam, Oral Bioengineering, Institute of Dentistry, Bart’s and the London School of Medicine and Dentistry, Queen Mary University, London, UK Citation: Masood H, Gillam D, Hill RG. (2020) The Effect of Bioactive Glasses in Air Abrasion Procedures. J Orthod Craniofac Res 2: 109. DOI: 10.29011/JOCR-109.100109 Received Date: 14 July 2020; Accepted Date: 24 July 2020; Published Date: 31 July 2020 Abstract Objective: To analyse the effect of particle size and shape of a new bioactive glass BioMinF on air abrasion compared to an air polishing powder (Sylc) using an enamel substitute material (Macor®). Method: The materials used in the study were: 1) Macor, (Precision Ceramics UK) 2) BioMinF: 500gm of glass frit (Cera Dynamics Ltd, UK) and 3) Sylc: Sylc 45S5 glass (Velopex International, UK). An AquaCare Air Abrasion & Polishing System (Velopex) with a hand piece with a 0.8 mm diameter tip was used with a 2mm thick Macor sheet with a feed rate of 1 and an air pressure of 2 bar. The BioMinF glass was milled for 45 seconds in five batches each containing 100 gm of BioMinF frit using a milling machine (Gy-Ro Mill, Glen Creston, and London). The angular particles produced were separated using different sieves to produce <38 micron, 38-63 microns, 63-80 microns, 80-125 microns and 125-250 microns particle size(s) respectively.
    [Show full text]
  • Surface Free Energy Determination of APEX Photosensitive Glass
    micromachines Article Surface Free Energy Determination of APEX Photosensitive Glass William R. Gaillard 1, Emanuel Waddell 2 and John D. Williams 1,* 1 Department of Electrical and Computer Engineering, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected] 2 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-256-616-2535 Academic Editor: Rolf Wuthrich Received: 7 January 2016; Accepted: 14 February 2016; Published: 23 February 2016 Abstract: Surface free energy (SFE) plays an important role in microfluidic device operation. Photosensitive glasses such as APEX offer numerous advantages over traditional glasses for microfluidics, yet the SFE for APEX has not been previously reported. We calculate SFE with the Owens/Wendt geometric method by using contact angles measured with the Sessile drop technique. While the total SFE for APEX is found to be similar to traditional microstructurable glasses, the polar component is lower, which is likely attributable to composition. The SFE was modified at each stage of device fabrication, but the SFE of the stock and fully processed glass was found to be approximately the same at a value of 51 mJ¨ m´2. APEX exhibited inconsistent wetting behavior attributable to an inhomogeneous surface chemical composition. Means to produce more consistent wetting of photosensitive glass for microfluidic applications are discussed. Keywords: surface free energy; surface tension; contact angle; photosensitive glass; microfluidics 1. Introduction The thermal, electrical, and chemical properties of photosenstive glass make it well suited for radio frequency (RF) and integrated circuit (IC) packaging, optoelectronics, micro-optics, microfluidics, and optofluidics.
    [Show full text]
  • Glass Ionomer Bone Cements Based on Magnesium-Containing Bioactive
    Biomed. Glasses 2019; 5:1–12 Research Article Roland Wetzel, Leena Hupa, and Delia S. Brauer* Glass ionomer bone cements based on magnesium-containing bioactive glasses https://doi.org/10.1515/bglass-2019-0001 Received Sep 25, 2018; revised Dec 16, 2018; accepted Jan 14, 2019 1 Introduction Abstract: Glass ionomer cements (GIC) are used in restora- Cements for prosthetic stabilisation or spinal corrective tive dentistry and their properties (low heat during setting, surgeries (vertebroplasty, kyphoplasty) typically consist adhesion to mineralised tissue and surgical metals) make of polymethylmethacrylate [1, 2]. They exhibit a number them of great interest for bone applications. However, den- of drawbacks which include high curing temperatures tal GIC are based on aluminium-containing glasses, and or the presence of unreacted and toxic methacrylic acid the resulting release of aluminium ions from the cements monomers. They also do not bind to bone and are held in needs to be avoided for applications as bone cements. Re- place by mechanical interlocking only [2–6]. As a result, placing aluminium ions in glasses for use in glass ionomer there is a demand for alternative non-toxic cements with cements is challenging, as aluminium ions play a critical bone bonding capability. role in the required glass degradation by acid attack as Glass ionomer cements (GIC) have been used in well as in GIC mechanical stability. Magnesium ions have restorative dentistry as filler or luting materials for been used as an alternative for aluminium in the glass decades [7, 8]. They are formed by an acid-base reaction component, but so far no systematic study has looked into between a polymeric acid and an acid-degradable fluoro- the actual role of magnesium ions.
    [Show full text]
  • Photonic Glass-Ceramics: Consolidated Outcomes and Prospects Brigitte Boulard1, Tran T
    Photonic glass-ceramics: consolidated outcomes and prospects Brigitte Boulard1, Tran T. T. Van2, Anna Łukowiak3, Adel Bouajaj4, Rogéria Rocha Gonçalves5, Andrea Chiappini6, Alessandro Chiasera6, Wilfried Blanc7, Alicia Duran8, Sylvia Turrell9, Francesco Prudenzano10, Francesco Scotognella11, Roberta Ramponi11, Marian Marciniak12, Giancarlo C. Righini13,14, Maurizio Ferrari6,13,* 1 Institut des Molécules et Matériaux du Mans, UMR 6283, Equipe Fluorures, Université du Maine, Av. Olivier Messiaen, 72085 Le Mans cedex 09, France. 2 University of Science Ho Chi Minh City, 227 Nguyen Van Cu, Dist.5, HCM Vietnam. 3 Institute of Low Temperature and Structure Research, PAS, ul. Okolna 2, 50-950 Wroclaw, Poland. 4 Laboratory of innovative technologies, LTI, ENSA–Tangier, University Abdelmalek Essaâdi, Tangier, Morocco. 5 Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo - Av. Bandeirantes, 3900, CEP 14040-901, Ribeirão Preto/SP, Brazil 6 CNR-IFN, CSMFO Lab., Via alla Cascata 56/c, Povo, 38123 Trento, Italy. 7 Université Nice Sophia Antipolis, CNRS LPMC, UMR 7336, 06100 Nice, France. 8 Instituto de Ceramica y Vidrio (CSIC), C/Kelsen 5, Campus de Cantoblanco, 28049 Madrid, Spain. 9 LASIR (CNRS, UMR 8516) and CERLA, Université Lille 1, 59650 Villeneuve d’Ascq, France. 10 Politecnico di Bari, DEI, Via E. Orabona 4, Bari, 70125, Italy. 11 IFN-CNR and Department of Physics, Politecnico di Milano, p.zza Leonardo da Vinci 32, 20133 Milano, Italy 12 National Institute of Telecommunications, 1 Szachowa Street, 04 894 Warsaw, Poland. 13 Centro di Studi e Ricerche “Enrico Fermi”, Piazza del Viminale 2, 00184 Roma, Italy. 14 MipLAB. IFAC - CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
    [Show full text]
  • PDF Exhibitor Testimonials
    glasstec 2018 – Exhibitor Quotes SCHOTT AG The 25th glasstec was a special highlight for SCHOTT. A new booth concept invited visitors to discover and experience glass. Our feedback was excellent both quantitatively and qualitatively. And, of course, glasstec again offered a perfect platform for networking." Salvatore Ruggiero, Vice President Marketing and Communication, SCHOTT AG NSG Pilkington NSG Group, the owner of the Pilkington brand, celebrated a very successful exhibition at glasstec 2018. But this success was not the only reason for celebration – this year is also the Group’s 100th anniversary as well as glasstec’s 25th. “The Glasstec event presented the dynamic evolution of glass applications in the world and we were very pleased to be part of such a successful show. Visitors were able to view a wide range of design options and realise the enormous development in dynamic façade solutions, which, by focusing on energy generation, enable building designers to enhance inhabitants’ comfort and well-being. “This is the generation of products for today and tomorrow and NSG Group presented a variety of products, which are fulfilling these “future” market demands. glasstec 2018 was an excellent platform on which to showcase the Group’s capabilities to the world.” Sing Koo, Managing Director Germany & VA Manager Europe Merck KGaA This year, Merck joined Glasstec for the first time. After the opening of our production plant in Veldhoven, The Netherlands, nearly one year ago, we found with Glasstec the right platform to successfully launch our new brand for dynamic liquid crystal windows EYRISE™ as well as our new product for dynamic solar control EYRISE™ s350 into the market.
    [Show full text]
  • The American Ceramic Society 25Th International Congress On
    The American Ceramic Society 25th International Congress on Glass (ICG 2019) ABSTRACT BOOK June 9–14, 2019 Boston, Massachusetts USA Introduction This volume contains abstracts for over 900 presentations during the 2019 Conference on International Commission on Glass Meeting (ICG 2019) in Boston, Massachusetts. The abstracts are reproduced as submitted by authors, a format that provides for longer, more detailed descriptions of papers. The American Ceramic Society accepts no responsibility for the content or quality of the abstract content. Abstracts are arranged by day, then by symposium and session title. An Author Index appears at the back of this book. The Meeting Guide contains locations of sessions with times, titles and authors of papers, but not presentation abstracts. How to Use the Abstract Book Refer to the Table of Contents to determine page numbers on which specific session abstracts begin. At the beginning of each session are headings that list session title, location and session chair. Starting times for presentations and paper numbers precede each paper title. The Author Index lists each author and the page number on which their abstract can be found. Copyright © 2019 The American Ceramic Society (www.ceramics.org). All rights reserved. MEETING REGULATIONS The American Ceramic Society is a nonprofit scientific organization that facilitates whether in print, electronic or other media, including The American Ceramic Society’s the exchange of knowledge meetings and publication of papers for future reference. website. By participating in the conference, you grant The American Ceramic Society The Society owns and retains full right to control its publications and its meetings.
    [Show full text]
  • Celebrating 100 Years
    AMERICANa CERAMICting SOCIETY ars Celebr 100 ye bullemerginge ceramicstin & glass technology SEPTEMBER 2021 Laser-driven chemical vapor deposition for high-performance fibers and powders New issue inside: SEPTEMBER 2021 • VOLUME 2 • ISSUE 3 www.ceramics.org/ceramicandglassmanufacturing THE VALUE OF COLLABORATION: PARTNERSHIPS ARE A PATH TO SUCCESS ABET ENSURES QUALITY IN UNIVERSITY ENGINEERING EDUCATION ACerS Awards of 2021 | Coe College glass research | Big science in aerospace When it Comes to Heat, We Sweat the Details! Your firing needs are unique. Our laboratory can run tests to So why use an “off the shelf” help identify your process kiln in your process? boundaries. Through our toll firing facility, we can At Harrop, we get it. help to further define That’s why, for over a the equipment/ century, we’ve been processing putting in the hard work combination that to design and service works best for your custom kilns. Is it harder material. And if you to do things this way? are not ready for a Yes. Is the extra effort new kiln, we can toll worth it? You bet! fire your material to help meet your At Harrop, we don’t production needs. stop there. If you aren’t sure what you Does your current need, we can help. kiln company sweat the details? www.harropusa.com 1.614.231.3621 Harrop Ad Sweat the Details ACerS Full Size w 100 logo.indd 1 5/21/20 9:33 AM contents September 2021 • Vol. 100 No.7 feature articles department Announcing ACerS Awards of 2021 News & Trends . 3 29 The Society will honor members and corporations at the Spotlight .
    [Show full text]
  • Lecture #16 Glass-Ceramics: Nature, Properties and Processing Edgar Dutra Zanotto Federal University of São Carlos, Brazil [email protected] Spring 2015
    Glass Processing Lecture #16 Glass-ceramics: Nature, properties and processing Edgar Dutra Zanotto Federal University of São Carlos, Brazil [email protected] Spring 2015 Lectures available at: www.lehigh.edu/imi Sponsored by US National Science Foundation (DMR-0844014) 1 Glass-ceramics: nature, applications and processing (2.5 h) 1- High temperature reactions, melting, homogeneization and fining 2- Glass forming: previous lectures 3- Glass-ceramics: definition & applications (March 19) Today, March 24: 4- Composition and properties - examples 5- Thermal treatments – Sintering (of glass powder compactd) or -Controlled nucleation and growth in the glass bulk 6- Micro and nano structure development April 16 7- Sophisticated processing techniques 8- GC types and applications 9- Concluding remmarks 2 Review of Lecture 15 Glass-ceramics -Definition -History -Nature, main characteristics -Statistics on papers / patents - Properties, thermal treatments micro/ nanostructure design 3 Reading assignments E. D. Zanotto – Am. Ceram. Soc. Bull., October 2010 Zanotto 4 The discovery of GC Natural glass-ceramics, such as some types of obsidian “always” existed. René F. Réaumur – 1739 “porcelain” experiments… In 1953, Stanley D. Stookey, then a young researcher at Corning Glass Works, USA, made a serendipitous discovery ...… 5 <rms> 1nm Zanotto 6 Transparent GC for domestic uses Zanotto 7 Company Products Crystal type Applications Photosensitive and etched patterned Foturan® Lithium-silicate materials SCHOTT, Zerodur® β-quartz ss Telescope mirrors Germany
    [Show full text]
  • ZERODUR® K20 Glass Ceramic with Low Thermal Expansion for High Temperature Applications
    ZERODUR® K20 Glass ceramic with low thermal expansion for high temperature applications Product Information The high temperature ZERODUR® K20 glass ceramic material contains a crystal phase of more than 90 % Keatite, pro- duced by thermal transformation from the semitransparent ZERODUR® material. ZERODUR® K20 can be used at higher application temperatures compared to ZERODUR®. The material has high tem- perature stability and low thermal ex- pansion and does not change its proper- ties during multiple temperature cycles. Properties • Low coefficient of thermal expansion together with high longterm tempe- rature stability up to 850 °C • Can be matched with low thermal Forms of Supply expansion metal alloys, e. g. Invar® • Complex, customized CNC-manufactured products • Excellent homogeneity and in ternal • Serial production and prototype manu facturing quality • A remission of more than 90 % in the Properties ZERODUR® K20 ZERODUR® visible with a matt brilliant white finish Density [g/cm3] 2.53 2.53 • Free of pores and polishable to very Young’s Modulus E [GPa] 84.7 90.3 low surface roughness levels • Large-scale parts can be produced Poisson’s Ratio µ 0.25 0.24 with dimensions in the meter range Knoop Hardness [HK 0.1/20] 620 620 Expansion Coefficient (20 – 700 °C) [10–6/K] 2.4 0.2 Applications Expansion Coefficient (20 – 300 °C) [10–6/K] 2.2 – • Mechanical and optical components 0 ± 0.007 within high energy laser systems 0 ± 0.010 • Diffuse reflectors for laser-cavities Expansion Coefficient (0 – 50 °C) [10–6/K] 1.6 0 ± 0.020 • Mold material in hot forming pro cesses 0 ± 0.050 0 ± 0.100 (glass, plastic etc.) 0.90 • High precision manufactured compo- Heat Capacity c (20 °C) [J/(gK)] 0.80 p (extrapolated) nents Thermal Conductivity (90 °C) [W/(mK)] 1.63 1.46 • Ceramic engine components • Calibration standards for optical and Max.
    [Show full text]
  • High-Precision Micro-Machining of Glass for Mass-Personalization and Submitted in Partial Fulfillment of the Requirements for the Degree Of
    High-precision micro-machining of glass for mass-personalization Lucas Abia Hof A Thesis In the Department of Mechanical, Industrial and Aerospace Engineering Presented in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy (Mechanical Engineering) at Concordia University Montreal, Québec, Canada June 2018 © Lucas Abia Hof, 2018 CONCORDIA UNIVERSITY School of Graduate Studies This is to certify that the thesis prepared By: Lucas Abia Hof Entitled: High-precision micro-machining of glass for mass-personalization and submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering) complies with the regulations of the University and meets the accepted standards with respect to originality and quality. Signed by the final examining committee: ______________________________________ Chair Dr. K. Schmitt ______________________________________ External Examiner Dr. P. Koshy ______________________________________ External to Program Dr. M. Nokken ______________________________________ Examiner Dr. C. Moreau ______________________________________ Examiner Dr. R. Sedaghati ______________________________________ Thesis Supervisor Dr. R. Wüthrich Approved by: ___________________________________________________ Dr. A. Dolatabadi, Graduate Program Director August 14, 2018 __________________________________________________ Dr. A. Asif, Dean Faculty of Engineering and Computer Science Abstract High-precision micro-machining of glass for mass- personalization Lucas Abia Hof,
    [Show full text]