<<

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1 Efficient production of saffron crocins and picrocrocin in

2 Nicotiana benthamiana using a virus-driven system

3

4 Maricarmen Martía,1, Gianfranco Direttob,1, Verónica Aragonésa, Sarah 5 Fruscianteb, Oussama Ahrazemc, Lourdes Gómez-Gómezc,*, José-Antonio Daròsa,* 6 7 aInstituto de Biología Molecular y Celular de Plantas (Consejo Superior de 8 Investigaciones Científicas-Universitat Politècnica de València), 46022 Valencia, Spain 9 bItalian National Agency for New Technologies, Energy, and Sustainable Development, 10 Casaccia Research Centre, 00123, Rome, Italy 11 cInstituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, 12 Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13 02071 Albacete, Spain 14 15 1M.M and G.D. contributed equally to this work. 16 17 *Corresponding authors e-mail addresses: [email protected] (L.Gómez- 18 Gómez), [email protected] (J.A. Daròs). 19 20 21 ABSTRACT 22 23 Crocins and picrocrocin are glycosylated responsible, respectively, 24 for the color and the unique taste of the saffron spice, known as red gold due to its 25 high price. Several studies have also shown the health-promoting properties of these 26 compounds. However, their high costs hamper the wide use of these metabolites in 27 the pharmaceutical sector. We have developed a virus-driven system to produce 28 remarkable amounts of crocins and picrocrocin in adult Nicotiana benthamiana 29 plants in only two weeks. The system consists of viral clones derived from tobacco 30 etch potyvirus that express specific cleavage dioxygenase (CCD) enzymes 31 from Crocus sativus and Buddleja davidii. Metabolic analyses of infected tissues 32 demonstrated that the sole virus-driven expression of C. sativus CsCCD2L or B. 33 davidii BdCCD4.1 resulted in the production of crocins, picrocrocin and safranal.

1

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

34 Using the recombinant virus that expressed CsCCD2L, accumulations of 0.2% of 35 crocins and 0.8% of picrocrocin in leaf dry weight were reached in only two weeks. 36 In an attempt to improve content in N. benthamiana, co-expression 37 of CsCCD2L with other carotenogenic enzymes, such as Pantoea ananatis 38 synthase (PaCrtB) and saffron - hydroxylase 2 (BCH2), was performed 39 using the same viral system. This combinatorial approach led to an additional 40 increase up to 0.35% in leaves in which CsCCD2L and PaCrtB were co-expressed. 41 Considering that saffron apocarotenoids are costly harvested from flower stigma 42 once a year, and that Buddleja spp. flowers accumulate lower amounts, this system 43 may be an attractive alternative for the sustainable production of these appreciated 44 metabolites. 45 46 Keywords: Apocarotenoids; crocins; picrocrocin; carotenoid cleavage dioxygenase; viral 47 vector; tobacco etch virus; potyvirus 48 49 1. Introduction 50 51 Plants possess an extremely rich secondary metabolism and, in addition to food, 52 feed, fibers and fuel, also provide highly valuable metabolites for food, pharma and 53 chemical industries. However, some of these metabolites are sometime produced in very 54 limiting amounts. Plant metabolic engineering can address some of these natural 55 limitations for nutritional improvement of foods or to create green factories that produce 56 valuable compounds (Martin and Li, 2017; Yuan and Grotewold, 2015). Yet, the complex 57 regulation of plant metabolic pathways and the particularly time-consuming approaches 58 for stable genetic transformation of plant tissues highly limit quick progress in plant 59 metabolic engineering. In this context, virus-derived vectors that fast and efficiently 60 deliver biosynthetic enzymes and regulatory factors into adult plants may significantly 61 contribute to solve some challenges (Sainsbury et al., 2012). 62 constitute an important group of natural products that humans cannot 63 biosynthesize and must uptake from the diet. These compounds are synthesized by higher 64 plants, algae, fungi and bacteria (Rodriguez-Concepcion et al., 2018). Yet, they play 65 multiple roles in human physiology (Fiedor and Burda, 2014). Carotenoids are widely 66 used as food colorants, nutraceuticals, animal feed, cosmetic additives and health 67 supplements (Fraser and Bramley, 2004). In all living organisms, carotenoids act as

2

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

68 substrates for the production of apocarotenoids (Ahrazem et al., 2016a). These are not 69 only the simple breakdown products of carotenoids, as they act as hormones and are 70 involved in signaling (Eroglu and Harrison, 2013; Jia et al., 2018; Walter et al., 2010). 71 Apocarotenoids are present as volatiles, water soluble and insoluble compounds, and 72 among those soluble, crocins are the most valuable pigments used in the food, and in less 73 extent, in the pharmaceutical industries (Ahrazem et al., 2015). Crocins are glycosylated 74 derivatives of the apocarotenoid . They are highly soluble in water and exhibit a 75 strong coloring capacity. In addition, crocins are powerful free radical quenchers, a 76 property associated to the broad range of health benefits they exhibit (Bukhari et al., 2018; 77 Christodoulou et al., 2015; Georgiadou et al., 2012; Nam et al., 2010). The interest in the 78 therapeutic properties of these compounds is increasing due to their analgesic and 79 sedative properties (Amin and Hosseinzadeh, 2012), and neurological protection and 80 anticancer activities (Finley and Gao, 2017; Skladnev and Johnstone, 2017). Further, 81 clinical trials indicate that crocins have a positive effect in the treatment of depression 82 and dementia (Lopresti and Drummond, 2014; Mazidi et al., 2016). Other apocarotenoids, 83 such as safranal (2,6,6-trimethyl-1,3-cyclohexadiene-1-carboxaldehyde) and its precursor 84 picrocrocin (β-D-glucopyranoside of hydroxyl-β-cyclocitral), have also been shown to 85 reduce the proliferation of different human carcinoma cells (Cheriyamundath et al., 2018; 86 Jabini et al., 2017; Kyriakoudi et al., 2015) and to exert anti-inflammatory effects (Zhang 87 et al., 2015). 88 Crocus sativus L. is the main natural source of crocins and picrocrocin, 89 respectively responsible for the color and flavor of the highly appreciated spice, saffron 90 (Tarantilis et al., 1995). Crocin pigments accumulate at huge levels in the flower stigma 91 of these plants conferring this organ with a distinctive dark red coloration (Moraga et al., 92 2009). Yet, these metabolites reach huge prices in the market, due to the labor intensive 93 activities associated to harvesting and processing the stigma collected from C. sativus 94 flowers (Ahrazem et al., 2015). Besides C. sativus, gardenia (Gardenia spp.) fruits are 95 also a commercial source of crocins, but at much lower scale. In addition, gardenia fruits 96 do not accumulate picrocrocin (Moras et al., 2018; Pfister et al., 1996). Some other plants, 97 such as Buddleja spp., also produce crocins, although they are not commercially exploited 98 due to low accumulation (Liao et al., 1999). All these plants share the common feature of 99 expressing carotenoid cleavage dioxygenase (CDD) activities, like the saffron CCD2L or 100 the CCD4 subfamily recently identified in Buddleja spp. (Ahrazem et al., 2017).

3

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

101 In C. sativus and Buddleja spp., is the precursor of crocetin (Fig. 1). 102 Cleavage of the zeaxanthin molecule at the 7,8 and 7′,8′ double bonds render one 103 molecule of crocetin dialdehyde and two molecules of 4-hydroxy-2,6,6-trimethyl-1- 104 cyclohexene-1-carboxaldehyde (HTCC) (Ahrazem et al., 2017, 2016c; Frusciante et al., 105 2014). Crocetin dialdehyde is further transformed to crocetin by the action of aldehyde 106 dehydrogenase (ALDH) enzymes (Demurtas et al., 2018; Gómez-Gómez et al., 2018, 107 2017). Next, crocetin serves as substrate of glucosyltransferase (UGT) activities that 108 catalyze the production of crocins through transfer of glucose to both ends of the molecule 109 (Côté et al., 2001; Demurtas et al., 2018; Moraga et al., 2004; Nagatoshi et al., 2012). The 110 HTCC molecule is also recognized by UGTs, resulting in production of picrocrocin (Fig. 111 1) (Diretto et al., 2019a). In C. sativus, the plastidic CsCCD2L enzyme catalyzes the 112 cleavage of zeaxanthin at 7,8;7′,8′ double bonds (Ahrazem et al., 2016c; Frusciante et al., 113 2014), which is closely related to the CCD1 subfamily (Ahrazem et al., 2016b, 2016a). 114 In Buddleja davidii, the CCD enzymes that catalyze the same reaction belong to a novel 115 group within the CCD4 subfamily of CCDs (Ahrazem et al., 2016a). These B. davidii 116 enzymes, BdCCD4.1 and BdCCD4.3, also localize in plastids and are expressed in the 117 flower tissue (Ahrazem et al., 2017). 118 Due to its high scientific and commercial interest, crocetin and crocins 119 biosynthesis has arisen great attention, and attempts to metabolically engineer their 120 pathway in microbial systems have been reported, although with limited success (Chai et 121 al., 2017; Diretto et al., 2019a; Tan et al., 2019; Wang et al., 2019). More in detail, the 122 use of the saffron CCD2L enzyme resulted in a maximum accumulation of 1.22 mg/l, 123 15.70 mg/l, and 4.42 mg/l of crocetin in, respectively, Saccharomyces cerevisiae (Chai et 124 al., 2017; Tan et al., 2019) and Escherichia coli (Wang et al., 2019). In a subsequent study 125 aimed to confirm, in planta, the role of a novel UGT in picrocrocin biosynthesis (Diretto 126 et al., 2019a), Nicotiana benthamiana leaves were transiently transformed, via 127 Agrobacterium tumefaciens, with CCD2L, alone or in combination with UGT709G1, 128 which led to the production of 30.5 g/g DW of crocins, with a glycosylation degree 129 ranging from 1 to 4 (crocin 1-4) (unpublished data). Although promising, these results 130 cannot be considered efficient and sustainable in the context of the development of an 131 industrial system for the production of the saffron high-value apocarotenoids. 132 Here we used a viral vector derived from Tobacco etch virus (TEV, genus 133 Potyvirus; family Potyviridae) (Bedoya et al., 2010) to transiently express a series of CCD 134 enzymes, alone or in combination with other carotenoid and non-carotenoid biosynthetic

4

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

135 enzymes, in N. benthamiana plants. Interestingly, tissues infected with viruses that 136 expressed CsCCD2L or BdCCD4.1 acquired yellow pigmentation visible to the naked 137 eye. Metabolite analyses of these tissues demonstrated the accumulation of crocins and 138 picrocrocin, reaching levels attractive enough for their commercial production, up to 139 0.35% and 0.8% of DW, respectively, in leaves in which CsCCD2L and Pantoea ananatis 140 phytoene synthase (PaCrtB) were simultaneously expressed. 141 142 2. Materials and Methods 143 144 2.1. Plasmid construction 145 146 Plasmids were constructed by standard molecular biology techniques, including 147 PCR amplifications of cDNAs with the high-fidelity Phusion DNA polymerase (Thermo 148 Scientific) and Gibson DNA assembly (Gibson et al., 2009), using the NEBuilder HiFi 149 DNA Assembly Master Mix (New England Biolabs). To generate a transformed N. 150 benthamiana line that stably expresses TEV NIb, we built the plasmid p235KNIbd. This 151 plasmid is a derivative of pCLEAN-G181 (Thole et al., 2007) and between the left and 152 right borders of A. tumefaciens transfer DNA (T-DNA) contains two in tandem cassettes 153 in which the neomycin phosphotransferase (NPTII; kanamycin resistance) and the TEV 154 NIb are expressed under the control of CaMV 35S promoter and terminator. The exact 155 nucleotide sequence of the p235KNIbd T-DNA is in Supplementary Fig. S1. Plasmids 156 pGTEVΔNIb-CsCCD2L, -BdCCD4.1, -BdCCD4.3, -CsCCD2L/PaCrtB, - 157 CsCCD2L/CsBCH2 and -CsCCD2L/CsLPT1 were built on the basis of pGTEVa (Bedoya 158 et al., 2012) that contains a wild-type TEV cDNA (GenBank accession number 159 DQ986288 with the two silent and neutral mutations G273A and A1119G) flanked by the 160 CaMV 35S promoter and terminator in a binary vector that also derives from pCLEAN- 161 G181. These plasmids were built, as explained above, by PCR amplification of CsCCD2L 162 (Ahrazem et al., 2016c), BdCCD4.1 and BdCCD4.3 (Ahrazem et al., 2017), PaCrtB 163 (Majer et al., 2017), CsBCH2 (Castillo et al., 2005) and CsLPT1 (Gómez-Gómez et al., 164 2010) cDNAs and assembly into a pGTEVa version in which the NIb cistron was deleted 165 (pGTEVaΔNIb) (Majer et al., 2015). The exact sequences of the TEV recombinant clones 166 (TEVΔNIb-CsCCD2L, -BdCCD4.1, -BdCCD4.3, -CsCCD2L/PaCrtB, - 167 CsCCD2L/CsBCH2 and -CsCCD2L/CsLPT1) contained in the resulting plasmids are in

5

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

168 Supplementary Fig. S2. The plasmid expressing the recombinant TEVΔNIb-aGFP clone 169 (Supplementary Fig. S2) was previously described (Majer et al., 2015). 170 171 2.2. Plant transformation 172 173 The LBA4404 strain of A. tumefaciens was sequentially transformed with the 174 helper plasmid pSoup (Hellens et al., 2000) and p235KNIbd. Clones containing both 175 plasmids were selected in plates containing 50 µg/ml rifampicin, 50 µg/ml kanamycin 176 and 7.5 µg/ml tetracycline. A liquid culture grown from a selected colony was used to 177 transform N. benthamiana (Clemente, 2006). Briefly, N. benthamiana leaf explants were 178 incubated with the A. tumefaciens culture at an optical density (600 nm) of 0.5 for 30 min 179 and then incubated on solid media. Four days later, explants were transferred to plates 180 with organogenesis media containing 100 µg/ml of kanamycin. Explants were repeatedly 181 transferred to fresh organogenesis plates every three weeks until shoots emerged. These 182 shoots were first transferred to rooting media and, when roots appeared, cultivated in a 183 greenhouse with regular soil until seeds were harvested. Transformation with the NIb 184 cDNA was confirmed by PCR. Batches of seedlings from four independent transformed 185 lines were screened for efficient complementation of TEV clones lacking NIb by 186 mechanical inoculation of TEVΔNIb-Ros1 (Bedoya et al., 2010). 187 188 2.3. Plant inoculation 189 190 A. tumefaciens C58C1 competent cells, previously transformed with the helper 191 plasmid pCLEAN-S48 (Thole et al., 2007), were electroporated with different plasmids 192 that contained the TEV recombinant clones and selected in plates with 50 µg/ml 193 rifampicin, 50 µg/ml kanamycin and 7.5 µg/ml tetracycline. Liquid cultures of selected 194 colonies were brought to an optical density of 0.5 (600 nm) in agroinoculation solution

195 (10 mM MES-NaOH, pH 5.6, 10 mM MgCl2 and 150 μM acetosyringone) and incubated 196 for 2 h at 28ºC. Using a needleless syringe, these cultures were used to infiltrate one leaf 197 of five-week-old plants of the selected N. benthamiana transformed line that stably 198 expresses TEV NIb. After inoculation, plants were kept in a growth chamber at 25ºC 199 under a 12 h day-night photoperiod. Leaves were collected at different dpi as indicated; 200 in the case of the time-course experiments, leaf samples were collected at 8 time-points 201 (0, 4, 8, 11, 13, 15, 18 and 20 dpi).

6

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

202 203 2.4. Analysis of virus progeny 204 205 Viral progeny was analyzed by reverse transcription (RT)-PCR using RevertAid 206 reverse transcriptase (Thermo Scientific) and Phusion DNA polymerase followed by 207 electrophoretic separation of the amplification products in 1% agarose gels that were 208 stained with ethidium bromide. RNA from N. benthamiana plants was purified from 209 upper non-inoculated leaves at 15 dpi using silica-gel columns (Zymo Research). For 210 virus infection diagnosis, a cDNA corresponding to the TEV CP cistron (804 bp) was 211 amplified. Aliquots of the RNA preparations were subjected to RT using primer PI (5’- 212 CTCGCACTACATAGGAGAATTAGAC-3’), followed by PCR amplification with 213 primers PII (5’-AGTGGCACTGTGGGTGCTGGTGTTG-3’) and PIII (5’- 214 CTGGCGGACCCCTAATAG-3’). To analyze the potential deletion of the inserted CDD 215 cDNAs, RNA aliquots were reverse transcribed using primer PIV (5’- 216 GCTGTTTGTCACTCAATGACACATTAT-3’) and amplified by PCR with primers PV 217 (5’-AAAATAACAAATCTCAACACAACATATAC-3’) and PVI (5’- 218 CCGCGGTCTCCCCATTATGCACAAGTTGAGTGGTAGC-3’). 219 220 2.5. Metabolite extraction and analysis 221 222 Polar and apolar metabolites were extracted from 50 mg of lyophilized leaf tissue. 223 For polar metabolites analyses (crocins and picrocrocin), the tissues were extracted in 224 cold 50% methanol. The soluble fraction was analyzed by HPLC-DAD-HRMS and 225 HPLC-DAD (Ahrazem et al., 2018; Moraga et al., 2009). The liposoluble fractions 226 (crocetin, HTCC, -cyclocitral, carotenoids and chlorophylls) were extracted with 0.5:1 ml

227 cold extraction solvents (50:50 methanol and CHCl3), and analyzed by HPLC-DAD- 228 HRMS and HPLC-DAD as previously described (Ahrazem et al., 2018; Castillo et al., 229 2005; D’Esposito et al., 2017; Fasano et al., 2016). Metabolites were identified on the 230 basis of absorption spectra and retention times relative to standard compounds. Pigments 231 were quantified by integrating peak areas that were converted to concentrations in 232 comparison with authentic standards. Chlorophyll a and b were determined by measuring 233 absorbance at 645 nm and 663 nm as previously described (Richardson et al., 2002). Mass 234 spectrometry carotenoid, chlorophyll derivative and apocarotenoid identification and 235 quantification was carried out as previously described (Ahrazem et al., 2018; Diretto et

7

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

236 al., 2019a; Rambla et al., 2016). Mass spectrometry analysis of other isoprenoids 237 (tocochromanols and quinones) were performed as reported before (Sulli et al., 2017). 238 Picrocrocin derivatives, as reported by (Moras et al., 2018) and (D’Archivio et al., 2016), 239 were tentatively identified according to their m/z accurate masses as included in the 240 PubChem database for monoisotopic masses or by using the Mass Spectrometry Adduct 241 Calculator from the Metabolomics Fiehn Lab for adduct ions; and were further validated 242 by isotopic pattern ratio and the comparison between theoretical and experimental m/z 243 fragmentation, by using the MassFrontier 7.0 software (Thermo Fisher Scientific). 244 245 2.6. Subcellular localization of crocins 246 247 To determine the subcellular localization of crocins in N. benthamiana tissues, LSCM 248 was performed with a Zeiss 7080 Axio Observer equipped with a water immersion 249 objective lens (C-Apochromat 40X/1.20 W). An argon ion laser at 458 nm was used for 250 excitation. Crocins and chloroplast autofluorescence were detected with 520 to 540 nm 251 and 660 to 750 nm band-pass emission filters, respectively. Images were processed using 252 the FIJI software (http://fiji.sc/Fiji). 253 254 2.7. Statistics and bioinformatics 255 256 Statistical validation of the data (ANOVA+ Tukey’s t-test) and heatmap 257 visualization were performed as previously described (Cappelli et al., 2018; Grosso et al., 258 2018). 259 260 3. Results 261 262 3.1. TEV recombinant clones that express CCD enzymes in N. benthamiana 263 264 The goal of this work was to develop a heterologous system to efficiently produce 265 highly appreciated and scarce apocarotenoids in plant tissues. For this purpose, we 266 planned to use an expression vector derived from TEV, more specifically TEVΔNIb 267 (Bedoya et al., 2010), recently employed to rewire the biosynthetic pathway 268 from the plastid to the cytosol of plant cells (Majer et al., 2017). Since CCD is the first 269 enzyme in the apocarotenoid biosynthetic pathway (Fig. 1), we started exploring the

8

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

270 virus-based expression of a series of CCD enzymes from well-known crocins producing 271 plants: namely C. sativus CsCCD2L (Ahrazem et al., 2016c), and B. davidii BdCCD4.1 272 and BdCCD4.3 (Ahrazem et al., 2017). 273 In TEVΔNIb, the approximately 1.6 kb corresponding to nuclear inclusion b 274 (NIb) cistron, coding for the viral RNA-dependent RNA polymerase, is deleted to 275 increase the space to insert foreign genetic information. Then, the viral recombinant 276 clones only infect plants in which NIb is supplied in trans (Bedoya et al., 2010). We chose 277 N. benthamiana as the biofactory plant for apocarotenoid production because of the 278 amenable genetic transformation, the high amounts of biomass achievable and the fast 279 growth. For this aim, as the first step in our work, we transformed N. benthamiana leaf 280 tissue using Agrobacterium tumefaciens and regenerated adult plants that constitutively 281 expressed TEV NIb under the control of Cauliflower mosaic virus (CaMV) 35S promoter 282 and terminator. To screen for transformed lines that efficiently complemented TEVΔNIb 283 deletion mutants, we inoculated the plants with TEVΔNIb-Ros1, a viral clone in which 284 the NIb cistron was replaced by a cDNA encoding for the MYB-type transcription factor 285 Rosea1 from Antirrhinum majus L., whose expression induces accumulation of colored 286 anthocyanins in infected tissues and facilitates visual tracking of infection (Bedoya et al., 287 2010, 2012). On the basis of anthocyanin accumulation, we selected a N. benthamiana 288 transformed line that efficiently complemented the replication and systemic movement 289 of TEVΔNIb-Ros1 (Supplementary Fig. S3). Then, by self-pollination and TEVΔNIb- 290 Ros1 inoculation of the progeny, we selected a transformed homozygous line that was 291 used in all subsequent experiments. 292 Next, on the context of a TEV lacking NIb, we constructed three recombinant 293 clones (Fig. 2A) to express C. sativus CsCCD2L (TEVΔNIb-CsCCD2L), B. davidii 294 BdCCD4.1 and BdCCD4.3 (TEVΔNIb-BdCCD4.1 and TEVΔNIb-BdCCD4.3). These 295 CCDs are plastidic enzymes that are encoded in the nucleus and contain native amino- 296 terminal transit peptides. To target these enzymes to plastids, we inserted their cDNAs in 297 a position corresponding to the amino terminus of the viral polyprotein in the virus 298 genome (Majer et al., 2015). CCD cDNAs also contained a sequence corresponding to an 299 artificial NIaPro cleavage site at the 3’ end to mediate the release of the heterologous 300 protein from the viral polyprotein. Based on previous observations, we used the -8/+3 site 301 that splits NIb and CP in TEV. The exact sequences of these clones are in Supplementary 302 Fig. S2.

9

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

303 Finally, transformed N. benthamiana plants that express NIb were 304 agroinoculated with the three TEV recombinant clones. As a control in this experiment, 305 some plants were agroinoculated with TEVΔNIb-aGFP (Fig. 2A and Supplementary Fig. 306 S2), which is a recombinant clone that expresses GFP from the amino-terminal position 307 in the viral polyprotein. Interestingly, 7 days post-inoculation (dpi), even before 308 symptoms were observed, we noticed a distinctive yellow pigmentation in systemic 309 tissues of the plants agroinoculated with TEVΔNIb-CsCCD2L. Symptoms of infection 310 were soon observed (approximately 8 dpi) in plants agroinoculated with TEVΔNIb-aGFP, 311 -CsCCD2L and -BdCCD4.1. Distinctive yellow pigmentation was also observed in 312 symptomatic tissues of plants agroinoculated with TEVΔNIb-BdCCD4.1, although with 313 some delay comparing to TEVΔNIb-CsCCD2L. Yellow pigmentation of symptomatic 314 tissues in plants inoculated with TEVΔNIb-CsCCD2L was more intense than that in 315 tissues of plants inoculated with TEVΔNIb-BdCCD4.1. Plants inoculated with 316 TEVΔNIb-BdCCD4.3 showed mild symptoms of infection at approximately 13 dpi and 317 yellow pigmentation was never observed. Fig. 2B shows pictures of representative leaves 318 of all these plants at 13 dpi. Reverse transcription (RT)-PCR analysis confirmed TEV 319 infection in all inoculated plants (Fig. 2C). Observation of symptomatic tissues with a 320 fluorescence stereomicroscope confirmed expression of GFP only in plants inoculated 321 with the TEVΔNIb-aGFP control (Supplementary Fig. S4). Analysis of viral progeny at 322 15 dpi by RT-PCR indicated that, while the inserts of TEVΔNIb-aGFP, -CsCCD2L are 323 perfectly stable in the recombinant virus, those of TEVΔNIb-BdCCD4.1 and TEVΔNIb- 324 BdCCD4.3 are partially and completely lost, respectively, at this time post-inoculation 325 (Fig. 2D). Based on distinctive yellow color, these results suggested that the virus-driven 326 expression of CsCCD2L or BdCCD4.1 in N. benthamiana tissues may induce 327 apocarotenoid accumulation. 328 329 3.2. Analysis of apocarotenoids in infected tissues 330 331 Symptomatic leaf tissues from plants infected with TEVΔNIb-aGFP, TEVΔNIb- 332 CsCCD2L and TEVΔNIb-BdCCD4.1 were subjected to extraction and analysis by high 333 performance liquid chromatography-diode array detector-high resolution mass 334 spectrometry (HPLC-DAD-HRMS) to determine their apocarotenoid and carotenoid 335 profiles. Tissues from mock-inoculated controls were also included in the analysis. The 336 tissues from the plants infected with TEVΔNIb-BdCCD4.3 were discarded due to the

10

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

337 absence of pigmentation and rapid deletion of BdCCD4.3 cDNA in the viral progeny. 338 Analysis of the polar fraction of tissues infected with TEVΔNIb-CsCCD2L and 339 TEVΔNIb-BdCCD4.1 showed a series of peaks with maximum absorbance from 433 to 340 439 nm. These peaks were not observed in extracts from tissues from mock-inoculated 341 plants or plants infected with the TEVΔNIb-aGFP control (Fig. 3). Mass spectrometry 342 chromatograms evidenced the presence, for all the fore mentioned peaks, of the crocetin 343 aglycon (m/z 329.1747 (M+H)), thus supporting the presence of crocins (Supplementary 344 Fig. S5). Further analyses of the sugar moieties conjugated with crocetin lead to the 345 identification of crocins with different degrees of glycosylation from one glucose 346 molecule to five in the infected tissues in which CCDs were expressed (Fig. 4A and 347 Supplementary Table S1). However, predominant crocins were those conjugated with 348 three and four glucose molecules. Interestingly, CCD-infected N. benthamiana leaves, 349 displayed a different pattern of crocin accumulation compared to that typical from saffron 350 stigma (Fig. 3A), with trans-crocin 4, followed by trans-crocin 3 and 2, being the most 351 abundant crocin species. Minor changes were also observed between TEVΔNIb- 352 CsCCD2L and TEVΔNIb-BdCCD4.1 samples (Supplementary Table S2): in the former, 353 trans-crocin 3 was the most abundant (30.84%), followed by cis-crocin 4 (17.04%) and 354 trans-crocin 2 (16.84%); whereas similar amounts in cis-crocin 5, cis-crocin 4 and trans- 355 crocin 3 were found in the latter (20.92, 20.62 and 18.31%, respectively). Picrocrocin, 356 safranal and several derivatives were also identified in the polar fraction of tissues 357 infected with TEVΔNIb-CsCCD2L and TEVΔNIb-BdCCD4.1 (Fig. 4B and 358 Supplementary Table S1). All these polar apocarotenoids were absent in the control 359 tissues non-infected and infected with TEVΔNIb-aGFP (Fig. 4B). Overall, and in 360 agreement with the most intense visual phenotype, TEVΔNIb-CsCCD2L-infected tissues 361 displayed a higher accumulation in all the linear and cyclic apocarotenoids than 362 TEVΔNIb-BdCCD4.1-infected tissues (Fig. 4, Table 1 and Supplementary Table S1). 363 In the polar and apolar fractions of TEVΔNIb-CsCCD2L and TEVΔNIb- 364 BdCCD4.1-infected leaves, we also detected the presence of crocetin dialdehyde and 365 HTCC, which are the products of the enzymatic cleavage step, and crocetin and safranal, 366 which are produced by the activity of ALDH enzymes and the spontaneous 367 deglycosilation of picrocrocin, respectively (Fig. 4 and Supplementary Table S1). None 368 of these metabolites were found in the TEVΔNIb-aGFP-infected and mock-inoculated 369 control tissues. Subsequently, the levels of different carotenoids and chlorophylls were 370 also investigated in the apolar fractions (Fig. 5 and Supplementary Table S3). As

11

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

371 expected, virus infection negatively affected the isoprenoid pools, with most of 372 carotenoids and chlorophylls reduced in all infected tissues compared to those from 373 mock-inoculated plants. However, the comparison between tissues infected with 374 TEVΔNIb-aGFP and both CCD viruses highlighted a series of alterations at metabolite 375 level. The most striking differences were in the contents of phytoene and phytofluene, as 376 well as zeaxanthin and . While the formers increased in the TEVΔNIb-CsCCD2L 377 and TEVΔNIb-BdCCD4.1-infected tissues, the levels of zeaxanthin and lutein were 378 strongly reduced (Fig. 5A and Table S3A). On the contrary, no significant alterations in 379 chlorophyll levels were observed in tissues infected with the two CCD viruses when 380 compared to the TEVΔNIb-aGFP-infected control (Fig. 5B and Supplementary Table 381 S3B). Other typical leaf isoprenoids, such as tocochromanols and quinones, displayed 382 only few changes in CCD versus control tissues: for instance, -/-tocopherol, α- 383 tocopherol quinone and menaquinone-8 increased, whereas plastoquinone was reduced 384 in CsCCD2L and BdCCD4.1-infected tissues compared to mock-inoculated and GFP- 385 infected leaves (Fig. 5C and Supplementary Table S3C). 386 387 3.3. Subcellular accumulation of apocarotenoids in tissues infected with CCD-expressing 388 viruses 389 390 On the basis of the differential autofluorescence of chlorophylls and carotenoids, 391 we analyzed the subcellular localization of crocins that accumulate in symptomatic 392 tissues of plants infected with TEVΔNIb-CsCCD2L and TEVΔNIb-BdCCD4.1. Laser 393 scanning confocal microscopy (LSCM) images showed an intense fluorescence signal 394 from crocins in the vacuoles, while tissues infected with TEVΔNIb only showed 395 chlorophyll fluorescence (Fig. 6). 396 397 3.4. Time course accumulation of crocins and picrocrocin in inoculated plants 398 399 Next, we researched the point with the maximum apocarotenoid accumulation in 400 inoculated plants. For this aim, we carried out a time-course analysis focusing only on the 401 virus recombinant clone TEVΔNIb-CsCCD2L that induces the highest apocarotenoid 402 accumulation in N. benthamiana tissues. After plant agroinoculation, upper systemic 403 tissues were collected at 0, 4, 8, 11, 13, 15, 18 and 20 dpi from three independent replicate 404 plants per time point. Pigments were extracted and analyzed by HPLC-DAD. In these

12

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

405 tissues, accumulation of total crocins increased from approximately 8 to 13 dpi, reaching 406 a plateau up to the end of the analysis (20 dpi) (Fig. 7A). Picrocrocin levels showed 407 identical behavior (Fig. 7B). Accumulation of lutein, -carotene and chlorophylls was 408 also evaluated in all these samples. In contrast to apocarotenoids, accumulation of lutein 409 and -carotene (Fig. 7C) as well as chlorophylls a and b (Fig. 7D) dropped as infection 410 progressed. These results indicate that the virus-driven system to produce apocarotenoids 411 in N. benthamiana developed here reaches the highest yield in only 13 days after 412 inoculating the plants and this yield is maintained during at least one week with no 413 apparent loss. This experiment also revealed the remarkable accumulation of 2.18±0.23 414 mg of crocins and 8.24±2.93 mg of picrocrocin per gram of N. benthamiana dry weight 415 leaf tissue with the sole virus-driven expression of C. sativus CsCCD2L. 416 417 3.5. Virus-based combined expression of CsCCD2L and other carotenogenic and non- 418 carotenogenic enzymes 419 420 In order to further improve apocarotenoid accumulation in inoculated N. 421 benthamiana plants, we combined expression of CsCCD2L with two carotenoid enzymes 422 (Fig. 8A), acting early and late in the biosynthetic pathway, namely Pantoea ananatis 423 phytoene synthase (PaCrtB), and saffron -carotene hydroxylase2 (CsBCH2); or with a 424 non-carotenoid transporter, the saffron lipid transfer protein 1 (CsLTP1), involved in the 425 transport of secondary metabolites (Wang et al., 2016). Interestingly, virus-based co- 426 expression of CsCCD2L and PaCrtB induced a stronger yellow phenotype (Fig. 8B), and 427 a higher content in crocins (3.493±0.325 mg/g DW; Fig. 8C and Table S4). Improved 428 crocins levels were also observed when CsCCD2L was co-expressed with CsBCH2, 429 although at a lesser extent in this case (2.198±0.338 mg/g DW). On the contrary, co- 430 expression of LPT1 did not result in an increment of total apocarotenoid content (Fig. 8C 431 and Table S4). Interestingly, when compared to tissues in which CsCCD2L alone was 432 expressed, a preferential over-accumulation for higher glycosylated crocins was 433 observed, while lower glycosylated species were down-represented (Fig. 8D). 434 435 4. Discussion 436

13

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

437 The carotenoid biosynthetic pathway in higher plants has been manipulated by 438 genetic engineering, both at the nuclear and transplastomic levels, to increase the general 439 amounts of carotenoids or to produce specific carotenoids of interest, such as 440 ketocarotenoids (Apel and Bock, 2009; Diretto et al., 2019b, 2007; Farré et al., 2014; 441 Giorio et al., 2007; Hasunuma et al., 2008; Nogueira et al., 2019; Zhu et al., 2018). 442 However, these projects also showed that the stable genetic transformation of nuclear or 443 plastid genomes from higher plants is a work-intensive and time-consuming process, 444 which frequently drives to unpredicted results, due to the complex regulation of metabolic 445 pathways. Although no exempted of important limitations, chief among them is the 446 amount of exogenous genetic information plant virus-derived expression systems can 447 carry, they represent an attractive alternative for some plant metabolic engineering goals. 448 Here, we used a virus-driven system that allows the production of noteworthy amounts 449 of appreciated apocarotenoids, such as crocins and picrocrocin, in adult N. benthamiana 450 plants in as little as 13 days (Fig. 7). For this, we manipulated the genome of a 10-kb 451 potyvirus, a quick straight-forward process that can be easily scaled-up for the high- 452 throughput analysis of many enzymes and regulatory factors and engineered versions 453 thereof. 454 In this virus-driven system, the expression of an appropriate CCD in N. 455 benthamiana is sufficient to trigger the apocarotenoid pathway in this plant. Recently, it 456 was observed the same situation in a transient expression system (Diretto et al., 2019a). 457 These observations indicate that the zeaxanthin cleavage is the limiting step of 458 apocarotenoid biosynthesis in this species, while aldehyde dehydrogenation and 459 glycosylation steps can be efficiently complemented by endogenous orthologue enzymes. 460 A similar situation was previously observed with other secondary metabolites. Indeed, a 461 large portion of hydroxyl- and carboxyl-containing compounds heterologously 462 produced in plants are glycosylated by endogenous UGTs. For example, in transgenic 463 maize expressing a geraniol synthase gene from Lippia dulcis, geranoyl-6-O-malonyl-β- 464 D-glucopyranoside was the most abundant geraniol-derived compound (Yang et al., 465 2011). In another study, N. benthamiana plants transiently expressing the Artemesia 466 annua genes of the artemisin biosynthetic pathway accumulated glycosylated versions of 467 intermediate metabolites (Ting et al., 2013). Likewise, in tomato plants expressing the 468 chrysanthemyl diphosphate synthase gene from Tanacetum cinerariifolium, the 62% of 469 trans-chrysanthemic acid was converted into malonyl glycosides (Xu et al., 2018).

14

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

470 Zeaxanthin, the crocins precursor, is not a major carotenoid in plant leaves grown 471 under regular light conditions, although its level increases during high light stress 472 (Demmig-Adams et al., 2012). However, the efficient virus-driven production of all the 473 intermediate and final products of the apocarotenoid biosynthetic pathway in N. 474 benthamiana (Fig. 4) suggests that CCD is able to intercept the leaf metabolic flux in 475 order to diverge it towards the production of apocarotenoids. Similarly, the observed 476 reduction in lutein (Fig. 5A) may result from the CCD activity on the -ring of this 477 molecule, which confirms, at least for the C. sativus enzyme, the previous in vitro data 478 showing that lutein can act as substrate of this cleavage activity (Frusciante et al., 2014). 479 Although N. benthamiana leaves infected with CsCCD2L and BdCCD4.1 recombinant 480 viruses are able to accumulate crocins, it has to be mentioned that, at the qualitative level, 481 their profiles are distinct with respect to the saffron stigma: while in the formers the major 482 crocin species are the trans-crocin 3, together with cis-crocin 4, trans-crocin 2, cis-crocin 483 3 and cis-crocin 5, saffron stigmas are characterized by the presence, in decreasing order 484 of accumulation, of trans-crocin 4, trans-crocin 3 and trans-crocin 2. These results suggest 485 not only the implication of promiscuous glucosyltransferase enzymes differing form those 486 in saffron, but also the different conditions in which crocins are produce in saffron and 487 N. benthamiana, which implies respectively the absence or presence of light during this 488 process, which can effectively influence the cis- or trans- configuration of crocetin 489 (Rubio-Moraga et al., 2010). A higher bioactivity of the trans- forms has been previously 490 demonstrated, at least for crocetin (Zhang et al., 2017), thus making the crocins pool 491 accumulated in the CsCCD2L and BdCCD4.1 leaves a good source of bioactive 492 molecules. The C. sativus and B. davidii enzymes also generated a different crocins 493 pattern: this finding can be explained by a distinct specificity and kinetics, which might 494 influence the subsequent glucosylation step. Another remarkable observation is the 495 dramatic increase of phytoene and phytofluene levels in N. benthamiana tissues as a 496 consequence of the virus-driven expression of CCDs (Fig. 5A). These are upstream 497 intermediates in the carotenoid biosynthetic pathway. Previous reports indicated that the 498 overexpression of downstream enzymes or the increased storage of end-metabolites in 499 the carotenoid pathway can drain the metabolic flux towards the synthesis and 500 accumulation of the end-products (Diretto et al., 2007; Lopez et al., 2008). In our virus- 501 driven system, expression of CsCCD2L and BdCCD4.1 seem to induce the same effect, 502 promoting the activities of the phytoene synthase (PSY) and phytoene desaturase (PDS), 503 which results in a higher accumulation of their metabolic intermediate products phytoene

15

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

504 and phytofluene. In this context, the observed amounts of phytoene and phytofluene 505 might be a consequence of PSY and PDS catalyzing the rate-limiting steps of the pathway 506 in N. benthamiana, as previously described in other species (Maass et al., 2009; Xu et al., 507 2006). Levels of additional plastidic metabolites in the groups of tocochromanols and 508 quinones only showed minor fluctuations, which indicates that perturbations in 509 carotenoid and apocarotenoid biosynthesis do not necessarily affect other related 510 pathways that share common precursors, such as geranylgeranyl diphosphate (GGPP) 511 (Fig. 5C). Our results also indicate that the decrease in the chlorophyll levels do not 512 depend on CCD expression, but on viral infection, since it was also observed in the control 513 tissues infected with TEVΔNIb-aGFP (Fig. 5B). This finding agrees with the effect of 514 plant virus infection on photosynthetic machinery (Li et al., 2016). 515 In our virus-driven experiments, CsCCD2L was more efficient in the production 516 of crocetin dialdehyde and crocins than BdCCD4.1. This suggests that the C. sativus CCD 517 used here (CsCCD2L) is definitively a highly active enzyme, completely compatible with 518 the virus vector and the host plant. Indeed, C. sativus stigma is the main commercial 519 source for these apocarotenoids (Castillo et al., 2005; Rubio Moraga et al., 2013). 520 Apocarotenoids are also present, although at lower levels, in the flowers of Buddleja spp., 521 where they are restricted to the calix. 522 Virus-driven expression of CsCCD2L in adult N. benthamiana plants allowed the 523 accumulation of the notable amounts of 2.18±0.23 mg of crocins and 8.24±2.93 mg of 524 picrocrocin per gram (dry weight) of infected tissues in only 13 dpi (Fig. 7). These 525 amounts are much higher than those obtained with a classic A. tumefaciens-mediated 526 transient expression of the CCD2L enzyme in N. benthamiana leaves, alone or in 527 combination with UGT709G1 (30.5 g/g DW of crocins (unpublished data) and 4.13 g/g 528 DW of picrocrocin (Diretto et al., 2019a), and highlight the opportunity to exploit the 529 viral system for the production of valuable secondary metabolites. A huge range of values 530 has been reported for crocins and picrocrocin in saffron in different studies. Crocins 531 reported values in saffron samples from Spain ranged from 0.85 to 32.40 mg/g dry weight 532 (ALONSO et al., 2001). Other reports showed 24.87 mg/g from China (Tong et al., 2015), 533 26.60 mg/g from Greece (Koulakiotis et al., 2015), 29.00 mg/g from Morocco (Gonda et 534 al., 2012), 32.60 mg/g from Iran, 49.80 mg/g from Italy (Masi et al., 2016) or 89.00 mg/g 535 from Nepal (Li et al., 2018). In Gardenia fruits, crocins levels range from 2.60 to 8.37 536 mg/g (Ouyang et al., 2011; Wu et al., 2014). The picrocrocin content ranges from 7.90 to 537 129.40 mg/g in Spanish saffron. In Greek saffron, 6.70 mg/g were reported (Koulakiotis

16

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

538 et al., 2015), and 10.70-2.16 mg/g in Indian, 21.80-6.15 mg/g in Iranian and 42.20-280.00 539 mg/g in Moroccan saffron (Lage and Cantrell, 2009). The different values obtained in 540 those samples are also a consequence of the different procedures followed to obtain the 541 saffron spice. Most methods involve a dehydration step by heating, which causes the 542 conversion of picrocrocin to safranal. Although lower than those from natural sources, 543 the crocins and picrocrocin contents of N. benthamiana tissues achieved with our virus- 544 driven system may still be attractive for commercial purposes because, in contrast to C. 545 sativus stigma or Gardenia spp. fruits, N. benthamiana infected tissues can be quickly 546 and easily obtained in practically unlimited amounts. Moreover, the virus-driven 547 production of crocins and picrocrocin in N. benthamiana may still be optimized by 548 increasing, for instance, the zeaxanthin precursor. PSY over-expression in plants was 549 shown to increase the flux of the whole biosynthetic carotenoid pathway (Nisar et al., 550 2015), as well as the zeaxanthin pool (Lagarde et al., 2000; Römer et al., 2002). In 551 addition, the virus-based cytosolic expression of a bacterial PSY (Pantoea ananatis crtB) 552 also induced general carotenoid accumulation, and particularly increased phytoene levels 553 in tobacco infected tissues (Majer et al., 2017). On the other side, BCH overexpression 554 resulted in increased zeaxanthin and  contents, both in microbes and 555 plants (Arango et al., 2014; Du et al., 2010; Lagarde et al., 2000). In this context, we 556 selected PaCrtB and CsBCH2, together with CsLTP1, involved in carotenoid transport, 557 as additional targets to improve apocarotenoid contents in N. benthamiana leaves, which 558 allowed a further increase of 1.9 and 1.6 fold in CsCCD2L/PaCrtB and CsCCD2L/ 559 CsBCH2, respectively, compared to the sole expression of CsCCD2L (Fig. 8). Other 560 targets to improve apocarotenoid accumulation could include the knocking out of 561 enzymatic steps opposing zeaxanthin accumulation, as zeaxanthin epoxydase (ZEP), 562 which uses zeaxanthin as substrate to yield , or lycopene -cyclase (LCY-)

563 that converts lycopene in -carotene, thus diverging the metabolic flux towards the

564 synthesis of  (lutein), rather than  (as zeaxanthin), which will be 565 object of future attempts. 566 In summary, here we describe a new technology that allows production of 567 remarkable amounts of highly appreciated crocins and picrocrocin in adult N. 568 benthamiana plants in as little as 13 dpi. This achievement is the consequence of N. 569 benthamiana, a species that accumulate negligible amounts of apocarotenoids, only 570 requiring the expression of an appropriate CCD to trigger the apocarotenoid biosynthetic

17

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

571 pathway, and can be further improved through the combination with the overexpression 572 of early or late carotenoid structural genes. 573 574 Acknowledgements 575 576 We thank K. Schreiber and C. Mares (IBMCP, CSIC-UPV, Valencia, Spain) for 577 technical assistance during plant transformation. We thank M. Gascón and M.D. Gómez- 578 Jiménez (IBMCP, CSIC-UPV, Valencia, Spain) for helpful assistance with LSCM 579 analyses. We thank D. Dubbala (IBMCP, CSIC-UPV, Valencia, Spain) for English 580 revision. This work was supported by grants BIO2016-77000-R and BIO2017-83184-R 581 from the Spanish Ministerio de Ciencia, Innovación y Universidades (co-financed 582 European Union FEDER funds). M.M. was the recipient of a predoctoral fellowship from 583 the Spanish Ministerio de Educación, Cultura y Deporte (FPU16/05294). G.D. and 584 L.G.G. are participants of the European COST action CA15136 (EUROCAROTEN). 585 L.G.G. is a participant of the CARNET network (BIO2015-71703-REDT and BIO2017‐ 586 90877‐RED). 587 588 Conflict of interest 589 590 The authors declare no conflict of interest. 591 592 References 593 594 Ahrazem, O., Argandoña, J., Fiore, A., Aguado, C., Luján, R., Rubio-Moraga, Á., 595 Marro, M., Araujo-Andrade, C., Loza-Alvarez, P., Diretto, G., Gómez-Gómez, L., 596 2018. Transcriptome analysis in tissue sectors with contrasting crocins 597 accumulation provides novel insights into apocarotenoid biosynthesis and 598 regulation during chromoplast biogenesis. Sci. Rep. 8. 599 https://doi.org/10.1038/s41598-018-21225-z 600 Ahrazem, O., Diretto, G., Argandoña, J., Rubio-Moraga, A., Julve, J.M., Orzáez, D., 601 Granell, A., Gómez-Gómez, L., 2017. Evolutionarily distinct carotenoid cleavage 602 dioxygenases are responsible for crocetin production in Buddleja davidii. J. Exp. 603 Bot. 68, 4663–4677. https://doi.org/10.1093/jxb/erx277 604 Ahrazem, O., Gómez-Gómez, L., Rodrigo, M.J., Avalos, J., Limón, M.C., 2016a.

18

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

605 Carotenoid cleavage oxygenases from microbes and photosynthetic organisms: 606 Features and functions. Int. J. Mol. Sci. https://doi.org/10.3390/ijms17111781 607 Ahrazem, O., Rubio-Moraga, A., Argandoña-Picazo, J., Castillo, R., Gómez-Gómez, L., 608 2016b. Intron retention and rhythmic diel pattern regulation of carotenoid cleavage 609 dioxygenase 2 during crocetin biosynthesis in saffron. Plant Mol. Biol. 91, 355– 610 374. https://doi.org/10.1007/s11103-016-0473-8 611 Ahrazem, O., Rubio-Moraga, A., Berman, J., Capell, T., Christou, P., Zhu, C., Gómez- 612 Gómez, L., 2016c. The carotenoid cleavage dioxygenase CCD2 catalysing the 613 synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme. New 614 Phytol. 209, 650–663. https://doi.org/10.1111/nph.13609 615 Ahrazem, O., Rubio-Moraga, A., Nebauer, S.G., Molina, R.V., Gómez-Gómez, L., 616 2015. Saffron: Its Phytochemistry, Developmental Processes, and Biotechnological 617 Prospects. J. Agric. Food Chem. 63, 8751–8764. 618 https://doi.org/10.1021/acs.jafc.5b03194 619 ALONSO, G.L., SALINAS, M.R., GARIJO, J., SÁNCHEZ-FERNÁNDEZ, M.A., 620 2001. COMPOSITION OF CROCINS AND PICROCROCIN FROM SPANISH 621 SAFFRON (CROCUS SATIVUS L.). J. Food Qual. 24, 219–233. 622 https://doi.org/10.1111/j.1745-4557.2001.tb00604.x 623 Amin, B., Hosseinzadeh, H., 2012. Evaluation of aqueous and ethanolic extracts of 624 saffron, Crocus sativus L., and its constituents, safranal and crocin in allodynia and 625 hyperalgesia induced by chronic constriction injury model of neuropathic pain in 626 rats. Fitoterapia 83, 888–895. https://doi.org/10.1016/j.fitote.2012.03.022 627 Apel, W., Bock, R., 2009. Enhancement of carotenoid biosynthesis in transplastomic 628 tomatoes by induced lycopene-to-provitamin A conversion. Plant Physiol. 151, 59– 629 66. https://doi.org/10.1104/pp.109.140533 630 Arango, J., Jourdan, M., Geoffriau, E., Beyer, P., Welsch, R., 2014. Carotene 631 hydroxylase activity determines the levels of both α-carotene and total carotenoids 632 in orange carrots. Plant Cell 26, 2223–2233. 633 https://doi.org/10.1105/tpc.113.122127 634 Bedoya, L., Martínez, F., Rubio, L., Daròs, J.A., 2010. Simultaneous equimolar 635 expression of multiple proteins in plants from a disarmed potyvirus vector. J. 636 Biotechnol. 150, 268–275. https://doi.org/10.1016/j.jbiotec.2010.08.006 637 Bedoya, L.C., Martínez, F., Orzáez, D., Daròs, J.A., 2012. Visual tracking of plant virus 638 infection and movement using a reporter MYB transcription factor that activates

19

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

639 anthocyanin biosynthesis. Plant Physiol. 158, 1130–1138. 640 https://doi.org/10.1104/pp.111.192922 641 Bukhari, S.I., Manzoor, M., Dhar, M.K., 2018. A comprehensive review of the 642 pharmacological potential of Crocus sativus and its bioactive apocarotenoids. 643 Biomed. Pharmacother. 98, 733–745. https://doi.org/10.1016/j.biopha.2017.12.090 644 Cappelli, G., Giovannini, D., Basso, A.L., Demurtas, O.C., Diretto, G., Santi, C., 645 Girelli, G., Bacchetta, L., Mariani, F., 2018. A Corylus avellana L. extract 646 enhances human macrophage bactericidal response against Staphylococcus aureus 647 by increasing the expression of anti-inflammatory and iron metabolism genes. J. 648 Funct. Foods 45, 499–511. https://doi.org/10.1016/j.jff.2018.04.007 649 Castillo, R., Fernández, J.A., Gómez-Gómez, L., 2005. Implications of carotenoid 650 biosynthetic genes in apocarotenoid formation during the stigma development of 651 Crocus sativus and its closer relatives. Plant Physiol. 139, 674–689. 652 https://doi.org/10.1104/pp.105.067827 653 Chai, F., Wang, Y., Mei, X., Yao, M., Chen, Y., Liu, H., Xiao, W., Yuan, Y., 2017. 654 Heterologous biosynthesis and manipulation of crocetin in Saccharomyces 655 cerevisiae. Microb. Cell Fact. 16, 54. https://doi.org/10.1186/s12934-017-0665-1 656 Cheriyamundath, S., Choudhary, S., Lopus, M., 2018. Safranal Inhibits HeLa Cell 657 Viability by Perturbing the Reassembly Potential of Microtubules. Phytother. Res. 658 32, 170–173. https://doi.org/10.1002/ptr.5938 659 Christodoulou, E., Kadoglou, N.P., Kostomitsopoulos, N., Valsami, G., 2015. Saffron: 660 A natural product with potential pharmaceutical applications. J. Pharm. Pharmacol. 661 67, 1634–1649. https://doi.org/10.1111/jphp.12456 662 Clemente, T., 2006. Nicotiana (Nicotiana tobaccum, Nicotiana benthamiana). Methods 663 Mol. Biol. 343, 143–154. https://doi.org/10.1385/1-59745-130-4:143 664 Côté, F., Cormier, F., Dufresne, C., Willemot, C., 2001. A highly specific 665 glucosyltransferase is involved in the synthesis of crocetin glucosylesters in Crocus 666 sativus cultured cells. J. Plant Physiol. 158, 553–560. https://doi.org/10.1078/0176- 667 1617-00305 668 D’Archivio, A.A., Giannitto, A., Maggi, M.A., Ruggieri, F., 2016. Geographical 669 classification of Italian saffron (Crocus sativus L.) based on chemical constituents 670 determined by high-performance liquid-chromatography and by using linear 671 discriminant analysis. Food Chem. 212, 110–116. 672 https://doi.org/10.1016/j.foodchem.2016.05.149

20

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

673 D’Esposito, D., Ferriello, F., Molin, A.D., Diretto, G., Sacco, A., Minio, A., Barone, A., 674 Di Monaco, R., Cavella, S., Tardella, L., Giuliano, G., Delledonne, M., Frusciante, 675 L., Ercolano, M.R., 2017. Unraveling the complexity of transcriptomic, 676 metabolomic and quality environmental response of tomato fruit. BMC Plant Biol. 677 17, 66. https://doi.org/10.1186/s12870-017-1008-4 678 Demmig-Adams, B., Cohu, C.M., Muller, O., Adams, W.W., 2012. Modulation of 679 photosynthetic energy conversion efficiency in nature: From seconds to seasons, 680 in: Photosynthesis Research. pp. 75–88. https://doi.org/10.1007/s11120-012-9761- 681 6 682 Demurtas, O.C., Frusciante, S., Ferrante, P., Diretto, G., Azad, N.H., Pietrella, M., 683 Aprea, G., Taddei, A.R., Romano, E., Mi, J., Al-Babili, S., Frigerio, L., Giuliano, 684 G., 2018. Candidate Enzymes for Saffron Crocin Biosynthesis Are Localized in 685 Multiple Cellular Compartments. Plant Physiol. 177, 990–1006. 686 https://doi.org/10.1104/pp.17.01815 687 Diretto, G., Ahrazem, O., Rubio-Moraga, Á., Fiore, A., Sevi, F., Argandoña, J., Gómez- 688 Gómez, L., 2019a. UGT709G1: a novel uridine diphosphate glycosyltransferase 689 involved in the biosynthesis of picrocrocin, the precursor of safranal in saffron 690 (Crocus sativus). New Phytol. 224, 725–740. https://doi.org/10.1111/nph.16079 691 Diretto, G., Al-Babili, S., Tavazza, R., Papacchioli, V., Beyer, P., Giuliano, G., 2007. 692 Metabolic engineering of potato carotenoid content through tuber-specific 693 overexpression of a bacterial mini-pathway. PLoS One 2, e350. 694 https://doi.org/10.1371/journal.pone.0000350 695 Diretto, G., Frusciante, S., Fabbri, C., Schauer, N., Busta, L., Wang, Z., Matas, A.J., 696 Fiore, A., Rose, J.K.C., Fernie, A.R., Jetter, R., Mattei, B., Giovannoni, J., 697 Giuliano, G., 2019b. Manipulation of β‐carotene levels in tomato fruits results in 698 increased ABA content and extended shelf‐life. Plant Biotechnol. J. pbi.13283. 699 https://doi.org/10.1111/pbi.13283 700 Du, H., Wang, N., Cui, F., Li, X., Xiao, J., Xiong, L., 2010. Characterization of the β- 701 carotene hydroxylase gene DSM2 conferring drought and oxidative stress 702 resistance by increasing xanthophylls and synthesis in rice. Plant 703 Physiol. 154, 1304–1318. https://doi.org/10.1104/pp.110.163741 704 Eroglu, A., Harrison, E.H., 2013. Carotenoid metabolism in mammals, including man: 705 Formation, occurrence, and function of apocarotenoids. J. Lipid Res. 706 https://doi.org/10.1194/jlr.R039537

21

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

707 Farré, G., Blancquaert, D., Capell, T., Van Der Straeten, D., Christou, P., Zhu, C., 2014. 708 Engineering complex metabolic pathways in plants. Annu. Rev. Plant Biol. 65, 709 187–223. https://doi.org/10.1146/annurev-arplant-050213-035825 710 Fasano, C., Diretto, G., Aversano, R., D’Agostino, N., Di Matteo, A., Frusciante, L., 711 Giuliano, G., Carputo, D., 2016. Transcriptome and metabolome of synthetic 712 Solanum autotetraploids reveal key genomic stress events following 713 polyploidization. New Phytol. 210, 1382–94. https://doi.org/10.1111/nph.13878 714 Fiedor, J., Burda, K., 2014. Potential role of carotenoids as antioxidants in human health 715 and disease. Nutrients 6, 466–488. https://doi.org/10.3390/nu6020466 716 Finley, J.W., Gao, S., 2017. A Perspective on Crocus sativus L. (Saffron) Constituent 717 Crocin: A Potent Water-Soluble Antioxidant and Potential Therapy for 718 Alzheimer’s Disease. J. Agric. Food Chem. 65, 1005–1020. 719 https://doi.org/10.1021/acs.jafc.6b04398 720 Fraser, P.D., Bramley, P.M., 2004. The biosynthesis and nutritional uses of carotenoids. 721 Prog. Lipid Res. 43, 228–265. https://doi.org/10.1016/j.plipres.2003.10.002 722 Frusciante, S., Diretto, G., Bruno, M., Ferrante, P., Pietrella, M., Prado-Cabrero, A., 723 Rubio-Moraga, A., Beyer, P., Gomez-Gomez, L., Al-Babili, S., Giuliano, G., 2014. 724 Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron 725 crocin biosynthesis. Proc. Natl. Acad. Sci. U. S. A. 111, 12246–12251. 726 https://doi.org/10.1073/pnas.1404629111 727 Georgiadou, G., Tarantilis, P.A., Pitsikas, N., 2012. Effects of the active constituents of 728 Crocus Sativus L., crocins, in an animal model of obsessive-compulsive disorder. 729 Neurosci. Lett. 528, 27–30. https://doi.org/10.1016/j.neulet.2012.08.081 730 Gibson, D.G., Young, L., Chuang, R.Y., Venter, J.C., Hutchison 3rd, C.A., Smith, 731 H.O., 2009. Enzymatic assembly of DNA molecules up to several hundred 732 kilobases. Nat. Methods 6, 343–345. https://doi.org/10.1038/nmeth.1318 733 Giorio, G., Stigliani, A.L., D’Ambrosio, C., 2007. Agronomic performance and 734 transcriptional analysis of carotenoid biosynthesis in fruits of transgenic HighCaro 735 and control tomato lines under field conditions. Transgenic Res. 16, 15–28. 736 https://doi.org/10.1007/s11248-006-9025-3 737 Gómez-Gómez, L., Feo-Brito, F., Rubio-Moraga, A., Galindo, P.A., Prieto, A., 738 Ahrazem, O., 2010. Involvement of lipid transfer proteins in saffron 739 hypersensitivity: Molecular cloning of the potential allergens. J. Investig. Allergol. 740 Clin. Immunol. 20, 407–412.

22

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

741 Gómez-Gómez, L., Pacios, L.F., Diaz-Perales, A., Garrido-Arandia, M., Argandoña, J., 742 Rubio-Moraga, Á., Ahrazem, O., 2018. Expression and interaction analysis among 743 saffron ALDHs and crocetin dialdehyde. Int. J. Mol. Sci. 19. 744 https://doi.org/10.3390/ijms19051409 745 Gómez-Gómez, L., Parra-Vega, V., Rivas-Sendra, A., Seguí-Simarro, J.M., Molina, 746 R.V., Pallotti, C., Rubio-Moraga, Á., Diretto, G., Prieto, A., Ahrazem, O., 2017. 747 Unraveling massive crocins transport and accumulation through proteome and 748 microscopy tools during the development of saffron stigma. Int. J. Mol. Sci. 18. 749 https://doi.org/10.3390/ijms18010076 750 Gonda, S., Parizsa, P., Surányi, G., Gyémánt, G., Vasas, G., 2012. Quantification of 751 main bioactive metabolites from saffron (Crocus sativus) stigmas by a micellar 752 electrokinetic chromatographic (MEKC) method. J. Pharm. Biomed. Anal. 66, 68– 753 74. https://doi.org/10.1016/j.jpba.2012.03.002 754 Grosso, V., Farina, A., Giorgi, D., Nardi, L., Diretto, G., Lucretti, S., 2018. A high- 755 throughput flow cytometry system for early screening of in vitro made polyploids 756 in Dendrobium hybrids. Plant Cell. Tissue Organ Cult. 132, 57–70. 757 https://doi.org/10.1007/s11240-017-1310-8 758 Hasunuma, T., Miyazawa, S., Yoshimura, S., Shinzaki, Y., Tomizawa, K., Shindo, K., 759 Choi, S.K., Misawa, N., Miyake, C., 2008. Biosynthesis of in tobacco 760 leaves by transplastomic engineering. Plant J. 55, 857–868. 761 https://doi.org/10.1111/j.1365-313X.2008.03559.x 762 Hellens, R.P., Edwards, E.A., Leyland, N.R., Bean, S., Mullineaux, P.M., 2000. pGreen: 763 a versatile and flexible binary Ti vector for Agrobacterium -mediated plant 764 transformation. Plant Mol.Biol. 42, 819–832. 765 Jabini, R., Ehtesham-Gharaee, M., Dalirsani, Z., Mosaffa, F., Delavarian, Z., Behravan, 766 J., 2017. Evaluation of the Cytotoxic Activity of Crocin and Safranal, Constituents 767 of Saffron, in Oral Squamous Cell Carcinoma (KB Cell Line). Nutr. Cancer 69, 768 911–919. https://doi.org/10.1080/01635581.2017.1339816 769 Jia, K.P., Baz, L., Al-Babili, S., 2018. From carotenoids to strigolactones. J. Exp. Bot. 770 https://doi.org/10.1093/jxb/erx476 771 Koulakiotis, N.S., Gikas, E., Iatrou, G., Lamari, F.N., Tsarbopoulos, A., 2015. 772 Quantitation of crocins and picrocrocin in saffron by hplc: Application to quality 773 control and differentiation from other crocus taxa. Planta Med. 81, 774 606–612. https://doi.org/10.1055/s-0035-1545873

23

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

775 Kyriakoudi, A., O’Callaghan, Y.C., Galvin, K., Tsimidou, M.Z., O’Brien, N.M., 2015. 776 Cellular Transport and Bioactivity of a Major Saffron Apocarotenoid, Picrocrocin 777 (4-(beta-D-Glucopyranosyloxy)-2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde). 778 J. Agric. Food Chem. 63, 8662–8668. https://doi.org/10.1021/acs.jafc.5b03363 779 Lagarde, D., Beuf, L., Vermaas, W., 2000. Increased production of zeaxanthin and other 780 pigments by application of genetic engineering techniques to Synechocystis sp. 781 strain PCC 6803. Appl. Environ. Microbiol. 66, 64–72. 782 https://doi.org/10.1128/AEM.66.1.64-72.2000 783 Lage, M., Cantrell, C.L., 2009. Quantification of saffron (Crocus sativus L.) metabolites 784 crocins, picrocrocin and safranal for quality determination of the spice grown 785 under different environmental Moroccan conditions. Sci. Hortic. (Amsterdam). 786 121, 366–373. https://doi.org/10.1016/j.scienta.2009.02.017 787 Li, S., Shao, Q., Lu, Z., Duan, C., Yi, H., Su, L., 2018. Rapid determination of crocins 788 in saffron by near-infrared spectroscopy combined with chemometric techniques. 789 Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 790 https://doi.org/10.1016/j.saa.2017.09.030 791 Li, Y., Cui, H., Cui, X., Wang, A., 2016. The altered photosynthetic machinery during 792 compatible virus infection. Curr. Opin. Virol. 17, 19–24. 793 https://doi.org/10.1016/j.coviro.2015.11.002 794 Liao, Y.H., Houghton, P.J., Hoult, J.R.S., 1999. Novel and known constituents from 795 Buddleja species and their activity against leukocyte eicosanoid generation. J. Nat. 796 Prod. 62, 1241–1245. https://doi.org/10.1021/np990092+ 797 Lopez, A.B., Van Eck, J., Conlin, B.J., Paolillo, D.J., O’Neill, J., Li, L., 2008. Effect of 798 the cauliflower or transgene on carotenoid accumulation and chromoplast 799 formation in transgenic potato tubers. J. Exp. Bot. 59, 213–223. 800 https://doi.org/10.1093/jxb/erm299 801 Lopresti, A.L., Drummond, P.D., 2014. Saffron (Crocus sativus) for depression: A 802 systematic review of clinical studies and examination of underlying antidepressant 803 mechanisms of action. Hum. Psychopharmacol. https://doi.org/10.1002/hup.2434 804 Maass, D., Arango, J., Wüst, F., Beyer, P., Welsch, R., 2009. Carotenoid crystal 805 formation in arabidopsis and carrot roots caused by increased phytoene synthase 806 protein levels. PLoS One 4, e6373. https://doi.org/10.1371/journal.pone.0006373 807 Majer, E., Llorente, B., Rodríguez-Concepción, M., Daròs, J.A., 2017. Rewiring 808 carotenoid biosynthesis in plants using a viral vector. Sci. Rep. 7.

24

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

809 https://doi.org/10.1038/srep41645 810 Majer, E., Navarro, J.A., Daròs, J.A., 2015. A potyvirus vector efficiently targets 811 recombinant proteins to chloroplasts, mitochondria and nuclei in plant cells when 812 expressed at the amino terminus of the polyprotein. Biotechnol. J. 10, 1792–1802. 813 https://doi.org/10.1002/biot.201500042 814 Martin, C., Li, J., 2017. Medicine is not health care, food is health care: plant metabolic 815 engineering, diet and human health. New Phytol. 216, 699–719. 816 https://doi.org/10.1111/nph.14730 817 Masi, E., Taiti, C., Heimler, D., Vignolini, P., Romani, A., Mancuso, S., 2016. PTR- 818 TOF-MS and HPLC analysis in the characterization of saffron (Crocus sativus L.) 819 from Italy and Iran. Food Chem. 192, 75–81. 820 https://doi.org/10.1016/j.foodchem.2015.06.090 821 Mazidi, M., Shemshian, M., Mousavi, S.H., Norouzy, A., Kermani, T., Moghiman, T., 822 Sadeghi, A., Mokhber, N., Ghayour-Mobarhan, M., Ferns, G.A.A., 2016. A 823 double-blind, randomized and placebo-controlled trial of Saffron (Crocus sativus 824 L.) in the treatment of anxiety and depression. J. Complement. Integr. Med. 13, 825 195–199. https://doi.org/10.1515/jcim-2015-0043 826 Moraga, A.R., Nohales, P.F., Pérez, J.A., Gómez-Gómez, L., 2004. Glucosylation of the 827 saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus 828 sativus stigmas. Planta 219, 955–966. https://doi.org/10.1007/s00425-004-1299-1 829 Moraga, Á.R., Rambla, J.L., Ahrazem, O., Granell, A., Gómez-Gómez, L., 2009. 830 Metabolite and target transcript analyses during Crocus sativus stigma 831 development. Phytochemistry 70, 1009–1016. 832 https://doi.org/10.1016/j.phytochem.2009.04.022 833 Moras, B., Loffredo, L., Rey, S., 2018. Quality assessment of saffron (Crocus sativus 834 L.) extracts via UHPLC-DAD-MS analysis and detection of adulteration using 835 gardenia fruit extract (Gardenia jasminoides Ellis). Food Chem. 257, 325–332. 836 https://doi.org/10.1016/j.foodchem.2018.03.025 837 Nagatoshi, M., Terasaka, K., Owaki, M., Sota, M., Inukai, T., Nagatsu, A., Mizukami, 838 H., 2012. UGT75L6 and UGT94E5 mediate sequential glucosylation of crocetin to 839 crocin in Gardenia jasminoides. FEBS Lett. 586, 1055–1061. 840 https://doi.org/10.1016/j.febslet.2012.03.003 841 Nam, K.N., Park, Y.M., Jung, H.J., Lee, J.Y., Min, B.D., Park, S.U., Jung, W.S., Cho, 842 K.H., Park, J.H., Kang, I., Hong, J.W., Lee, E.H., 2010. Anti-inflammatory effects

25

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

843 of crocin and crocetin in rat brain microglial cells. Eur. J. Pharmacol. 648, 110– 844 116. https://doi.org/10.1016/j.ejphar.2010.09.003 845 Nisar, N., Li, L., Lu, S., Khin, N.C., Pogson, B.J., 2015. Carotenoid metabolism in 846 plants. Mol. Plant 8, 68–82. https://doi.org/10.1016/j.molp.2014.12.007 847 Nogueira, M., Enfissi, E.M.A., Welsch, R., Beyer, P., Zurbriggen, M.D., Fraser, P.D., 848 2019. Construction of a fusion enzyme for astaxanthin formation and its 849 characterisation in microbial and plant hosts: A new tool for engineering 850 ketocarotenoids. Metab. Eng. 52, 243–252. 851 https://doi.org/10.1016/j.ymben.2018.12.006 852 Ouyang, E., Zhang, C., Li, X., 2011. Simultaneous determination of geniposide, 853 chlorogenic acid, crocin1, and rutin in crude and processed fructus gardeniae 854 extracts by high performance liquid chromatography. Pharmacogn. Mag. 7, 267– 855 270. https://doi.org/10.4103/0973-1296.90391 856 Pfister, S., Meyer, P., Steck, A., Pfander, H., 1996. Isolation and Structure Elucidation 857 of Carotenoid-Glycosyl Esters in Gardenia Fruits (Gardenia jasminoides Ellis) and 858 Saffron (Crocus sativus Linne). J. Agric. Food Chem. 44, 2612–2615. 859 https://doi.org/10.1021/jf950713e 860 Rambla, J.L., Trapero-Mozos, A., Diretto, G., Moraga, A.R., Granell, A., Gómez, L.G., 861 Ahrazem, O., 2016. Gene-metabolite networks of volatile metabolism in Airen and 862 Tempranillo grape cultivars revealed a distinct mechanism of aroma bouquet 863 production. Front. Plant Sci. 7. https://doi.org/10.3389/fpls.2016.01619 864 Richardson, A.D., Duigan, S.P., Berlyn, G.P., 2002. An evaluation of noninvasive 865 methods to estimate foliar chlorophyll content. New Phytol. 153, 185–194. 866 https://doi.org/10.1046/j.0028-646X.2001.00289.x 867 Rodriguez-Concepcion, M., Avalos, J., Bonet, M.L., Boronat, A., Gomez-Gomez, L., 868 Hornero-Mendez, D., Limon, M.C., Meléndez-Martínez, A.J., Olmedilla-Alonso, 869 B., Palou, A., Ribot, J., Rodrigo, M.J., Zacarias, L., Zhu, C., 2018. A global 870 perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition 871 and health. Prog. Lipid Res. 70, 62–93. 872 https://doi.org/10.1016/j.plipres.2018.04.004 873 Römer, S., Lübeck, J., Kauder, F., Steiger, S., Adomat, C., Sandmann, G., 2002. 874 Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co- 875 suppression of carotenoid epoxidation. Metab. Eng. 4, 263–272. 876 https://doi.org/10.1006/mben.2002.0234

26

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

877 Rubio-Moraga, A., Trapero, A., Ahrazem, O., Gómez-Gómez, L., 2010. Crocins 878 transport in Crocus sativus: The long road from a senescent stigma to a newborn 879 corm. Phytochemistry 71, 1506–1513. 880 https://doi.org/10.1016/j.phytochem.2010.05.026 881 Rubio Moraga, A., Ahrazem, O., Rambla, J.L., Granell, A., Gómez Gómez, L., 2013. 882 Crocins with High Levels of Sugar Conjugation Contribute to the Yellow Colours 883 of Early-Spring Flowering Crocus Tepals. PLoS One 8. 884 https://doi.org/10.1371/journal.pone.0071946 885 Sainsbury, F., Saxena, P., Geisler, K., Osbourn, A., Lomonossoff, G.P., 2012. Using a 886 virus-derived system to manipulate plant natural product biosynthetic pathways. 887 Methods Enzym. 517, 185–202. https://doi.org/10.1016/B978-0-12-404634- 888 4.00009-7 889 Skladnev, N. V., Johnstone, D.M., 2017. Neuroprotective properties of dietary saffron: 890 More than just a chemical scavenger? Neural Regen. Res. 891 https://doi.org/10.4103/1673-5374.198976 892 Sulli, M., Mandolino, G., Sturaro, M., Onofri, C., Diretto, G., Parisi, B., Giuliano, G., 893 2017. Molecular and biochemical characterization of a potato collection with 894 contrasting tuber carotenoid content. PLoS One 12. 895 https://doi.org/10.1371/journal.pone.0184143 896 Tan, H., Chen, X., Liang, N., Chen, R., Chen, J., Hu, C., Li, Qi, Li, Qing, Pei, W., Xiao, 897 W., Yuan, Y., Chen, W., Zhang, L., 2019. Transcriptome analysis reveals novel 898 enzymes for apo-carotenoid biosynthesis in saffron and allows construction of a 899 pathway for crocetin synthesis in yeast. J. Exp. Bot. 70, 4819–4834. 900 https://doi.org/10.1093/jxb/erz211 901 Tarantilis, P.A., Tsoupras, G., Polissiou, M., 1995. Determination of saffron (Crocus 902 sativus L.) components in crude plant extract using high-performance liquid 903 chromatography-UV-visible photodiode-array detection-mass spectrometry. J. 904 Chromatogr. A 699, 107–118. https://doi.org/10.1016/0021-9673(95)00044-N 905 Thole, V., Worland, B., Snape, J.W., Vain, P., 2007. The pCLEAN dual binary vector 906 system for Agrobacterium-mediated plant transformation. Plant Physiol. 145, 907 1211–1219. 908 Ting, H.M., Wang, B., Rydén, A.M., Woittiez, L., Van Herpen, T., Verstappen, F.W.A., 909 Ruyter-Spira, C., Beekwilder, J., Bouwmeester, H.J., Van der Krol, A., 2013. The 910 metabolite chemotype of Nicotiana benthamiana transiently expressing artemisinin

27

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

911 biosynthetic pathway genes is a function of CYP71AV1 type and relative gene 912 dosage. New Phytol. 199, 352–366. https://doi.org/10.1111/nph.12274 913 Walter, M.H., Floss, D.S., Strack, D., 2010. Apocarotenoids: Hormones, mycorrhizal 914 metabolites and aroma volatiles. Planta. https://doi.org/10.1007/s00425-010-1156- 915 3 916 Wang, B., Kashkooli, A.B., Sallets, A., Ting, H.M., de Ruijter, N.C.A., Olofsson, L., 917 Brodelius, P., Pottier, M., Boutry, M., Bouwmeester, H., van der Krol, A.R., 2016. 918 Transient production of artemisinin in Nicotiana benthamiana is boosted by a 919 specific lipid transfer protein from A. annua. Metab. Eng. 38, 159–169. 920 https://doi.org/10.1016/j.ymben.2016.07.004 921 Wang, W., He, P., Zhao, D., Ye, L., Dai, L., Zhang, X., Sun, Y., Zheng, J., Bi, C., 2019. 922 Construction of Escherichia coli cell factories for crocin biosynthesis. Microb. Cell 923 Fact. 18. https://doi.org/10.1186/s12934-019-1166-1 924 Wu, X., Zhou, Y., Yin, F., Mao, C., Li, L., Cai, B., Lu, T., 2014. Quality control and 925 producing areas differentiation of Gardeniae Fructus for eight bioactive 926 constituents by HPLC-DAD-ESI/MS. Phytomedicine 21, 551–559. 927 https://doi.org/10.1016/j.phymed.2013.10.002 928 Xu, C.J., Fraser, P.D., Wang, W.J., Bramley, P.M., 2006. Differences in the carotenoid 929 content of ordinary citrus and lycopene-accumulating mutants. J. Agric. Food 930 Chem. 54, 5474–5481. https://doi.org/10.1021/jf060702t 931 Xu, H., Lybrand, D., Bennewitz, S., Tissier, A., Last, R.L., Pichersky, E., 2018. 932 Production of trans-chrysanthemic acid, the acid moiety of natural 933 pyrethrin insecticides, in tomato fruit. Metab. Eng. 47, 271–278. 934 https://doi.org/10.1016/j.ymben.2018.04.004 935 Yang, T., Stoopen, G., Yalpani, N., Vervoort, J., de Vos, R., Voster, A., Verstappen, 936 F.W.A., Bouwmeester, H.J., Jongsma, M.A., 2011. Metabolic engineering of 937 geranic acid in maize to achieve fungal resistance is compromised by novel 938 glycosylation patterns. Metab. Eng. 13, 414–425. 939 https://doi.org/10.1016/j.ymben.2011.01.011 940 Yuan, L., Grotewold, E., 2015. Metabolic engineering to enhance the value of plants as 941 green factories. Metab. Eng. 27, 83–91. 942 https://doi.org/10.1016/j.ymben.2014.11.005 943 Zhang, C., Ma, J., Fan, L., Zou, Y., Dang, X., Wang, K., Song, J., 2015. 944 Neuroprotective effects of safranal in a rat model of traumatic injury to the spinal

28

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

945 cord by anti-apoptotic, anti-inflammatory and edema-attenuating. Tissue Cell 47, 946 291–300. https://doi.org/10.1016/j.tice.2015.03.007 947 Zhang, Y., Fei, F., Zhen, L., Zhu, X., Wang, J., Li, S., Geng, J., Sun, R., Yu, X., Chen, 948 T., Feng, S., Wang, P., Yang, N., Zhu, Y., Huang, J., Zhao, Y., Aa, J., Wang, G., 949 2017. Sensitive analysis and simultaneous assessment of pharmacokinetic 950 properties of crocin and crocetin after oral administration in rats. J. Chromatogr. B. 951 Analyt. Technol. Biomed. Life Sci. 1044–1045, 1–7. 952 https://doi.org/10.1016/j.jchromb.2016.12.003 953 Zhu, Q., Zeng, D., Yu, S., Cui, C., Li, J., Li, H., Chen, J., Zhang, R., Zhao, X., Chen, L., 954 Liu, Y.G., 2018. From Golden Rice to aSTARice: Bioengineering Astaxanthin 955 Biosynthesis in Rice Endosperm. Mol. Plant 11, 1440–1448. 956 https://doi.org/10.1016/j.molp.2018.09.007 957

29

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

958 Table 1. Ratios of (A) crocins- and (B) picrocrocin-related apocarotenoid levels in tissues 959 infected with TEVΔNIb-CsCCD2L and TEVΔNIb-BdCCD4.1. 960 A CsCCD2L/BdCCD4.1 crocetin dialdehyde 3.206 cis-crocetin 1.139 trans-crocetin 1.113 cis-crocin 1 3.318 trans-crocin 1 1.755 trans-crocin 2 3.605 trans-crocin 2' 2.420 cis-crocin 3 2.137 trans-crocin 3 4.915 trans-crocin 4 5.580 cis-crocin 5 2.448 trans-crocin 5 -

B CsCCD2L/BdCCD4.1 HTCC 1.573 picrocrocin isomer1 4.237 picrocrocin isomer2 1.405 picrocrocin-derivivative4 8.577 picrocrocin-derivivative7 6.474 safranal 3.805 961 962

30

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

963 Figures 964

965 966 Fig. 1. Schematic overview of the crocins biosynthesis pathway in C. sativus and B. 967 davidii. CrtB, phytoene synthase; PDS, phytoene desaturase; BCH2, carotene 968 hydroxylase; CsCCD2L, C. sativus carotenoid cleavage dioxygenase 2L; BdCCD4.1 and 969 4.3, B. davidii carotenoid cleavage dioxygenase 4.1 and 4.3; ALDH, aldehyde 970 dehydrogenase; UGT74AD1, UDP-glucosyltransferase 74AD1.

31

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

971

972 973 Fig. 2. Inoculation of N. benthamiana plants that stably express NIb with TEVΔNIb 974 recombinant clones that express different CCDs. (A) Schematic representation of 975 TEVΔNIb genome indicating the position where the GFP (green box) and the different

32

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

976 CCDs (CsCCD2L, orange box; BdCCD4.1, yellow box; and BdCCD4.3, gray box) were 977 inserted. The sequence of the artificial NIaPro cleavage site to mediate the release of the 978 recombinant proteins from the viral polyprotein is also indicated. The black triangle 979 indicates the exact cleavage site. Lines represent TEV 5’ and 3’ UTR and boxes represent 980 P1, HC-Pro, P3, P3N-PIPO, 6K1, CI, 6K2, VPg, NIaPro and CP cistrons, as indicated. 981 Scale bar corresponds to 1000 nt. (B) Pictures of representative leaves from plants mock- 982 inoculated and agroinoculated with TEVΔNIb-aGFP, TEVΔNIb-CsCCD2L, TEVΔNIb- 983 BdCCD4.1 and TEVΔNIb-BdCCD4.3, as indicated, taken at 13 dpi. Scale bars 984 correspond to 5 mm. (C) Virus diagnosis and (D) analysis of the progeny of recombinant 985 TEV in N. benthamiana plants mock-inoculated and agroinoculated with TEVΔNIb- 986 aGFP, TEVΔNIb-CsCCD2L, -BdCCD4.1 and -BdCCD4.3. RNA was extracted at 15 dpi 987 and subjected to RT-PCR amplification. PCR products were separated in a 1% agarose 988 gel that was stained with ethidium bromide. Representative samples of triplicate analyses 989 are shown. (C and D) Lanes 0, DNA marker ladder with sizes (in bp) on the left; lanes 1, 990 RT-PCR controls with no RNA added; lanes 2, mock-inoculated plants; lanes 3 to 6, 991 plants inoculated with TEVΔNIb-aGFP (lanes 3), TEVΔNIb-CsCCD2L (lanes 4), 992 TEVΔNIb -BdCCD4.1 (lanes 4) and TEVΔNIb -BdCCD4.3 (lanes 5). The arrows point 993 to the bands corresponding to (C) the TEV CP, and (D) the full-length viral progenies 994 cDNAs.

33

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

995

996 997 Fig. 3. Heterologous production of crocins in N. benthamiana tissues infected with 998 recombinant viruses expressing CCD enzymes. (A) Chromatographic profile run on an 999 HPLC-PDA-HRMS and detected at 440 nm of the polar fraction of tissues infected with 1000 TEVΔNIb-aGFP, TEVΔNIb-CsCCD2L and TEVΔNIb-BdCCD4.1. The profile of

34

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1001 saffron stigma is also included as a control. Peaks abbreviations correspond to: c-cr, cis- 1002 crocetin; t-cr, trans-crocetin; c-cr1, cis-crocin 1; t-cr1, trans-crocin 1; t-cr2, trans-crocin 1003 2; t-cr2ʹ, trans-crocin 2ʹ; c-cr3, cis-crocin 3, t-cr3, trans-crocin 3; c-cr4, cis-crocin 4; t- 1004 cr4, trans-crocin 4; c-cr5, cis-crocin 5; t-cr5, trans-crocetin 5. (B) Absorbance spectra of 1005 the major crocins detected in the polar extracts of N. benthamiana tissues infected with 1006 TEVΔNIb-CsCCD2L and TEVΔNIb-BdCCD4.1. Analyses were performed at 13 dpi.

35

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1007 1008 Fig. 4. Apocarotenoid content and composition of N. benthamiana tissues from mock- 1009 inoculated plants and plants infected with TEVΔNIb-aGFP, TEVΔNIb-CsCCD2L and 1010 TEVΔNIb-BdCCD4.1. (A) Crocetin dialdehyde, crocetin and crocins accumulation. (B) 1011 Levels of safranal, picrocrocin and its derivatives, and HTCC. Data are averages ± sd of 1012 three biological replicates and expressed as % of fold internal standard (IS) levels. 1013 Analyses were performed at 13 dpi.

36

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1014 1015 Fig. 5. Relative quantities of (A) carotenoids (B) chlorophylls and (C) quinones and 1016 tocochromanols detected by HPLC-DAD-HRMS in tissues of mock-inoculated and 1017 infected (TEVΔNIb-aGFP, TEVΔNIb-CsCCD2L and TEVΔNIb-BdCCD4.1) N. 1018 benthamiana plants. Data are averages ± sd of three biological replicates and expressed 1019 as fold internal standard (IS). Analyses were performed at 13 dpi.

37

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1020 1021 1022 Fig. 6. LSCM images of crocins and chlorophyll autofluorescence in symptomatic leaves 1023 of N. benthamiana plants infected with TEVΔNIb, TEVΔNIb-CsCCD2L and TEVΔNIb- 1024 BdCCD4.1, as indicated, at 13 dpi. Merged images of both fluorescent signals and images 1025 under white light are also shown. Scale bars indicate 10 μm.

38

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1026 1027 1028 Fig. 7. Time-course accumulation of (A) crocins, (B) picrocrocin, (C) β-carotene and 1029 lutein, and (D) chlorophyll a and b, as indicated, in systemic tissues of N. benthamiana 1030 plants agroinoculated with TEVΔNIb-CsCCD2L. Data are average ± sd of at least three 1031 biological replicates.

39

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1032 1033 Fig. 8. Apocarotenoid accumulation in N. benthamiana tissues inoculated with viral 1034 vectors carrying CsCCD2L, alone or in combination with PaCrtB, CsBCH2 and CsLTP1. 1035 (A) Schematic representation of TEVΔNIb-CsCCD2L/PaCrtB, - CsCCD2L/CsBCH2 and 1036 CsCCD2L/CsLPT1. The cDNAs corresponding to CsCCD2L, PaCrtB, CsBCH2 and 1037 CsLPT1 are indicated by orange, yellow, red and purple boxes respective. Other details

40

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1038 are the same as in Fig. 2A. (B) Representative leaves from plants mock-inoculated and 1039 agroinoculated with TEVΔNIb-aGFP, TEVΔNIb-CsCCD2L, TEVΔNIb- 1040 CsCCD2L/PaCrtB and TEVΔNIb-CsCCD2L/CsBCH2, at 13 dpi. (C) Total crocins, 1041 picrocrocin and safranal contents, expressed as mg/g of DW. Asterisks indicate 1042 significant differences according a t-test (pValue: *<0.05; **<0.01; ns, not significant) 1043 carried out in the comparisons CsCCD2L vs CsCCD2L+PaCrtB, CsCCD2L+CsBCH2 or 1044 CsCCD2L+CsLTP1. (D) Relative accumulation of single crocins, picrocrocin and

1045 safranal, normalized on the CsCCD2L-alone sample and visualized as heatmap of log2 1046 values. Data are average ± sd of three biological replicates. Analyses were performed at 1047 13 dpi.

41

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1048 SUPPLEMENTARY FIGURES 1049 1050 Fig. S1. Nucleotide sequence of the cDNA transferred to the Nicotiana benthamiana 1051 transformed line using Agrobacterium tumefaciens to prepare the virus-drive expression 1052 system. 1053 1054 TGGCAGGATATATTGTGGTGTAAACGTTCCTGCGGCGGTCGAGATGGATCTTGGCAGGATATATTGTGGT 1055 GTAAACGTTCCTGCGGCCGCAAGGGCTATTGAGACTTTTCAACAAAGGGTAATATCGGGAAACCTCCTCG 1056 GATTCCATTGCCCAGCTATCTGTCACTTCATCAAAAGGACAGTAGAAAAGGAAGGTGGCACCTACAAATG 1057 CCATCATTGCGATAAAGGAAAGGCTATCGTTCAAGATGCCTCTGCCGACAGTGGTCCCAAAGATGGACCC 1058 CCACCCACGAGGAGCATCGTGGAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGTG 1059 ATATCTCCACTGACGTAAGGGATGACGCACAATCCCACTATCCTTCGCAAGACCTTCCTCTATATAAGGA 1060 AGTTCATTTCATTTGGAGAGGACACGCTGAAATCACCAGTCTCTCTCTACAAATCTATCTCTCTCGAGCT 1061 TTCGCAGATCTGTCGATCGACCATGGGGATTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGG 1062 GTGGAGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGC 1063 TGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTCCAGGA 1064 CGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACT 1065 GAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTC 1066 CTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCCC 1067 ATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAG 1068 GATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATGC 1069 CCGACGGCGAGGATCTCGTCGTGACACATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCG 1070 CTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACC 1071 CGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTACGGTATCGCCGCTC 1072 CCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGAGCGGGACTCTGGGGTTCGGA 1073 TCGATCCTCTAGCTAGAGTCGATCGACAAGCTCGAGTTTCTCCATAATAATGTGTGAGTAGTTCCCAGAT 1074 AAGGGAATTAGGGTTCCTATAGGGTTTCGCTCATGTGTTGAGCATATAAGAAACCCTTAGTATGTATTTG 1075 TATTTGTAAAATACTTCTATCAATAAAATTTCTAATTCCTAAAACCAAAATCCAGTACTAAAATCCAGAT 1076 CCCCCGAATTAATTCGGCGTTAATTCAGTACATTAGCGGCCGCGATTCCATTGCCCAGCTATCTGTCACT 1077 TTATTGTGAAGATAGTGGAAAAGGAAGGTGGCTCCTACAAATGCCATCATTGCGATAAAGGAAAGGCCAT 1078 CGTTGAAGATGCCTCTGCCGACAGTGGTCCCAAAGATGGACCCCCACCCACGAGGAGCATCGTGGAAAAA 1079 GAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGTGATAGATTCCATTGCCCAGCTATCTGTC 1080 ACTTTATTGTGAAGATAGTGGAAAAGGAAGGTGGCTCCTACAAATGCCATCATTGCGATAAAGGAAAGGC 1081 CATCGTTGAAGATGCCTCTGCCGACAGTGGTCCCAAAGATGGACCCCCACCCACGAGGAGCATCGTGGAA 1082 AAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGTGATATCTCCACTGACGTAAGGGATG 1083 ACGCACAATCCCACTATCCTTCGCAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGAGGTA 1084 TTAAAATCTTAATAGGTTTTGATAAAAGCGAACGTGGGGAAACCCGAACCAAACCTTCTTCTAAACTCTC 1085 TCTCATCTCTCTTAAAGCAAACTTCTCTCTTGTCTTTCTTGCGTGAGCGATCTTCAACGTTGTCAGATCG 1086 TGCTTCGGCACCAGTACAACGTTTTCTTTCACTGAAGCGAAATCAAAGATCTCTTTGTGGACACGTAGTG 1087 CGGCGCCATTAAATAACGTGTACTTGTCCTATTCTTGTCGGTGTGGTCTTGGGAAAAGAAAGCTTGCTGG 1088 AGGCTGCTGTTCAGCCCCATACATTACTTGTTACGATTCTGCTGACTTTCGGCGGGTGCAATATCTCTAC 1089 TTCTGCTTGACGAGGTATTGTTGCCTGTACTTCTTTCTTCTTCTTCTTGCTGATTGGTTCTATAAGAAAT 1090 CTAGTATTTTCTTTGAAACAGAGTTTTCCCGTGGTTTTCGAACTTGGAGAAAGATTGTTAAGCTTCTGTA 1091 TATTCTGCCCAAATTTGAAATGGGGGAGAAGAGGAAATGGGTCGTGGAAGCACTGTCAGGGAACTTGAGG 1092 CCAGTGGCTGAGTGTCCCAGTCAGTTAGTCACAAAGCATGTGGTTAAAGGAAAGTGTCCCCTCTTTGAGC 1093 TCTACTTGCAGTTGAATCCAGAAAAGGAAGCATATTTTAAACCGATGATGGGAGCATATAAGCCAAGTCG 1094 ACTTAATAGAGAGGCGTTCCTCAAGGACATTCTAAAATATGCTAGTGAAATTGAGATTGGGAATGTGGAT 1095 TGTGACTTGCTGGAGCTTGCAATAAGCATGCTCATCACAAAGCTCAAGGCGTTAGGATTCCCAACTGTGA 1096 ACTACATCACTGACCCAGAGGAAATTTTTAGTGCATTGAATATGAAAGCAGCTATGGGAGCACTATACAA 1097 AGGCAAGAAGAAAGAAGCTCTCAGCGAGCTCACACTAGATGAGCAGGAGGCAATGCTCAAAGCAAGTTGC 1098 CTGCGACTGTATACGGGAAAGCTGGGAATTTGGAATGGCTCATTGAAAGCAGAGTTGCGTCCAATTGAGA 1099 AGGTTGAAAACAACAAAACGCGAACTTTCACAGCAGCACCAATAGACACTCTTCTTGCTGGTAAAGTTTG 1100 CGTGGATGATTTCAACAATCAATTTTATGATCTCAACATAAAGGCACCATGGACAGTTGGTATGACTAAG 1101 TTTTATCAGGGGTGGAATGAATTGATGGAGGCTTTACCAAGTGGGTGGGTGTATTGTGACGCTGATGGTT 1102 CGCAATTCGACAGTTCCTTGACTCCATTCCTCATTAATGCTGTATTGAAAGTGCGACTTGCCTTCATGGA 1103 GGAATGGGATATTGGTGAGCAAATGCTGCGAAATTTGTACACTGAGATAGTGTATACACCAATCCTCACA 1104 CCGGATGGTACTATCATTAAGAAGCATAAAGGCAACAATAGCGGGCAACCTTCAACAGTGGTGGACAACA 1105 CACTCATGGTCATTATTGCAATGTTATACACATGTGAGAAGTGTGGAATCAACAAGGAAGAGATTGTGTA 1106 TTACGTCAATGGCGATGACCTATTGATTGCCATTCACCCAGATAAAGCTGAGAGGTTGAGTGGATTCAAA 1107 GAATCTTTCGGAGAGTTGGGCCTGAAATATGAATTTGACTGCACCACCAGGGACAAGACACAGTTGTGGT

42

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1108 TCATGTCACACAGGGCTTTGGAGAGGGATGGCATGTATATACCAAAGCTAGAAGAAGAAAGGATTGTTTC 1109 TATTTTGGAATGGGACAGATCCAAAGAGCCGTCACATAGGCTTGAAGCCATCTGTGCATCAATGATCGAA 1110 GCATGGGGTTATGACAAGCTGGTTGAAGAAATCCGCAATTTCTATGCATGGGTTTTGGAACAAGCGCCGT 1111 ATTCACAGCTTGCAGAAGAAGGAAAGGCGCCATATCTGGCTGAGACTGCGCTTAAGTTTTTGTACACATC 1112 TCAGCACGGAACAAACTCTGAGATAGAAGAGTATTTAAAAGTGTTGTATGATTACGATATTCCAACGACT 1113 GAGAATCTTTATTTTCAGTAACTCTGGTTTCATTAAATTTTCTTTAGTTTGAATTTACTGTTATTCGGTG 1114 TGCATTTCTATGTTTGGTGAGCGGTTTTCTGTGCTCAGAGTGTGTTTATTTTATGTAATTTAATTTCTTT 1115 GTGAGCTCCTGTTTAGCAGGTCGTCCCTTCAGCAAGGACACAAAAAGATTTTAATTTTATTCGCTGAAAT 1116 CACCAGTCTCTCTCTACAAATCTATCTCTCTCTATTTTCTCCATAAATAATGTGTGAGTAGTTTCCCGAT 1117 AAGGGAAATTAGGGTTCTTATAGGGTTTCGCTCATGTGTTGAGCATATAAGAAACCCTTAGTATGTATTT 1118 GTATTTGTAAAATACTTCTATCAATAAAATTTCTAATTCCTAAAACCAAAATCCAGGGGCCCTCGACGTT 1119 CCTTGACAGGATATATTGGCGGGTAAACTAAGTCGCTGTATGTGTTTGTTTG 1120 1121 The cDNAs of the Neomycin phosphotransferase II (NPTII) and Tobacco etch virus 1122 (TEV) NIb are in blue and black, respectively. Initiation Met and stop codons are 1123 underlined. Note that an ATG has been added to the 5’ end of NIb cDNA that naturally 1124 lacks this codon because it is produced by proteolytic processing. A. tumefaciens T-DNA 1125 right border (RB) with overdrive (underlined) is in blue on yellow background and 1126 double left border (LB) is in blue on red background. Cauliflower mosaic virus 1127 (CaMV) 35S promoter and terminator are in red and fuchsia, respectively. Note that 1128 NIb is expressed from a partially duplicated version of CaMV 35S promoter. NIb open 1129 reading frame (ORF) is flanked by a modified version of the 5’ and 3’ untranslated 1130 regions (UTRs) of Cowpea mosaic virus (CPMV) RNA-2. 1131 1132

43

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1133 Fig. S2. Nucleotide sequences of TEVΔNIb (sequence variant DQ986288 that include 1134 the two silent mutations G273A and A1119G, in red, and lacks the whole NIb cistron) 1135 and the derived recombinant viruses TEVΔNIb-aGFP, -CsCCD2L, -BdCCD4.1, - 1136 BdCCD4.3, -CsCCD2L/PaCrtB, -CsCCD2L/CsBCH2 and -CsCCD2L/CsLPT1. The 1137 boundaries of viral cistrons are indicated on blue background. Initiation Met and stop 1138 codons are underlined. 1139 1140 >TEVΔNIb (8004 bp) 1141 AAAATAACAAATCTCAACACAACATATACAAAACAAACGAATCTCAAGCAATCAAGCATTCTACTTCTAT 1142 TGCAGCAATTTAAATCATTTCTTTTAAAGCAAAAGCAATTTTCTGAAAATTTTCACCATTTACGAACGAT 1143 AGCCATGGCACTCATCTTTGGCACAGTCAACGCTAACATCCTGAAGGAAGTGTTCGGTGGAGCTCGTATG 1144 GCTTGCGTTACCAGCGCACATATGGCTGGAGCGAATGGAAGCATTTTGAAGAAGGCAGAAGAAACCTCTC 1145 GTGCAATCATGCACAAACCAGTGATCTTCGGAGAAGACTACATTACCGAGGCAGACTTGCCTTACACACC 1146 ACTCCATTTAGAGGTCGATGCTGAAATGGAGCGGATGTATTATCTTGGTCGTCGCGCGCTCACCCATGGC 1147 AAGAGACGCAAAGTTTCTGTGAATAACAAGAGGAACAGGAGAAGGAAAGTGGCCAAAACGTACGTGGGGC 1148 GTGATTCCATTGTTGAGAAGATTGTAGTGCCCCACACCGAGAGAAAGGTTGATACCACAGCAGCAGTGGA 1149 AGACATTTGCAATGAAGCTACCACTCAACTTGTGCATAATAGTATGCCAAAGCGTAAGAAGCAGAAAAAC 1150 TTCTTGCCCGCCACTTCACTAAGTAACGTGTATGCCCAAACTTGGAGCATAGTGCGCAAACGCCATATGC 1151 AGGTGGAGATCATTAGCAAGAAGAGCGTCCGAGCGAGGGTCAAGAGATTTGAGGGCTCGGTGCAATTGTT 1152 CGCAAGTGTGCGTCACATGTATGGCGAGAGGAAAAGGGTGGACTTACGTATTGACAACTGGCAGCAAGAG 1153 ACACTTCTAGACCTTGCTAAAAGATTTAAGAATGAGAGAGTGGATCAATCGAAGCTCACTTTTGGTTCAA 1154 GTGGCCTAGTTTTGAGGCAAGGCTCGTACGGACCTGCGCATTGGTATCGACATGGTATGTTCATTGTACG 1155 CGGTCGGTCGGATGGGATGTTGGTGGATGCTCGTGCGAAGGTAACGTTCGCTGTTTGTCACTCAATGACA 1156 CATTATAGCGACAAATCAATCTCTGAGGCATTCTTCATACCATACTCTAAGAAATTCTTGGAGTTGAGGC 1157 CAGATGGAATCTCCCATGAGTGTACAAGAGGAGTATCAGTTGAGCGGTGCGGTGAGGTGGCTGCAATCCT 1158 GACACAAGCACTTTCACCGTGTGGTAAGATCACATGCAAACGTTGCATGGTTGAAACACCTGACATTGTT 1159 GAGGGTGAGTCGGGAGACAGTGTCACCAACCAAGGTAAGCTCCTAGCAATGCTGAAAGAACAGTATCCAG 1160 ATTTCCCAATGGCCGAGAAACTACTCACAAGGTTTTTGCAACAGAAATCACTAGTAAATACAAATTTGAC 1161 AGCCTGCGTGAGCGTCAAACAACTCATTGGTGACCGCAAACAAGCTCCATTCACACACGTACTGGCTGTC 1162 AGCGAAATTCTGTTTAAAGGCAATAAACTAACAGGGGCCGATCTCGAAGAGGCAAGCACACATATGCTTG 1163 AAATAGCAAGGTTCTTGAACAATCGCACTGAAAATATGCGCATTGGCCACCTTGGTTCTTTCAGAAATAA 1164 AATCTCATCGAAGGCCCATGTGAATAACGCACTCATGTGTGATAATCAACTTGATCAGAATGGGAATTTT 1165 ATTTGGGGACTAAGGGGTGCACACGCAAAGAGGTTTCTTAAAGGATTTTTCACTGAGATTGACCCAAATG 1166 AAGGATACGATAAGTATGTTATCAGGAAACATATCAGGGGTAGCAGAAAGCTAGCAATTGGCAATTTGAT 1167 AATGTCAACTGACTTCCAGACGCTCAGGCAACAAATTCAAGGCGAAACTATTGAGCGTAAAGAAATTGGG 1168 AATCACTGCATTTCAATGCGGAATGGTAATTACGTGTACCCATGTTGTTGTGTTACTCTTGAAGATGGTA 1169 AGGCTCAATATTCGGATCTAAAGCATCCAACGAAGAGACATCTGGTCATTGGCAACTCTGGCGATTCAAA 1170 GTACCTAGACCTTCCAGTTCTCAATGAAGAGAAAATGTATATAGCTAATGAAGGTTATTGCTACATGAAC 1171 ATTTTCTTTGCTCTACTAGTGAATGTCAAGGAAGAGGATGCAAAGGACTTCACCAAGTTTATAAGGGACA 1172 CAATTGTTCCAAAGCTTGGAGCGTGGCCAACAATGCAAGATGTTGCAACTGCATGCTACTTACTTTCCAT 1173 TCTTTACCCAGATGTCCTGAGTGCTGAATTACCCAGAATTTTGGTTGATCATGACAACAAAACAATGCAT 1174 GTTTTGGATTCGTATGGGTCTAGAACGACAGGATACCACATGTTGAAAATGAACACAACATCCCAGCTAA 1175 TTGAATTCGTTCATTCAGGTTTGGAATCCGAAATGAAAACTTACAATGTTGGAGGGATGAACCGAGATAT 1176 GGTCACACAAGGTGCAATTGAGATGTTGATCAAGTCCATATACAAACCACATCTCATGAAGCAGTTACTT 1177 GAGGAGGAGCCATACATAATTGTCCTGGCAATAGTCTCCCCTTCAATTTTAATTGCCATGTACAACTCTG 1178 GAACTTTTGAGCAGGCGTTACAAATGTGGTTGCCAAATACAATGAGGTTAGCTAACCTCGCTGCCATCTT 1179 GTCAGCCTTGGCGCAAAAGTTAACTTTGGCAGACTTGTTCGTCCAGCAGCGTAATTTGATTAATGAGTAT 1180 GCGCAGGTAATTTTGGACAATCTGATTGACGGTGTCAGGGTTAACCATTCGCTATCCCTAGCAATGGAAA 1181 TTGTTACTATTAAGCTGGCCACCCAAGAGATGGACATGGCGTTGAGGGAAGGTGGCTATGCTGTGACCTC 1182 TGAAAAGGTGCATGAAATGTTGGAAAAAAACTATGTAAAGGCTTTGAAGGATGCATGGGACGAATTAACT 1183 TGGTTGGAAAAATTCTCCGCAATCAGGCATTCAAGAAAGCTCTTGAAATTTGGGCGAAAGCCTTTAATCA 1184 TGAAAAACACCGTAGATTGCGGCGGACATATAGACTTGTCTGTGAAATCGCTTTTCAAGTTCCACTTGGA 1185 ACTCCTGAAGGGAACCATCTCAAGAGCCGTAAATGGTGGTGCAAGAAAGGTAAGAGTAGCGAAGAATGCC 1186 ATGACAAAAGGGGTTTTTCTCAAAATCTACAGCATGCTTCCTGACGTCTACAAGTTTATCACAGTCTCGA 1187 GTGTCCTTTCCTTGTTGTTGACATTCTTATTTCAAATTGACTGCATGATAAGGGCACACCGAGAGGCGAA 1188 GGTTGCTGCACAGTTGCAGAAAGAGAGCGAGTGGGACAATATCATCAATAGAACTTTCCAGTATTCTAAG 1189 CTTGAAAATCCTATTGGCTATCGCTCTACAGCGGAGGAAAGACTCCAATCAGAACACCCCGAGGCTTTCG 1190 AGTACTACAAGTTTTGCATTGGAAAGGAAGACCTCGTTGAACAGGCAAAACAACCGGAGATAGCATACTT 1191 TGAAAAGATTATAGCTTTCATCACACTTGTATTAATGGCTTTTGACGCTGAGCGGAGTGATGGAGTGTTC 1192 AAGATACTCAATAAGTTCAAAGGAATACTGAGCTCAACGGAGAGGGAGATCATCTACACGCAGAGTTTGG

44

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1193 ATGATTACGTTACAACCTTTGATGACAATATGACAATCAACCTCGAGTTGAATATGGATGAACTCCACAA 1194 GACGAGCCTTCCTGGAGTCACTTTTAAGCAATGGTGGAACAACCAAATCAGCCGAGGCAACGTGAAGCCA 1195 CATTATAGAACTGAGGGGCACTTCATGGAGTTTACCAGAGATACTGCGGCATCGGTTGCCAGCGAGATAT 1196 CACACTCACCCGCAAGAGATTTTCTTGTGAGAGGTGCTGTTGGATCTGGAAAATCCACAGGACTTCCATA 1197 CCATTTATCAAAGAGAGGGAGAGTGTTAATGCTTGAGCCTACCAGACCACTCACAGATAACGTGCACAAG 1198 CAACTGAGAAGTGAACCATTTAACTGCTTCCCAACTTTGAGGATGAGAGGGAAGTCAACTTTTGGGTCAT 1199 CACCGATTACAGTCATGACTAGTGGATTCGCTTTACACCATTTTGCACGAAACATAGCTGAGGTAAAAAC 1200 ATACGATTTTGTCATAATTGATGAATGTCATGTGAATGATGCTTCTGCTATAGCGTTTAGGAATCTACTG 1201 TTTGAACATGAATTTGAAGGAAAAGTCCTCAAAGTGTCAGCCACACCACCAGGTAGAGAAGTTGAATTCA 1202 CAACTCAGTTTCCCGTGAAACTCAAGATAGAAGAGGCTCTTAGCTTTCAGGAATTTGTAAGTTTACAAGG 1203 GACAGGTGCCAACGCCGATGTGATTAGTTGTGGCGACAACATACTAGTATATGTTGCTAGCTACAATGAT 1204 GTTGATAGTCTTGGCAAGCTCCTTGTGCAAAAGGGATACAAAGTGTCGAAGATTGATGGAAGAACAATGA 1205 AGAGTGGAGGAACTGAAATAATCACTGAAGGTACTTCAGTGAAAAAGCATTTCATAGTCGCAACTAATAT 1206 TATTGAGAATGGTGTAACCATTGACATTGATGTAGTTGTGGATTTTGGGACTAAGGTTGTACCAGTTTTG 1207 GATGTGGACAATAGAGCGGTGCAGTACAACAAAACTGTGGTGAGTTATGGGGAGCGCATCCAAAGACTCG 1208 GTAGAGTTGGGCGACACAAGGAAGGAGTAGCACTTCGAATTGGCCAAACAAATAAAACACTGGTTGAAAT 1209 TCCAGAAATGGTTGCCACTGAAGCTGCCTTTCTATGCTTCATGTACAATTTGCCAGTGACAACACAGAGT 1210 GTTTCAACCACACTGCTGGAAAATGCCACATTATTACAAGCTAGAACTATGGCACAGTTTGAGCTATCAT 1211 ATTTTTACACAATTAATTTTGTGCGATTTGATGGTAGTATGCATCCAGTCATACATGACAAGCTGAAGCG 1212 CTTTAAGCTACACACTTGTGAGACATTCCTCAATAAGTTGGCGATCCCAAATAAAGGCTTATCCTCTTGG 1213 CTTACGAGTGGAGAGTATAAGCGACTTGGTTACATAGCAGAGGATGCTGGCATAAGAATCCCATTCGTGT 1214 GCAAAGAAATTCCAGACTCCTTGCATGAGGAAATTTGGCACATTGTAGTCGCCCATAAAGGTGACTCGGG 1215 TATTGGGAGGCTCACTAGCGTACAGGCAGCAAAGGTTGTTTATACTCTGCAAACGGATGTGCACTCAATT 1216 GCGAGGACTCTAGCATGCATCAATAGACTCATAGCACATGAACAAATGAAGCAGAGTCATTTTGAAGCCG 1217 CAACTGGGAGAGCATTTTCCTTCACAAATTACTCAATACAAAGCATATTTGACACGCTGAAAGCAAATTA 1218 TGCTACAAAGCATACGAAAGAAAATATTGCAGTGCTTCAGCAGGCAAAAGATCAATTGCTAGAGTTTTCG 1219 AACCTAGCAAAGGATCAAGATGTCACGGGTATCATCCAAGACTTCAATCACCTGGAAACTATCTATCTCC 1220 AATCAGATAGCGAAGTGGCTAAGCATCTGAAGCTTAAAAGTCACTGGAATAAAAGCCAAATCACTAGGGA 1221 CATCATAATAGCTTTGTCTGTGTTAATTGGTGGTGGATGGATGCTTGCAACGTACTTCAAGGACAAGTTC 1222 AATGAACCAGTCTATTTCCAAGGGAAGAAGAATCAGAAGCACAAGCTTAAGATGAGAGAGGCGCGTGGGG 1223 CTAGAGGGCAATATGAGGTTGCAGCGGAGCCAGAGGCGCTAGAACATTACTTTGGAAGCGCATATAATAA 1224 CAAAGGAAAGCGCAAGGGCACCACGAGAGGAATGGGTGCAAAGTCTCGGAAATTCATAAACATGTATGGG 1225 TTTGATCCAACTGATTTTTCATACATTAGGTTTGTGGATCCATTGACAGGTCACACTATTGATGAGTCCA 1226 CAAACGCACCTATTGATTTAGTGCAGCATGAGTTTGGAAAGGTTAGAACACGCATGTTAATTGACGATGA 1227 GATAGAGCCTCAAAGTCTTAGCACCCACACCACAATCCATGCTTATTTGGTGAATAGTGGCACGAAGAAA 1228 GTTCTTAAGGTTGATTTAACACCACACTCGTCGCTACGTGCGAGTGAGAAATCAACAGCAATAATGGGAT 1229 TTCCTGAAAGGGAGAATGAATTGCGTCAAACCGGCATGGCAGTGCCAGTGGCTTATGATCAATTGCCACC 1230 AAAGAGTGAGGACTTGACGTTTGAAGGAGAAAGCTTGTTTAAGGGACCACGTGATTACAACCCGATATCG 1231 AGCACCATTTGTCACTTGACGAATGAATCTGATGGGCACACAACATCGTTGTATGGTATTGGATTTGGTC 1232 CCTTCATCATTACAAACAAGCACTTGTTTAGAAGAAATAATGGAACACTGTTGGTCCAATCACTACATGG 1233 TGTATTCAAGGTCAAGAACACCACGACTTTGCAACAACACCTCATTGATGGGAGGGACATGATAATTATT 1234 CGCATGCCTAAGGATTTCCCACCATTTCCTCAAAAGCTGAAATTTAGAGAGCCACAAAGGGAAGAGCGCA 1235 TATGTCTTGTGACAACCAACTTCCAAACTAAGAGCATGTCTAGCATGGTGTCAGACACTAGTTGCACATT 1236 CCCTTCATCTGATGGCATATTCTGGAAGCATTGGATTCAAACCAAGGATGGGCAGTGTGGCAGTCCATTA 1237 GTATCAACTAGAGATGGGTTCATTGTTGGTATACACTCAGCATCGAATTTCACCAACACAAACAATTATT 1238 TCACAAGCGTGCCGAAAAACTTCATGGAATTGTTGACAAATCAGGAGGCGCAGCAGTGGGTTAGTGGTTG 1239 GCGATTAAATGCTGACTCAGTATTGTGGGGGGGCCATAAAGTTTTCATGAGCAAACCTGAAGAGCCTTTT 1240 CAGCCAGTTAAGGAAGCGACTCAACTCATGAGTGAATTGGTGTACTCGCAAAGTGGCACTGTGGGTGCTG 1241 GTGTTGACGCTGGTAAGAAGAAAGATCAAAAGGATGATAAAGTCGCTGAGCAGGCTTCAAAGGATAGGGA 1242 TGTTAATGCTGGAACTTCAGGAACATTCTCAGTTCCACGAATAAATGCTATGGCCACAAAACTTCAATAT 1243 CCAAGGATGAGGGGAGAGGTGGTTGTAAACTTGAATCACCTTTTAGGATACAAGCCACAGCAAATTGATT 1244 TGTCAAATGCTCGAGCCACACATGAGCAGTTTGCCGCGTGGCATCAGGCAGTGATGACAGCCTATGGAGT 1245 GAATGAAGAGCAAATGAAAATATTGCTAAATGGATTTATGGTGTGGTGCATAGAAAATGGGACTTCCCCA 1246 AATTTGAACGGAACTTGGGTTATGATGGATGGTGAGGAGCAAGTTTCATACCCGCTGAAACCAATGGTTG 1247 AAAACGCGCAGCCAACACTGAGGCAAATTATGACACACTTCAGTGACCTGGCTGAAGCGTATATTGAGAT 1248 GAGGAATAGGGAGCGACCATACATGCCTAGGTATGGTCTACAGAGAAACATTACAGACATGAGTTTGTCA 1249 CGCTATGCGTTCGACTTCTATGAGCTAACTTCAAAAACACCTGTTAGAGCGAGGGAGGCGCATATGCAAA 1250 TGAAAGCTGCTGCAGTACGAAACAGTGGAACTAGGTTATTTGGTCTTGATGGCAACGTGGGTACTGCAGA 1251 GGAAGACACTGAACGGCACACAGCGCACGATGTGAACCGTAACATGCACACACTATTAGGGGTCCGCCAG 1252 TGATAGTTTCTGCGTGTCTTTGCTTTCCGCTTTTAAGCTTATTGTAATATATATGAATAGCTATTCACAG 1253 TGGGACTTGGTCTTGTGTTGAATGGTATCTTATATGTTTTAATATGTCTTATTAGTCTCATTACTTAGGC

45

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1254 GAACGACAAAGTGAGGTCACCTCGGTCTAATTCTCCTATGTAGTGCGAGAAAAAAAAAAAAAAAAAAAAA 1255 AAAAAAAAAAAAAAAAAAAAAAAA 1256 1257 >TEVΔNIb-aGFP (insert between possitions 144 and 145 of TEVΔNIb; 1258 artificial NIaPro cleavage site is on gray background) 1259 ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAA 1260 ACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTT 1261 CATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAG 1262 TGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACG 1263 TCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGG 1264 CGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCAC 1265 AAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGG 1266 TGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACAC 1267 CCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAA 1268 GACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCA 1269 TGGACGAGCTGTACAAGACGACTGAGAATCTTTATTTTCAGGGGGAGAAG 1270 1271 >TEVΔNIb-CsCCD2L (insert between possitions 144 and 145 of TEVΔNIb; 1272 artificial NIaPro cleavage site is on gray background) 1273 ATGGAATCTCCTGCTACTAAATTACCTGCACCTCTGCTGATGTTATCTTCTTCTCCATTCCTTCTCCCTT 1274 CTCCTAATAAGAGCTCCTCCATCTTCCTTCCACGTAAATTAGGGCCGCTACCTCCAAAATATTATTATTA 1275 CAATTGCTGCCATCCTAAGAGTAGATCAATCTCAGTAGTATCAATGGCAAATAAGGAGGAGGCAGAGACC 1276 AGTAAGAAGAAGCCCAAACCATTAAAAGTACTAATTACCAAAGTGGATCCGAAGCCGAGGAAGGGCATGG 1277 CATCCGTCGCAGTGGACTTACTCGAGAAGGCCTTTGTATACCTATTGTCCGGAAATTCTGCAGCTGATCG 1278 TAGTAGTAGTAGTGGTCGTCGTCGTCGTAAAGAGCATTACTACCTCTCCGGCAATTATGCGCCCGTCGGA 1279 CACGAAACCCCGCCCTCCGACCACCTCCCCATTCATGGATCCCTTCCTGAATGCTTGAATGGAGTGTTTC 1280 TGAGAGTTGGTCCTAACCCCAAGTTTGCTCCCGTAGCCGGATACAATTGGGTCGATGGAGATGGAATGAT 1281 TCATGGATTGCGTATTAAAGATGGAAAAGCAACTTATCTATCTCGATATATTAAAACGTCACGGTTTAAA 1282 CAAGAAGAATATTTTGGAAGAGCAAAATTTATGAAGATTGGAGATCTAAGGGGATTGCTTGGGTTCTTTA 1283 CGATCTTAATACTAGTACTTCGAACAACATTGAAAGTAATAGACATTTCATATGGAAGAGGGACGGGTAA 1284 TACAGCTCTTGTGTATCATAATGGCTTACTATTGGCTCTATCAGAAGAAGATAAACCTTATGTTGTTAAA 1285 GTTTTAGAAGATGGAGACTTGCAAACTCTTGGGATATTGGATTATGACAAGAAATTGTCACATCCATTCA 1286 CCGCTCATCCAAAGATCGATCCGTTAACTGATGAGATGTTTACCTTTGGATATTCCATCTCGCCTCCGTA 1287 TCTTACTTATCGAGTCATTTCCAAGGATGGAGTGATGCAAGATCCAGTGCAAATCTCAATTACATCCCCT 1288 ACCATAATGCATGATTTTGCTATTACTGAAAATTATGCCATCTTCATGGACCTGCCCTTGTATTTCCAAC 1289 CAGAGGAAATGGTAAAGGGGAAATTTGTCTCTTCATTTCACCCTACAAAAAGAGCTCGTATCGGTGTGCT 1290 TCCACGATATGCAAAAGACGAGCATCCAATTCGATGGTTCGATCTTCCAAGTTGCTTCATGACTCATAAT 1291 GCAAATGCTTGGGAAGAGAATGATGAAGTTGTGCTATTCACATGTCGCCTTGAGAGTCCTGATCTTGACA 1292 TGCTTAGTGGACCTGCGGAAGAAGAGATTGGGAATTCAAAAAGTGAGCTTTACGAAATGAGGTTCAATTT 1293 GAAAACTGGAATTACTTCACAAAAGCAACTATCTGTACCTAGTGTTGATTTTCCTCGGATCAACCAAAGT 1294 TATACTGGCAGGAAACAGCAATATGTTTATTGTACTCTTGGCAACACCAAGATTAAGGGCATTGTGAAGT 1295 TTGATCTGCAAATTGAACCAGAAGCCGGAAAGACAATGCTTGAAGTTGGAGGAAATGTACAAGGCATCTT 1296 TGAGTTGGGACCTAGAAGATATGGTTCAGAGGCAATATTTGTGCCATGCCAACCTGGCATCAAATCTGAT 1297 GAGGATGACGGTTACTTGATATTCTTTGTACACGACGAAAACAATGGGAAATCTGAGGTCAATGTCATCG 1298 ATGCAAAGACAATGTCTGCAGAACCTGTGGCTGTTGTGGAACTTCCAAGCAGGGTTCCATATGGATTCCA 1299 TGCCTTGTTTCTGAATGAGGAAGAACTTCAGAAGCACCAAGCAGAGACAACAACCGAAAATTTATATTTC 1300 CAGTCTGGAACA 1301 1302 >TEVΔNIb-BdCCD4.1 (insert between possitions 144 and 145 of TEVΔNIb; 1303 artificial NIaPro cleavage site is on gray background) 1304 ATGAACTCCCTTTATTCTTCCTCTTTCCTTTCCAAATTTCCAATGAATGTTTCATCACTTGGAATAATTG 1305 ACAAGAACCCTCAAACAAAGATTAATCCCATTTATTCCGTACCAACGTTCCATGCCCGTCTAACCGAAAA 1306 ACCCTTTCGCGGAAAGCCTTTATATGAGAGGAGAAGAAATGATGAATCTTTGTATGCAAAAATGTTGAAA 1307 TCATTAGATGATTTCATATGCAAGTTCATGAGTGAAGTACCCCTGGACCCCTCCAACGATCCAAAACACA 1308 TACTGGTGGGCAACTTTGCACCGGTGGACGAGCTTCCTCCGACTCCATGTGAGGTGGTGGAAGGCTCCCT 1309 TCCGATATGTGTGGAGGGTGCATACATCCGCAACGGTCCCAACCCTCCGATCACCCCTCACGGTCCGTAC 1310 CATCTCTTTGATGGAGATGGAATGCTTCACTCCATCACAATCTCAAAAGGCAAAGCCACCTTTTGTAGTC 1311 GTTATGTTAAGACTTATAAATATTTGGTGGAACAAAACATAGGCTATCCGGTCTTCCCAAGTCCTTTCTC 1312 CTCCTTTAATAATGGCCTCTCGGCTTCTATAGCGCGTTTAGTCGTATTAACGGTAGCACGAGTGCTGGTT 1313 ACTAGGTGTTTGGATCCTAGACCTAATGGGTTTGGAACGGGGAATACTAGTTTAGGTTTATTTGGCGGGA 1314 AACTCTTTGCGCTATGTGAGTCTGATCTTCCTTATGCTATAAAAGTGACATCGGATGGGGATATAATAAC

46

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1315 TCTTGATCGCCATGATTTTTACACCGGTGATCCGTTACTCAGAATGACTGCACACCCAAAGATTGATTTA 1316 GAGACTGGACAAGTCTTCGCTTTCAGATGTGACATAACATCTCCATTCTTGACATTTTTCCGAATCGATT 1317 CATCTGGAAGAAAAGGCCCCGATTTTCCAATCTTCTCCTTGCACGGACCGTCACTCATTCATGATTTTGC 1318 TCTTACCAAACATTATGTCATATTCCAGGATACACAGGTTGAACTTAATCCAATGGAGATAACTAGAGGA 1319 AGATCACCAATTGTAGTTGACCATACCAAAGTGCCCCGGCTAGGCATTTTACCACGCAACGCCATGAATG 1320 AAACTGAACTGTCGTGGATTGATGTACCAGGATTAAACATGTCACACTTTATTAATGCTTGGGAAGAAGA 1321 TGGCGGAAACAAAATAGTAATTGTTGCTTTTAATGTATTATCAGGGTTGGATTCCCTATATTTGTTCAAT 1322 TCCTCAATGGAAAAAATTACAATTGACCTCAAGGCAAAGAAGATTGAAAGACATCCATTGTCCACTAAAA 1323 ATCTCGAGTTAGGAGTTATTAATCCTGCTTACGCCGGAAAGAAAAACAAGTATGTATATGCGGCAATTAT 1324 AAGTCAAACACCAAAGGCAGCAGGGGTGATTAAGCTTGACATATCACAGCTCCCTAATGCTGATAGTAGT 1325 AATTGCATGGTGGCTAGCCGACTTTATGGTTCGAGCTGTTATGGTGGTGAACCTTACTTTGTCGCAAGGG 1326 AGCCTGATAATCCAGAGGCTGAAGAGGATGATGGTTATCTAGTCACATACATGCATGATGAGAATAGCGA 1327 GGAATCGTGGTTCTTGGTTATGAACGCCAAATCCCCAACTCTTGACATTGTTGCTAGTGTTAGATTACCT 1328 GGTAGAGTGCCTTATGGCTTCCACGGACTTTTTGTCAGGGAAGGTGACCTCAACAAGCTGACAACCGAAA 1329 ATTTATATTTCCAGTCTGGAACA 1330 1331 >TEVΔNIb-BdCCD4.3 (insert between possitions 144 and 145 of TEVΔNIb; 1332 artificial NIaPro cleavage site is on gray background) 1333 ATGGACACCCTTTCTTCCTTTTTCCTTCAAAAATATGTTCCAAGTCATTCACTCACACCATCCCCGCCAT 1334 TACTCCTTAAATTCAATATTTCATCTCTTAAAATTGATAAAAAATGCGATAGATTAAATCATCAAAAATC 1335 TATGATCACAACATCAATTTTGCATCAAAAAAAGCTTAAAACGTTAAACACTCCGAAAAACCCTTCAACC 1336 TCAGAAATTACAAAAATAAAAAAACAATCTTTTCTTACTATTTTCTTCAACTCATTAGATAATTTCATAT 1337 GCAATTTCATAGACCCCCCACTCCGCCCCTCCATCGACCCTAACCACGTCCTCTCCGGCAACTTCGCCCC 1338 CGTCGGCGAGCTCCCCCCCACCGCGTGCGACGTCGTCGAGGGCTCCCTTCCGCCGTCGTTAAACGGCGCG 1339 TACATTCGCAACGGCCCAAACCCTCAGTTCATCCCCCGTGGGCCCTACCACCTATTCGACGGCGATGGCA 1340 TGCTCCACGCCGTCACCATCTCCGGCGGCAAAGCCACATTCTGCAGCCGCTTCGTCAAGACTTATAAGTA 1341 CACGCTGGAGCGAGAGATCGGCTCGCCGGTTATTCTGAACGTGTTCTCCGCCTTCAACGGCTTGCTGGCT 1342 TCGCTGGCGCGCTGCGCCGTATCATCAGGCCGCGTCCTCACCGGACAATACGACCCCCGCCGCGGCGCCG 1343 GCCGCGCCAACACAAGCTTAGCGTTGATTAGCGGAAAGTTATTCGCTCACGAAGAATGTGACCTTCCCTA 1344 CGGAATAAAATTAACATGTGATGGCGATATAATCACTTTAGGCCGCCATGAATTTCTCGGTGAGCAGTTT 1345 ACGGCGATGACGGCGCACCCGAAAATCGACATGGAAACCGGCGAGACCTTTGCTTTCAGATACAGTTTCC 1346 TGCCGCCGTTCTTAACATATTTCAGGATCAACGGGGATGGAATTATGCAACACGAAGTGCCGATTTTCTC 1347 CTTGAAGCAATCGTCATTCATCCACGACTTCGCAATATCCAAAAACTACGTCGTTTTCCCAGATACGCAG 1348 ATTGTGATAAAACCTAGAGATATGTTGAGAGGGAGGGTGCCATTAAGAGTTGATCTTGAAAAAGTGCCGA 1349 GGCTTGGGATTATGCCGAGATACGCGGTGGATGAGAGGGAAATGTGGTGGGTTGATGTGTCGGGGTTTAA 1350 TATAATACACGCGGTGAATGCGTGGGAGGAGGAAGACGACGGCGGCGACACCATTGTGATGGTGGCGCCG 1351 AATGCTTTGGGGGTGGAGCATGTGTTGGAGCGTATGGATTTGGTTCACTCATCCTTGGAAAGAATTCAAA 1352 TAAATTTGAAGGAGAAGAGTGTGACGAGACGCCCGGTGTCCACAGCAAATCTCGAGTTTGCGGTCATCAA 1353 TCCGGCTTACGTTGGGAAGAAGAACAGGTATGTGTATGCAGCAGTAGGAGATCCAATGCCAAAGATAGTA 1354 GGTGTTGTGAAGGTGGACTTATCACTTTCCACGGCCAACTCCGGCGACTGCACGGTGGCTAGACGCCTAT 1355 ACGGGCCCGGCTGCTACGGCGGTGAACCATTTTTTGTGGCAAGGGAGCCGGATAATCCGGCGGCGGAGGA 1356 GGATGATGGCTATCTAATAACTTATATGCATAATGAAAATACTGAAGAATCAAAGTTTTTAGTAATGGAT 1357 GCAAAATCCCCTACTCTTCAAATTCTTGCTGCTGTTAAGCTACCCCAACGAGTTCCCTATGGCTTCCATG 1358 GAATCTTTGTGCCGGAATCTCACTTGCGTAAACTAACAACCGAAAATTTATATTTCCAGTCTGGAACA 1359 1360 >TEVΔNIb-CsCCD2L/PaCrtB 1361 (insert between possitions 144 and 145 of TEVΔNIb; artificial NIaPro 1362 cleavage site is on gray background) 1363 ATGGAATCTCCTGCTACTAAATTACCTGCACCTCTGCTGATGTTATCTTCTTCTCCATTCCTTCTCCCTT 1364 CTCCTAATAAGAGCTCCTCCATCTTCCTTCCACGTAAATTAGGGCCGCTACCTCCAAAATATTATTATTA 1365 CAATTGCTGCCATCCTAAGAGTAGATCAATCTCAGTAGTATCAATGGCAAATAAGGAGGAGGCAGAGACC 1366 AGTAAGAAGAAGCCCAAACCATTAAAAGTACTAATTACCAAAGTGGATCCGAAGCCGAGGAAGGGCATGG 1367 CATCCGTCGCAGTGGACTTACTCGAGAAGGCCTTTGTATACCTATTGTCCGGAAATTCTGCAGCTGATCG 1368 TAGTAGTAGTAGTGGTCGTCGTCGTCGTAAAGAGCATTACTACCTCTCCGGCAATTATGCGCCCGTCGGA 1369 CACGAAACCCCGCCCTCCGACCACCTCCCCATTCATGGATCCCTTCCTGAATGCTTGAATGGAGTGTTTC 1370 TGAGAGTTGGTCCTAACCCCAAGTTTGCTCCCGTAGCCGGATACAATTGGGTCGATGGAGATGGAATGAT 1371 TCATGGATTGCGTATTAAAGATGGAAAAGCAACTTATCTATCTCGATATATTAAAACGTCACGGTTTAAA 1372 CAAGAAGAATATTTTGGAAGAGCAAAATTTATGAAGATTGGAGATCTAAGGGGATTGCTTGGGTTCTTTA 1373 CGATCTTAATACTAGTACTTCGAACAACATTGAAAGTAATAGACATTTCATATGGAAGAGGGACGGGTAA 1374 TACAGCTCTTGTGTATCATAATGGCTTACTATTGGCTCTATCAGAAGAAGATAAACCTTATGTTGTTAAA 1375 GTTTTAGAAGATGGAGACTTGCAAACTCTTGGGATATTGGATTATGACAAGAAATTGTCACATCCATTCA

47

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1376 CCGCTCATCCAAAGATCGATCCGTTAACTGATGAGATGTTTACCTTTGGATATTCCATCTCGCCTCCGTA 1377 TCTTACTTATCGAGTCATTTCCAAGGATGGAGTGATGCAAGATCCAGTGCAAATCTCAATTACATCCCCT 1378 ACCATAATGCATGATTTTGCTATTACTGAAAATTATGCCATCTTCATGGACCTGCCCTTGTATTTCCAAC 1379 CAGAGGAAATGGTAAAGGGGAAATTTGTCTCTTCATTTCACCCTACAAAAAGAGCTCGTATCGGTGTGCT 1380 TCCACGATATGCAAAAGACGAGCATCCAATTCGATGGTTCGATCTTCCAAGTTGCTTCATGACTCATAAT 1381 GCAAATGCTTGGGAAGAGAATGATGAAGTTGTGCTATTCACATGTCGCCTTGAGAGTCCTGATCTTGACA 1382 TGCTTAGTGGACCTGCGGAAGAAGAGATTGGGAATTCAAAAAGTGAGCTTTACGAAATGAGGTTCAATTT 1383 GAAAACTGGAATTACTTCACAAAAGCAACTATCTGTACCTAGTGTTGATTTTCCTCGGATCAACCAAAGT 1384 TATACTGGCAGGAAACAGCAATATGTTTATTGTACTCTTGGCAACACCAAGATTAAGGGCATTGTGAAGT 1385 TTGATCTGCAAATTGAACCAGAAGCCGGAAAGACAATGCTTGAAGTTGGAGGAAATGTACAAGGCATCTT 1386 TGAGTTGGGACCTAGAAGATATGGTTCAGAGGCAATATTTGTGCCATGCCAACCTGGCATCAAATCTGAT 1387 GAGGATGACGGTTACTTGATATTCTTTGTACACGACGAAAACAATGGGAAATCTGAGGTCAATGTCATCG 1388 ATGCAAAGACAATGTCTGCAGAACCTGTGGCTGTTGTGGAACTTCCAAGCAGGGTTCCATATGGATTCCA 1389 TGCCTTGTTTCTGAATGAGGAAGAACTTCAGAAGCACCAAGCAGAGACAACAACCGAAAATTTATATTTC 1390 CAGTCTGGAACA 1391 (insert between possitions 6981 and 6982 of TEVΔNIb; sequences to 1392 complete native NIaPro cleavage sites are on yellow background) 1393 GGGGAGAAGATGAATAATCCGTCGTTACTCAATCATGCGGTCGAAACGATGGCAGTTGGCTCGAAAAGTT 1394 TTGCGACAGCCTCAAAGTTATTTGATGCAAAAACCCGGCGCAGCGTACTGATGCTCTACGCCTGGTGCCG 1395 CCATTGTGACGATGTTATTGACGATCAGACGCTGGGCTTTCAGGCCCGGCAGCCTGCCTTACAAACGCCC 1396 GAACAACGTCTGATGCAACTTGAGATGAAAACGCGCCAGGCCTATGCAGGATCGCAGATGCACGAACCGG 1397 CGTTTGCGGCTTTTCAGGAAGTGGCTATGGCTCATGATATCGCCCCGGCTTACGCGTTTGATCATCTGGA 1398 AGGCTTCGCCATGGATGTACGCGAAGCGCAATACAGCCAACTGGATGATACGCTGCGCTATTGCTATCAC 1399 GTTGCAGGCGTTGTCGGCTTGATGATGGCGCAAATCATGGGCGTGCGGGATAACGCCACGCTGGACCGCG 1400 CCTGTGACCTTGGGCTGGCATTTCAGTTGACCAATATTGCTCGCGATATTGTGGACGATGCGCATGCGGG 1401 CCGCTGTTATCTGCCGGCAAGCTGGCTGGAGCATGAAGGTCTGAACAAAGAGAATTATGCGGCACCTGAA 1402 AACCGTCAGGCGCTGAGCCGTATCGCCCGTCGTTTGGTGCAGGAAGCAGAACCTTACTATTTGTCTGCCA 1403 CAGCCGGCCTGGCAGGGTTGCCCCTGCGTTCCGCCTGGGCAATCGCTACGGCGAAGCAGGTTTACCGGAA 1404 AATAGGTGTCAAAGTTGAACAGGCCGGTCAGCAAGCCTGGGATCAGCGGCAGTCAACGACCACGCCCGAA 1405 AAATTAACGCTGCTGCTGGCCGCCTCTGGTCAGGCCCTTACTTCCCGGATGCGGGCTCATCCTCCCCGCC 1406 CTGCGCATCTCTGGCAGCGCCCGCTCACGACTGAGAATCTTTATTTTCAG 1407 1408 >TEVΔNIb-CsCCD2L/CsBCH2 1409 (insert between possitions 144 and 145 of TEVΔNIb; artificial NIaPro 1410 cleavage site is on gray background) 1411 ATGGAATCTCCTGCTACTAAATTACCTGCACCTCTGCTGATGTTATCTTCTTCTCCATTCCTTCTCCCTT 1412 CTCCTAATAAGAGCTCCTCCATCTTCCTTCCACGTAAATTAGGGCCGCTACCTCCAAAATATTATTATTA 1413 CAATTGCTGCCATCCTAAGAGTAGATCAATCTCAGTAGTATCAATGGCAAATAAGGAGGAGGCAGAGACC 1414 AGTAAGAAGAAGCCCAAACCATTAAAAGTACTAATTACCAAAGTGGATCCGAAGCCGAGGAAGGGCATGG 1415 CATCCGTCGCAGTGGACTTACTCGAGAAGGCCTTTGTATACCTATTGTCCGGAAATTCTGCAGCTGATCG 1416 TAGTAGTAGTAGTGGTCGTCGTCGTCGTAAAGAGCATTACTACCTCTCCGGCAATTATGCGCCCGTCGGA 1417 CACGAAACCCCGCCCTCCGACCACCTCCCCATTCATGGATCCCTTCCTGAATGCTTGAATGGAGTGTTTC 1418 TGAGAGTTGGTCCTAACCCCAAGTTTGCTCCCGTAGCCGGATACAATTGGGTCGATGGAGATGGAATGAT 1419 TCATGGATTGCGTATTAAAGATGGAAAAGCAACTTATCTATCTCGATATATTAAAACGTCACGGTTTAAA 1420 CAAGAAGAATATTTTGGAAGAGCAAAATTTATGAAGATTGGAGATCTAAGGGGATTGCTTGGGTTCTTTA 1421 CGATCTTAATACTAGTACTTCGAACAACATTGAAAGTAATAGACATTTCATATGGAAGAGGGACGGGTAA 1422 TACAGCTCTTGTGTATCATAATGGCTTACTATTGGCTCTATCAGAAGAAGATAAACCTTATGTTGTTAAA 1423 GTTTTAGAAGATGGAGACTTGCAAACTCTTGGGATATTGGATTATGACAAGAAATTGTCACATCCATTCA 1424 CCGCTCATCCAAAGATCGATCCGTTAACTGATGAGATGTTTACCTTTGGATATTCCATCTCGCCTCCGTA 1425 TCTTACTTATCGAGTCATTTCCAAGGATGGAGTGATGCAAGATCCAGTGCAAATCTCAATTACATCCCCT 1426 ACCATAATGCATGATTTTGCTATTACTGAAAATTATGCCATCTTCATGGACCTGCCCTTGTATTTCCAAC 1427 CAGAGGAAATGGTAAAGGGGAAATTTGTCTCTTCATTTCACCCTACAAAAAGAGCTCGTATCGGTGTGCT 1428 TCCACGATATGCAAAAGACGAGCATCCAATTCGATGGTTCGATCTTCCAAGTTGCTTCATGACTCATAAT 1429 GCAAATGCTTGGGAAGAGAATGATGAAGTTGTGCTATTCACATGTCGCCTTGAGAGTCCTGATCTTGACA 1430 TGCTTAGTGGACCTGCGGAAGAAGAGATTGGGAATTCAAAAAGTGAGCTTTACGAAATGAGGTTCAATTT 1431 GAAAACTGGAATTACTTCACAAAAGCAACTATCTGTACCTAGTGTTGATTTTCCTCGGATCAACCAAAGT 1432 TATACTGGCAGGAAACAGCAATATGTTTATTGTACTCTTGGCAACACCAAGATTAAGGGCATTGTGAAGT 1433 TTGATCTGCAAATTGAACCAGAAGCCGGAAAGACAATGCTTGAAGTTGGAGGAAATGTACAAGGCATCTT 1434 TGAGTTGGGACCTAGAAGATATGGTTCAGAGGCAATATTTGTGCCATGCCAACCTGGCATCAAATCTGAT 1435 GAGGATGACGGTTACTTGATATTCTTTGTACACGACGAAAACAATGGGAAATCTGAGGTCAATGTCATCG 1436 ATGCAAAGACAATGTCTGCAGAACCTGTGGCTGTTGTGGAACTTCCAAGCAGGGTTCCATATGGATTCCA

48

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1437 TGCCTTGTTTCTGAATGAGGAAGAACTTCAGAAGCACCAAGCAGAGACAACAACCGAAAATTTATATTTC 1438 CAGTCTGGAACA 1439 (insert between possitions 6981 and 6982 of TEVΔNIb; sequences to 1440 complete native NIaPro cleavage sites are on yellow background) 1441 GGGGAGAAGATGTCGGCCAGAATCTCCCCCTCCGCCACCACCCTCGCCGCCTCCTTCCGCCGCCCTCCGT 1442 CTGGCGCACGCATCCTCCTCCTCCCTTCGCTCCCTGTCCGCCGCCCCGTCGAACTCCGGCCGCCGTTGCT 1443 TCATCGTCGGCGTCGGACGGCGACAGTGTTTTTCGTTCTCGCCGAAGAAAAAACAACTCCTTTTCTTGAC 1444 GACGTGGAGGAAGAGAAGAGTATTGCGCCGTCAAATCGGGCGGCTGAGAGGTCGGCGCGGAAGCGGTCGG 1445 AGCGGACCACGTACCTCATAGCCGCGGTTATGTCGAGCTTGGGCATCACATCCATGGCCGCCGCAGCCGT 1446 CTACTACCGCTTCGCTTGGCAAATGGAGGGAGGGGATGTGCCAGTGACGGAGATGGCGGGAACGTTCGCT 1447 CTCTCGGTCGGGGCGGCGGTGGGGATGGAGTTCTGGGCCAGGTGGGCCCACCGGGCCCTCTGGCACGCGT 1448 CGCTCTGGCACATGCACGAGTCCCACCACCGGCCGAGGGAGGGCGCTTTCGAACTCAACGACGTCTTCGC 1449 CATAATCAACGCGGTCCCCGCCATAGCCCTGCTCAACTTCGGCTTCTTCCACAGAGGTCTTCTCCCCGGC 1450 CTCTGTTTCGGCGCCGGGCTGGGGATCACGCTGTTTGGTATTGCGTACATGTTCGTCCACGACGGGCTAG 1451 TCCACCGGCGGTTCCCTGTGGGGCCCATAGCCGACGTGCCCTACTTCCAGCGCGTCGCCGCTGCTCACCA 1452 GATCCACCACTCGGAGAAGTTCGAAGGGGTGCCCTATGGACTGTTCATGGGGCCCAAGGTCGGTGCGGTT 1453 TCTTTTTGTTGTTTTCCTCTCTTAACGACTGAGAATCTTTATTTTCAG 1454 1455 >TEVΔNIb-CsCCD2L/CsLPT1 1456 (insert between possitions 144 and 145 of TEVΔNIb; artificial NIaPro 1457 cleavage site is on gray background) 1458 ATGGAATCTCCTGCTACTAAATTACCTGCACCTCTGCTGATGTTATCTTCTTCTCCATTCCTTCTCCCTT 1459 CTCCTAATAAGAGCTCCTCCATCTTCCTTCCACGTAAATTAGGGCCGCTACCTCCAAAATATTATTATTA 1460 CAATTGCTGCCATCCTAAGAGTAGATCAATCTCAGTAGTATCAATGGCAAATAAGGAGGAGGCAGAGACC 1461 AGTAAGAAGAAGCCCAAACCATTAAAAGTACTAATTACCAAAGTGGATCCGAAGCCGAGGAAGGGCATGG 1462 CATCCGTCGCAGTGGACTTACTCGAGAAGGCCTTTGTATACCTATTGTCCGGAAATTCTGCAGCTGATCG 1463 TAGTAGTAGTAGTGGTCGTCGTCGTCGTAAAGAGCATTACTACCTCTCCGGCAATTATGCGCCCGTCGGA 1464 CACGAAACCCCGCCCTCCGACCACCTCCCCATTCATGGATCCCTTCCTGAATGCTTGAATGGAGTGTTTC 1465 TGAGAGTTGGTCCTAACCCCAAGTTTGCTCCCGTAGCCGGATACAATTGGGTCGATGGAGATGGAATGAT 1466 TCATGGATTGCGTATTAAAGATGGAAAAGCAACTTATCTATCTCGATATATTAAAACGTCACGGTTTAAA 1467 CAAGAAGAATATTTTGGAAGAGCAAAATTTATGAAGATTGGAGATCTAAGGGGATTGCTTGGGTTCTTTA 1468 CGATCTTAATACTAGTACTTCGAACAACATTGAAAGTAATAGACATTTCATATGGAAGAGGGACGGGTAA 1469 TACAGCTCTTGTGTATCATAATGGCTTACTATTGGCTCTATCAGAAGAAGATAAACCTTATGTTGTTAAA 1470 GTTTTAGAAGATGGAGACTTGCAAACTCTTGGGATATTGGATTATGACAAGAAATTGTCACATCCATTCA 1471 CCGCTCATCCAAAGATCGATCCGTTAACTGATGAGATGTTTACCTTTGGATATTCCATCTCGCCTCCGTA 1472 TCTTACTTATCGAGTCATTTCCAAGGATGGAGTGATGCAAGATCCAGTGCAAATCTCAATTACATCCCCT 1473 ACCATAATGCATGATTTTGCTATTACTGAAAATTATGCCATCTTCATGGACCTGCCCTTGTATTTCCAAC 1474 CAGAGGAAATGGTAAAGGGGAAATTTGTCTCTTCATTTCACCCTACAAAAAGAGCTCGTATCGGTGTGCT 1475 TCCACGATATGCAAAAGACGAGCATCCAATTCGATGGTTCGATCTTCCAAGTTGCTTCATGACTCATAAT 1476 GCAAATGCTTGGGAAGAGAATGATGAAGTTGTGCTATTCACATGTCGCCTTGAGAGTCCTGATCTTGACA 1477 TGCTTAGTGGACCTGCGGAAGAAGAGATTGGGAATTCAAAAAGTGAGCTTTACGAAATGAGGTTCAATTT 1478 GAAAACTGGAATTACTTCACAAAAGCAACTATCTGTACCTAGTGTTGATTTTCCTCGGATCAACCAAAGT 1479 TATACTGGCAGGAAACAGCAATATGTTTATTGTACTCTTGGCAACACCAAGATTAAGGGCATTGTGAAGT 1480 TTGATCTGCAAATTGAACCAGAAGCCGGAAAGACAATGCTTGAAGTTGGAGGAAATGTACAAGGCATCTT 1481 TGAGTTGGGACCTAGAAGATATGGTTCAGAGGCAATATTTGTGCCATGCCAACCTGGCATCAAATCTGAT 1482 GAGGATGACGGTTACTTGATATTCTTTGTACACGACGAAAACAATGGGAAATCTGAGGTCAATGTCATCG 1483 ATGCAAAGACAATGTCTGCAGAACCTGTGGCTGTTGTGGAACTTCCAAGCAGGGTTCCATATGGATTCCA 1484 TGCCTTGTTTCTGAATGAGGAAGAACTTCAGAAGCACCAAGCAGAGACAACAACCGAAAATTTATATTTC 1485 CAGTCTGGAACA 1486 (insert between possitions 6981 and 6982 of TEVΔNIb; sequences to 1487 complete native NIaPro cleavage sites are on yellow background) 1488 GGGGAGAAGATGGCTCGCCAAGTTGCTCTGTGCTCTGTCCTGGTGATCGCTGCCTTCCTCTTCATCTCCT 1489 CCCCTCGTGCCGAGAGCGCAGTCACCTGCAGCACTGTGGCCTCTGCGGTATCACCGTGCATCGGTTATGT 1490 TCGCGGCCAGGGCGCACTGACTGGCGCGTGCTGCAGCGGCGTGAAGGGCCTTGCTGCAGCGGCAACCACC 1491 CCCCCTGACCGTCGGACTGCATGCAGCTGCCTCAAGTCAATGGCTGGCAAAATCAGCGGCCTGAACCCTA 1492 GTCTCGCAAAAGGCCTCCCCGGCAAGTGCGGTGCCAGCGTCCCCTATGTCATCAGCACATCCACTGACTG 1493 CACTAAGGTGGCAACGACTGAGAATCTTTATTTTCAG 1494

49

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1495 1496 1497 Fig. S3. Complementation of a TEV mutant that lacks NIb in the transformed N. 1498 benthamiana line that stably expresses TEV NIb. (A) Wild-type and (B) NIb-expressing 1499 N. benthamiana plants were mechanically inoculated with TEVΔNIb-Ros1, a 1500 recombinant virus in which the NIb cistron is replaced by the Rosea1 visual marker that 1501 induces anthocyanin accumulation. Pictures were taken 11 days post-inoculation (dpi). 1502

50

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1503

1504 1505 Fig. S4. Fluorescence stereomicroscope analysis of tissues from plants mock-inoculated 1506 and agroinoculated with TEVΔNIb-aGFP, TEVΔNIb-CsCCD2L, -BdCCD4.1 and - 1507 BdCCD4.3. Pictures at 15 dpi were taken with a Leica MZ 16 F stereomicroscope under 1508 white light and under UV illumination with the GFP2 (Leica) fluorescence filter. Scale 1509 bars correspond to 5 mm. 1510 51

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1511 1512 1513 Fig. S5. Crocetin ion extraction (m/z 329.1747 (M+H+)) in control and CsCCD2L and 1514 BdCCD4.1 polar fraction chromatograms. Metabolites were extracted from infected 1515 leaves and run on an HPLC-PDA-HRMS system. The apocarotenoids have an accurate 1516 mass and a chromatographic mobility identical to those of the authentic standards, when 1517 available. 1518

52

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.880765; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1519 SUPPLEMENTARY TABLES 1520 1521 Table S1. LC-HRMS of crocins- (A) and picrocrocin-related (B) apocarotenoid levels in 1522 infected leaves. Data are avg ± sd of, at least, three biological replicates; nd (not detected). 1523 Values are reported as fold level between the signal intensities of the apocarotenoid 1524 metabolite on the signal intensity of the internal standard (formononetin). 1525 1526 Table S2. Relative abundance, as % on the total, of apocarotenoid levels in CsCCD2L 1527 and BdCCD4.1 leaves. (A) crocins-related metabolites and (B) picrocrocin-related 1528 metabolites. 1529 1530 Table S3. LC-HRMS of carotenoid- (A), chlorophyll-related (B), and tocochromanols 1531 and quinones (C) levels in infected leaves. Data are avg ± sd of at least three biological 1532 replicates; nd (not detected). Values are reported as fold level between the signal 1533 intensities of the apocarotenoid metabolite on the signal intensity of the internal standard 1534 (a-tocopherol acetate). Asterisks indicate significant differences according a t-test 1535 (pValue: *<0.05; **<0.01) carried out in the comparisons Not infected vs GFP, CCD2L 1536 vs GFP and CCD4.1 vs GFP. 1537 1538 Table S4. LC-HRMS of crocins- (A) and picrocrocin and safranal (B) apocarotenoid 1539 levels in infected leaves. Data are avg ± sd of at least three biological replicates; nd (not 1540 detected). Values are reported as absolute amounts (in mg/g DW) by using authentical 1541 standards and external calibration curves. Asterisks indicate significant differences 1542 according a t-test (pValue: *<0.05; **<0.01) carried out in the comparisons CsCCD2L 1543 vs CsCCD2L+PaCrtB, CsCCD2L+CsBCH2 or CsCCD2L+CsLTP1.

53