Processing and Memory

Total Page:16

File Type:pdf, Size:1020Kb

Processing and Memory Understanding PART Computer Hardware I COPYRIGHTED MATERIAL cc01.indd01.indd 1 99/21/11/21/11 66:40:45:40:45 PPMM cc01.indd01.indd 2 99/21/11/21/11 66:40:46:40:46 PPMM Chapter Processing 1 and Memory COMPTIA FUNDAMENTALS OF TECHNOLOGY (UK) IT FUNDAMENTALS (USA) OBJECTIVES COVERED IN THIS CHAPTER: 1.1 Identify basic IT vocabulary ■ Processor speed/cores ■ RAM cc01.indd01.indd 3 99/21/11/21/11 66:40:47:40:47 PPMM Every computer, whether it’s a high-speed supercomputer at a research facility or a hand-held game for children, has a processor—the component that performs math calculations. Every computer also has some type of random access memory (RAM), which is used for temporary data storage as data moves into and out of the processor. In this chapter, you’ll review the basics of processors and RAM. Having this information will help you evaluate these components in the computers you buy, use, and maintain. Processors Every computing device has a central processing unit (CPU), more commonly known as a processor (or microprocessor). Processors are a part of mobile phones, gaming consoles, digital music players, and everything from automobiles to washing machines. Some computers even have multiple processors that share the computing load for faster performance. Processors are integrated circuits containing millions of electronic components called transistors. Transistors are an important component in any electronic device, including a computer. Transistors are electrical gates that let power through or don’t depending on their current state. They’re the basis of binary processing—that is, processing based on things being in one of two states: on or off, 1 or 0. At its most basic level, a processor’s job is to do math. It accepts numbers as input, performs calculations on them, and delivers other numbers as output. It’s mostly oblivious to the signifi cance of those numbers; it just runs the instructions it has been given. It’s a common misconception that the processor is the brain of the computer—it’s not nearly as sophisticated as a human brain. It just does what it’s told, like a hand-held calculator, but at incredibly high speed. The brains of the operation would more accurately be the operating system (OS), which feeds the numbers to the processor and uses the results. Different processors have different instruction sets—that is, different math calculations they can perform. The advanced processors in personal computers (PCs) have very large and complex instruction sets; the simple processors in items like appliances have fewer instruction sets. The OS must be written with the processor’s instruction set in mind so it can send the right codes to activate the desired instructions. Processors also vary in the number of bits they can accept and process as input. A bit is a binary digit, either 0 or 1. The more bits a processor can accept simultaneously, the faster it can work through the backlog of data to be processed. The earliest PCs had 8-bit or 16-bit processors; today, PCs have 32-bit or 64-bit processors. The higher the number of bits, the larger the word size the processor can accept. Word size refers to the amount of data that can simultaneously enter the processor in one operation. cc01.indd01.indd 4 99/21/11/21/11 66:40:47:40:47 PPMM Processors 5 RISC Reduced instruction set computing (RISC) is based on the principle that having a simple instruction set for a processor improves performance. The logic is that the more you can ask of a complex processor, the slower it becomes. Thus a processor that is capable of a smaller set of tasks can complete them more quickly. The Advanced RISC Machine (ARM) is a popular processor found in many mobile computing devices, including cell phones and hand-held game machines. In contrast, most personal computer processors are considered complex instruction set computing (CISC), having a comparatively large instruction set for greater fl exibility. Processors work only with binary digits, so the OS translates all numbers to the binary numbering system in order to send them for processing. Humans most commonly use the decimal numbering system (digits 0 through 9). Computers typically use hexadecimal numbering (16 digits, 0 through 9 plus A through F) or binary numbering (2 digits, 0 and 1). Binary is used when interacting with the processor, and hexadecimal is used when the OS refers to memory addresses. Exercise 1.1 demonstrates how to convert between binary and other numbering systems. EXERCISE 1.1 Convert Between Binary and Other Numbering Systems 1. In Windows 7, open the Calculator application. 2. Choose View Programmer to switch to Programmer view, as shown here. Notice that the Dec radio button is selected, indicating decimal numbering. cc01.indd01.indd 5 99/21/11/21/11 66:40:48:40:48 PPMM 6 Chapter 1 ■ Processing and Memory EXERCISE 1.1 (continued) 3. Enter the number 335. 4. Click the Bin radio button. The number is converted to binary (101001111). Notice that all the number keys are disabled except 1 and 0. 5. Click the Hex radio button. The number is converted to hexadecimal (14F). Notice that all the number keys are active again, as are the A through F keys. 6. Click the Dec radio button again to return to decimal numbering. 7. Experiment on your own with more numbers. Close the Calculator app when you’re fi nished. Processor Brands A variety of manufacturers produce processors that serve inside appliances and other non- computer devices. However, for personal computer processors, market competition has virtually eliminated all but two manufacturers, Intel and AMD. Apple Macintosh computers used Motorola processors for many years but switched to Intel processors in mid-2006. Intel Processors Intel is the most popular brand of processors for personal computers. Since the company’s founding in 1968, it has manufactured more than 50 different processors, plus graphics cards, motherboards, and various computer peripheral devices. The original IBM PC and PC-XT computers ran on Intel processors (the 8088 and 8086, respectively). Later IBM models also used Intel processors, such as the PS/2 that used the 16-bit 80286 processor. In 1993, Intel released the original Pentium processor, the fi rst commercially viable 32-bit CPU. It was followed by the Pentium 2 in 1997, the Pentium 3 in 1999, and the Pentium 4 in 2000. Intel’s current offerings include a 64-bit line called Intel Core, which includes the Core i3, Core i5, and Core i7. The Core i3 is an entry-level CPU, the Core i5 is midrange, and the Core i7 is a high-end product. As you might expect from the word core in the name, each of these is a multicore processor (containing from two to six cores, depending on the model, each of which functions as a processor in its own right). Within Intel’s Core lineup are many different versions of the i3, i5, and i7, for both desktop and laptop use, each with a different codename and combination of number of cores, L3 cache size, and socket type. For example, the brand name Core i3-5xx (where each x represents a digit), codenamed Clarkdale, has two cores and a 4 MB L3 cache and fi ts in an LGA 1156 socket. Some of the other codenames include Arrandale, Lynnfi eld, Gulftown and, the most recent of these, Sandy Bridge. cc01.indd01.indd 6 99/21/11/21/11 66:40:48:40:48 PPMM Processors 7 AMD Processors Advanced Micro Devices (AMD) has been the strongest competitor to Intel in the PC processor market since the 1990s. AMD processors have historically been less expensive than Intel’s, while offering roughly equivalent performance. Because AMD processors use a different instruction set than Intel’s, they require motherboards specially designed for them. The motherboard is the large circuit board inside a PC to which everything else connects. AMD’s early CPU offerings included the K5, K6, K7, K8, and K9 processors, each of which competed directly with an Intel processor. AMD’s current lineup includes the Phenom II, Athlon II, and Turion II lines. Processor Sockets Processors require the correct type of socket in the motherboard in which you’re installing them. When buying a motherboard, make sure the processor socket is appropriate for the CPU you plan to use. Sockets use various code names and numbering. The numbering is often based on the number of pins, or contacts, on the chip. For example, the LGA 1356 contains 1,356 pins. In earlier times, a pin grid array (PGA) was the preferred style of processor socket. It consisted of a grid of tiny holes into which the tiny pins on the back of a CPU chip were secured. Figure 1.1 shows a PGA socket in a motherboard circa 2005. FIGURE 1.1 Pin grid array (PGA) was a common type of processor socket until a few years ago. Photo credit: Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. User:Berkut cc01.indd01.indd 7 99/21/11/21/11 66:40:49:40:49 PPMM 8 Chapter 1 ■ Processing and Memory However, in recent years, this design has been replaced by land grid array (LGA), a style that has no pins on the chip. Figure 1.2 shows an example of an LGA socket. In place of the pins are tiny pads of bare gold-plated copper that touch corresponding pins on the socket. The main advantage of LGA is size; the pads can be much smaller than a socketed pin, so the CPU can contain more connection lines to the motherboard without the size of the CPU socket becoming very large.
Recommended publications
  • Heatsinks (X11/X10/X9)
    Heatsinks (X11/X10/X9) X9, X10, and X11 1U Passive CPU Heat Sinks for UP, DP, and MP Systems Accessories Part Number SNK-P0037P SNK-P0041 SNK-P0046P SNK-P0047P SNK-P0047PD Proprietary 1U Passive, DP 1U Passive, UP 1U Passive, 1U Passive, Form Factor 1U Passive, DP (X9DBL Front CPU) (X11/X10/X9) UP, DP Proprietary, DP Intel® Xeon® Processor E3- Intel® Xeon® Processor Intel® Xeon® Processor 1200 product family; Intel® Intel® Xeon® Processor Intel® Xeon® Processor E5-2400 & Intel® Xeon® E5-2400 & Intel® Xeon® CPU Type Core™ i3 processor; E5-2600 v4/v3/v2 product E5-2600 v4/v3/v2 product Processor E5-2400 v2 Processor E5-2400 v2 Intel® Pentium® Processor & families families product families product families Intel® Celeron® Processor Socket Type LGA 1356 LGA 1356 LGA 1155/1151/1150 LGA 2011(Square ILM) LGA 2011 (Square ILM) Copper + Aluminum Base Copper + Aluminum Base Aluminum Base Aluminium Base Major Integrated Copper Base Aluminum Fins Aluminum Fins Aluminum Fins Aluminium Fins Part Aluminum Fins Heat Pipes Heat Pipes Heat Pipes Heat Pipes Dimension 90L x 90W x 27H mm 90L x 90W x 27H mm 95L x 95W x 27H mm 90L x 90W x 26H mm 90L x 110W x 27H mm Screws + Springs Mounting Method Screws + Springs Screws + Springs Mounting Bracket Screws + Springs Screws + Springs (BKT-0028L Included) Part Number SNK-P0047PS SNK-P0047PSC SNK-P0047PSM SNK-P0047PSR Proprietary 1U Passive, DP (1U 3/4 Low Profile Passive, Proprietary, Proprietary 1U Passive, DP (2U Form Factor 1U Passive, UP, DP, MP GPU/Intel® Xeon Phi™ coprocessor UP (X10/X9) Twin2+ Front CPU),
    [Show full text]
  • Efficient Algorithms for Large-Scale Image Analysis
    Efficient Algorithms for Large-Scale Image Analysis zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften der Fakultät für Informatik des Karlsruher Instituts für Technologie genehmigte Dissertation von Jan Wassenberg aus Koblenz Tag der mündlichen Prüfung: 24. Oktober 2011 Erster Gutachter: Prof. Dr. Peter Sanders Zweiter Gutachter: Prof. Dr.-Ing. Jürgen Beyerer Abstract The past decade has seen major improvements in the capabilities and availability of imaging sensor systems. Commercial satellites routinely provide panchromatic images with sub-meter resolution. Airborne line scanner cameras yield multi-spectral data with a ground sample distance of 5 cm. The resulting overabundance of data brings with it the challenge of timely analysis. Fully auto- mated processing still appears infeasible, but an intermediate step might involve a computer-assisted search for interesting objects. This would reduce the amount of data for an analyst to examine, but remains a challenge in terms of processing speed and working memory. This work begins by discussing the trade-offs among the various hardware architectures that might be brought to bear upon the problem. FPGA and GPU-based solutions are less universal and entail longer development cycles, hence the choice of commodity multi-core CPU architectures. Distributed processing on a cluster is deemed too costly. We will demonstrate the feasibility of processing aerial images of 100 km × 100 km areas at 1 m resolution within 2 hours on a single workstation with two processors and a total of twelve cores. Because existing approaches cannot cope with such amounts of data, each stage of the image processing pipeline – from data access and signal processing to object extraction and feature computation – will have to be designed from the ground up for maximum performance.
    [Show full text]
  • CPU Benchmarks - CPU Mega Page - Detailed List of Benchmarked Cpus
    27.08.2020 PassMark - CPU Benchmarks - CPU Mega Page - Detailed List of Benchmarked CPUs CPU Benchmarks CPU Benchmarks Over 1,000,000 CPUs Benchmarked CPU Mega List Below is a list of all single socket CPU types that appear in the charts. By clicking the column headings you can sort the CPUs, you can also filter your search by selecting one of the drop down categories or by using the range sliders. Clicking on a specific processor name will take you to the chart it appears in and will highlight it for you. Single CPU Systems Last Updated: 26th of August 2020 Columns Show All entries CPU Mark Thread Mark TDP (W) CPU Name Min... - Min... - Min... - Socket Category Search... ▲▼ Max... ▲▼ Max... ▲▼ Max... ▲▼ ▲▼ ▲▼ AMD Ryzen Threadripper 3990X 80,087 2,518 280 sTRX4 Desktop AMD EPYC 7702 71,362 2,067 200 SP3 Server AMD EPYC 7742 67,185 2,376 225 SP3 Server AMD EPYC 7702P 64,395 2,316 200 SP3 Server AMD Ryzen Threadripper 3970X 64,015 2,704 280 sTRX4 Desktop AMD Ryzen Threadripper 3960X 55,707 2,702 280 sTRX4 Desktop AMD EPYC 7452 53,478 2,290 155 SP3 Server AMD EPYC 7502P 48,021 1,938 180 SP3 Server AMD Ryzen 9 3950X 39,246 2,743 105 AM4 Desktop AMD EPYC 7402P 39,118 1,742 180 SP3 Server Intel Xeon Gold 6248R @ 3.00GHz 38,521 2,270 205 FCLGA3647 Server Intel Xeon Platinum 8280 @ 2.70GHz 37,575 2,011 205 FCLGA3647 Server AMD EPYC 7302P 37,473 2,143 155 SP3 Server Intel Xeon W-3275M @ 2.50GHz 37,104 2,561 205 FCLGA3647 Server Intel Core i9-10980XE @ 3.00GHz 33,967 2,636 165 FCLGA2066 Desktop Intel Xeon Platinum 8168 @ 2.70GHz 33,398 2,167 205
    [Show full text]
  • Intel®Server Boards S2400LP
    Intel® Server Boards S2400LP Technical Product Specification Intel order number G52803-002 Revision 2.0 December 2013 Platform Collaboration and Systems Division - Marketing Revision History Intel® Server Boards S2400LP TPS Revision History Date Revision Modifications Number May 2012 1.0 Initial release. December 2013 2.0 Added support for Intel® Xeon® processor E5-2400 v2 product family ii Intel order number G52803-002 Revision 2.0 Intel® Server Boards S2400LP TPS Disclaimers Disclaimers INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.
    [Show full text]
  • Superworkstations
    SuperWorkstations Enterprise-Class Systems Optimized for Media & Entertainment, Engineering, and Research 5038A-iL 7047GR-TRF 7047AX-TRF/72RF 7047A-T/73 7037A-i/iL High Performance GPU Optimized Hyper-Speed Storage Optimized w/ Dual CPU Workstation Versatile Features & I/O w/ 5 GPUs Workstation 8x SATA/ SAS 2.0 HDDs Mini-Tower Access Performance • Efficiency • Expandability • Reliability • Optimized Applications : Video Editing, Digital Content Creation, CAD/CAE/CAM Software Development, Scientific Research and Oil & Gas Applications • Whisper-Quiet 21dB Acoustics Models • Redundant Platinum Level (95%+) Digital Power Supplies Available • Up to 1TB DDR3 memory and 8x Hot-Swap HDDs • Up to 5x GPUs supported with PCI-E 3.0 x16 • Supports Intel® Xeon® Processor E5-2600/2400/1600 v2 series up to 150W CPUs and E3-1200 v3 Product Families • Server-Grade Design for 24x7 Operation www.supermicro.com/SuperWorkstations April 2014 High-Performance, High-Efficiency for Personal SuperComputing Hyper-Speed Workstation The Only 4+1 GPU New! Outperforms by 20% System in the Market Whisper-Quiet DP Compact High-End High Performance, Versatile Most Cost-Effective Whisper-Quiet Entry Level via Hardware Acceleration Up to 67% Performance Gain Solution with SAS DP Solution Compact DP Solution Features & I/O Access Maximus System Cost-Effective Solution ULTIMATE ULTIMATE HIGH END HIGH END MAINSTREAM MAINSTREAM MAINSTREAM ENTRY LEVEL SYSTEM 7047AX-TRF/72RF 7047GR-TRF 7047A-T/73 7037A-i 7037A-iL 5038A-iL 5037A-i 5037A-iL Socket R LGA 2011 Socket R LGA 2011 Socket
    [Show full text]
  • Intel's Core 2 Family
    Intel’s Core 2 family - TOCK lines II Nehalem to Haswell Dezső Sima Vers. 3.11 August 2018 Contents • 1. Introduction • 2. The Core 2 line • 3. The Nehalem line • 4. The Sandy Bridge line • 5. The Haswell line • 6. The Skylake line • 7. The Kaby Lake line • 8. The Kaby Lake Refresh line • 9. The Coffee Lake line • 10. The Cannon Lake line 3. The Nehalem line 3.1 Introduction to the 1. generation Nehalem line • (Bloomfield) • 3.2 Major innovations of the 1. gen. Nehalem line 3.3 Major innovations of the 2. gen. Nehalem line • (Lynnfield) 3.1 Introduction to the 1. generation Nehalem line (Bloomfield) 3.1 Introduction to the 1. generation Nehalem line (Bloomfield) (1) 3.1 Introduction to the 1. generation Nehalem line (Bloomfield) Developed at Hillsboro, Oregon, at the site where the Pentium 4 was designed. Experiences with HT Nehalem became a multithreaded design. The design effort took about five years and required thousands of engineers (Ronak Singhal, lead architect of Nehalem) [37]. The 1. gen. Nehalem line targets DP servers, yet its first implementation appeared in the desktop segment (Core i7-9xx (Bloomfield)) 4C in 11/2008 1. gen. 2. gen. 3. gen. 4. gen. 5. gen. West- Core 2 Penryn Nehalem Sandy Ivy Haswell Broad- mere Bridge Bridge well New New New New New New New New Microarch. Process Microarchi. Microarch. Process Microarch. Process Process 45 nm 65 nm 45 nm 32 nm 32 nm 22 nm 22 nm 14 nm TOCK TICK TOCK TICK TOCK TICK TOCK TICK (2006) (2007) (2008) (2010) (2011) (2012) (2013) (2014) Figure : Intel’s Tick-Tock development model (Based on [1]) * 3.1 Introduction to the 1.
    [Show full text]
  • Robo-8121Vg2 Vg2a
    Intel® CoreTM Xeon E5 2400 Series Processor based PICMG 1.3 SHB with DDR3 SDRAM, ROBO-8121VG2 DVI-I, Dual Gigabit Ethernet, Audio and USB VG2A FEATURES GENERAL CPU & Package: Intel® CoreTM Xeon E5 2400 processor (Ivy Bridge-EN) ® Processor Support Intel Core Xeon E5 2400 Series in LGA 1356 Socket processors in LGA 1356 package Chipset/Core Logic Intel® C604 PCH Delivers up to 192GB DDR3 1066/1333 System Memory Up to 192GB DDR3 1066/1333 ECC SDRAM on six 240-pin DIMM sockets on six DIMM sockets BIOS AMI EFI BIOS Matrox G200A Graphic Storage Devices SATA: Support One On-board SATA 600, One SATA 600 (via backplane) Watchdog Timer Programmable via software from 0.5 sec. to 254.5 sec. Expansion Interface Two PCIE x 16 and One PCIE x 4 Hardware Monitoring System monitor (fan, temperature, voltage) Dimension Dimension: 338.5(L) x 126.39(W) / 13.33”(L) x 4.98” (W) Environment Operating Temperature: 0 to 55oC Storage Temperature: -20 to 80oC Relative Humidity: 5% to 90%, non-condensing I/O MIO Two serial (RS-232) RXTX on via backplane USB Six USB 2.0 ports (Four USB ports via backplane) Ethernet -Dual 10BASE-T/100BASE-TX/1000BASE-T Ethernet -PCI Express x1 interface based Gigabit Ethernet -Dual RJ-45 connector with two LED indicators ORDERING GUIDE Keyboard & Mouse Two USB 2.0 ports on bracket dedicated to keyboard & mouse Standard ROBO-8121VG2 PICMG 1.3(PCI-E+PCI).Intel Core Xeon E5 Series processors.SHB.w/Dual GbE DISPLAY ® Graphic Controller - Matrox G200A Graphic Chip Display Interface Support one VGA port on I/O bracket * Specifications are subject to change without notice.
    [Show full text]
  • CPU Benchmarks - CPU Mega Page - Detailed List of Benchmarked Cpus
    29.11.2019 PassMark - CPU Benchmarks - CPU Mega Page - Detailed List of Benchmarked CPUs 1 2 3 4 5 1 1 40000 1 4000 1 400 2 3 4 5 1 40000 1 4000 1 400 CPU Benchmarks Over 1,000,000 CPUs Benchmarked CPU List Below is an alphabetical list of all CPU types that appear in the charts. Clicking on a specific processor name will take you to the chart it appears in and will highlight it for you. Single CPU Systems Last Updated: 29th of November 2019 Reset Filters Enable Pagination CPU CPU Thread Thread TDP Power Test CPU Name Price 1 Socket Category Mark Value 2 Mark Value 3 (W) Perf. 4 Date 5 1 40000 1 4000 1 400 686 Gen NA 288 NA NA NA NA NA Feb 2009 NA Unknown AMD A10 Micro-6700T APU NA 1970 NA 778 NA 5 394 May 2015 FT3b Laptop AMD A10 PRO-7350B APU NA 3152 NA 1012 NA 19 165 Jun 2014 FP3 Laptop AMD A10 PRO-7800B APU NA 4997 NA 1559 NA 65 76 Oct 2014 FM2+ Desktop AMD A10 PRO-7850B APU NA 5380 NA 1601 NA 95 56 Nov 2014 FM2+ Desktop AMD A10-4600M APU $109.95 3115 28.34 1005 9.14 35 89 Apr 2012 FS1r2 Laptop AMD A10-4655M APU NA 2605 NA 861 NA 25 104 Jul 2012 FP2 Laptop AMD A10-4657M APU NA 2906 NA 887 NA 35 83 May 2013 FP2 Laptop AMD A10-5700 APU $64.50* 4214 65.35 1358 21.06 65 64 Jun 2012 FM2 Desktop AMD A10-5745M APU NA 2764 NA 913 NA 25 110 Jul 2013 FP2 Laptop AMD A10-5750M APU NA 3340 NA 1108 NA 35 95 May 2013 FS1r2 Laptop AMD A10-5757M APU NA 3084 NA 1063 NA 35 88 Jul 2013 FP2 Laptop AMD A10-5800B APU NA 4614 NA 1489 NA 100 46 Jul 2013 FM2 Desktop AMD A10-5800K APU $149.99* 4649 31.00 1458 9.72 100 46 Oct 2012 FM2 Desktop AMD A10-6700 APU
    [Show full text]
  • Efficient Algorithms for Large-Scale Image Analysis
    Jan Wassenberg Efficient Algorithms for Large-Scale Image Analysis Efficient Algorithms for Large-Scale Image Analysis Efficient Wassenberg Schriftenreihe Automatische Sichtprüfung und Bildverarbeitung | Band 4 4 Jan Wassenberg Efficient Algorithms for Large-Scale Image Analysis Schriftenreihe Automatische Sichtprüfung und Bildverarbeitung Band 4 Herausgeber: Prof. Dr.-Ing. Jürgen Beyerer Lehrstuhl für Interaktive Echtzeitsysteme am Karlsruher Institut für Technologie Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB Eine Übersicht über alle bisher in dieser Schriftenreihe erschienenen Bände finden Sie am Ende des Buchs. Efficient Algorithms for Large-Scale Image Analysis by Jan Wassenberg Dissertation, Karlsruher Institut für Technologie Fakultät für Informatik Tag der mündlichen Prüfung: 24. Oktober 2011 Impressum Karlsruher Institut für Technologie (KIT) KIT Scientific Publishing Straße am Forum 2 D-76131 Karlsruhe www.ksp.kit.edu KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Diese Veröffentlichung ist im Internet unter folgender Creative Commons-Lizenz publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/ KIT Scientific Publishing 2012 Print on Demand ISSN: 1866-5934 ISBN: 978-3-86644-786-8 Efficient Algorithms for Large-Scale Image Analysis zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften der Fakultät für Informatik des Karlsruher Instituts für Technologie genehmigte Dissertation von Jan Wassenberg aus Koblenz Tag der mündlichen Prüfung: 24. Oktober 2011 Erster Gutachter: Prof. Dr. Peter Sanders Zweiter Gutachter: Prof. Dr.-Ing. Jürgen Beyerer Abstract The past decade has seen major improvements in the capabilities and availability of imaging sensor systems. Commercial satellites routinely provide panchromatic images with sub-meter resolution. Airborne line scanner cameras yield multi-spectral data with a ground sample distance of 5 cm.
    [Show full text]
  • Processor Socket Types Pdf
    Processor socket types pdf Continue The LGA 775, the Socket AM2 earth grid socket mesh connector in computer hardware, processor connector or processor slot contains one or more mechanical components that provide mechanical and electrical connections between the microprocessor and the printed circuit board (PCB). This allows you to place and replace the CPU without solder. Common outlets have retention clips that apply constant force that must be overcome when the device is inserted. For chips with a large number of pins, zero insertion force (SIF) is preferable. Common outlets include Pin Grid Array (PGA) or Land Grid Array (LGA). These structures apply compression force after either the pen (PGA type) or surface plate (LGA type) is put in place. This provides excellent mechanical retention while avoiding the risk of bending the pin when inserting the chip into the socket. Some devices use Ball Grid Array (BGA) connectors, although they require soldering and are generally not considered replaceable by users. CPU connectors are used on the motherboard on desktop and server computers. Because they make it easy to change components, they are also used to prototyply prototype new circuits. Laptops typically use surface-mount processors that take up less space on the motherboard than sockets. As the density of pins in modern sockets increases, the requirements for the technique of making circuit boards increase, which allows you to successfully send a large number of signals to nearby components. Similarly, within the chip carrier, the technology of wire communication also becomes more demanding with the increase in the number of contacts and the density of the pin.
    [Show full text]
  • X9DBU-3F 1.1.Indb
    X9DBU-3F X9DBU-iF USER’S MANUAL Revision 1.1 The information in this User’s Manual has been carefully reviewed and is believed to be accurate. The vendor assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the information in this manual, or to notify any person or organization of the updates. Please Note: For the most up-to-date version of this manual, please see our Website at www.supermicro.com. Super Micro Computer, Inc. ("Supermicro") reserves the right to make changes to the product described in this manual at any time and without notice. This product, including software and docu- mentation, is the property of Supermicro and/or its licensors, and is supplied only under a license. Any use or reproduction of this product is not allowed, except as expressly permitted by the terms of said license. IN NO EVENT WILL SUPER MICRO COMPUTER, INC. BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, SPECULATIVE OR CONSEQUENTIAL DAMAGES ARISING FROM THE USE OR INABILITY TO USE THIS PRODUCT OR DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN PARTICULAR, SUPER MICRO COMPUTER, INC. SHALL NOT HAVE LIABILITY FOR ANY HARDWARE, SOFTWARE, OR DATA STORED OR USED WITH THE PRODUCT, INCLUDING THE COSTS OF REPAIRING, REPLACING, INTEGRATING, INSTALLING OR RECOVERING SUCH HARDWARE, SOFTWARE, OR DATA. Any disputes arising between the manufacturer and the customer shall be governed by the laws of Santa Clara County in the State of California, USA. The State of California, County of Santa Clara shall be the exclusive venue for the resolution of any such disputes.
    [Show full text]
  • Intel®Server Board S2400GP
    Intel® Server Board S2400GP Technical Product Specification Intel order number G50295-002 Revision 1.1 September, 2013 Enterprise Platforms and Services Division - Marketing Revision History Intel® Server Board S2400GP (Preliminary) TPS Revision History Date Revision Modifications Number May 2012 1.0 Initial release. May 2012 1.01 Add NIC Port MAC address. January 2013 1.02 Fix some typo. December 2013 1.1 Correct Memory support information in page 2 Disclaimers Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel®’s Terms and Conditions of Sale for such products, Intel® assumes no liability whatsoever, and Intel® disclaims any express or implied warranty, relating to sale and/or use of Intel® products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel® products are not intended for use in medical, life-saving, or life sustaining applications. Intel® may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or “undefined”. Intel® reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The Intel® Server Board S2400GP may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.
    [Show full text]