<<

Corbion ELECSIS

Electrolytes Stability In Solution

Index 1. Why should I use ELECSIS? 3 2. How does ELECSIS help me? 3 3. What is ELECSIS? 3 4. Getting started 3 4.1. How to sign in 3 4.2. The Quick menu 5 4.3. How to run a calculation 6 5. Examples of frequently used calculations (based on beverage formulations) 15 5.1. The pH of a solution 17 5.2. The amount of acid needed to obtain a required pH 18 5.3. of , part 1 20 5.4. Solubility of salts-part 2 21 5.5. Concentration factor 22 5.6. Impact amount of water 24 5.7. A pH range 26 5.8. Osmolality 30 5.9. Titratable Acidity (=total acidity=TA) 32 5.10. Influence the buffer system 35 5.11. Carbonation of a beverage 38 6. Other applications 43 6.12. General brine for ham production 43 6.13. Asian sauce 44 7. Tips & Tricks 47 8. Background information about the model 48 9. Contact information 49 10. Notes 50

2 Version 5, December 2014

1. Why should I use ELECSIS? Instead of going to the lab to make your beverage formulation and measure for example the pH, you calculate the pH in a few seconds.

2. How does ELECSIS help me? By performing calculations instead of practical lab work, R&D time can be reduced significantly, by up to 80 percent. You will get fast and accurate answers.

3. What is ELECSIS? ELECSIS stands for “Electrolytes Stability In Solution”. The Corbion ELECSIS software makes it possible to calculate the pH and stability of acid and solutions like beverages.

The model calculates only with electrolytes, i.e. acids, bases and salts and some aw-affecting solutes e.g. sugars. The results of the calculations are equilibrium conditions. This implies that not all solubility issues that appear from the calculations turn out to be a problem, since in some cases the shelf life of the product is shorter than the time frame in which the precipitation occurs.

4. Getting started 4.1. How to sign in

1) Open your browser, preferably Google Chrome 2) Go to: http://elecsis.corbion.com 3) If you start Corbion ELECSIS, you will see the following screen:

The field on the left enables you to log in to Corbion ELECSIS.

3 Version 5, December 2014

4) Fill in your email address and password, provided by Corbion

5) Starting page Corbion ELECSIS: Wizards and Corbion ELECSIS

1

2

3

4

5

6

7

8

9

4 Version 5, December 2014 1

2

3

4

5

6 5

4.2. The Quick menu

On the right of your screen, you will find the Quick menu. This menu is shown in all steps of the calculation and will first be explained. Under "Quick menu" you can find a list of options related to the model or communication with Corbion.

1. Log off, you can stop the Corbion ELECSIS session. 2. Save formulation, you can save the last calculation. a. A popup appears at the bottom of the screen. b. Do NOT open the file!

c. The formulation will be saved within the download folder of your computer.

d. Within the download folder, you can rename the file. e. Log off before you re-open a saved formulation

3. Open formulation, you open the explorer of your computer. You can open a calculation, in the download folder, which has been saved in the past.

5 Version 5, December 2014

4. Setting, organize your personal preferences, for example choose the units in which you want to express your formulation concentration and results. The units that can be used are: [mol/kg water], [wt%] and [g/kg water].

5. Contact Us, use this button if you have a general question about Corbion ELECSIS. For specific questions, contact your account manager of Corbion. 6. Sample request you can request a sample of a Corbion ingredient. 7. Keep me updated, by leaving your details you can select which topics you want to be updated on by Corbion. 8. Inform a colleague you can send a message with a link to this calculation website to somebody who might be interested. 9. Downloads. Here you can find more information regarding the model and terms of use.

4.3. How to run a calculation The focus of this booklet will be on the calculations which can be made within Corbion ELECSIS. The wizards should be shelf explanatory.

Click on Corbion ELECSIS

6 Version 5, December 2014

Step 1: System Definition When chosen for the Corbion ELECSIS, the following screen is shown.

1

2

4

3 5

6

7 8

9

The numbers in the blue balls correspond with the numbers of the explanation. 1. Select Wizards. Shows in which step of the calculation you are, the step is marked blue. You can also use these steps to go easily back and forward within your calculation, just by clicking on the steps. 2. Database components. From this list you can pick the components for your formulation. You can filter by product groups. 3. Or go directly to this field where the ingredient groups are shown. By clicking on the + all components of that group are shown. A bar is shown to scroll down the list.

7 Version 5, December 2014

1

5

4 2

3

4. Or use the search option, by entering the chemical name. In this example is entered, and all the calcium salts which are in the model can be chosen. By clicking on the ingredient, it will be selected in the formulation. 6 5

7 8

9

5. Formulation. Drag and drop all the ingredients of your formulation from the Database Components field to the formulation field. 6. Or use the blue arrows; select the ingredient with the cursor and press the blue arrow.

8 Version 5, December 2014

You can remove components by doing the opposite. 7. and 8 are fields showing chemical information regarding the selected ingredients.

9. By pressing next you go to the next step, were you will fill in the amounts and define the calculation tasks.

9 Version 5, December 2014

4.3.1. Step 2: Calculation tasks

Explanation of the page Step 2: calculation tasks

1

2

3

4 5

65

7

8

10 Version 5, December 2014

1. Calculation tasks. In this step the real environment and/or processing step can be mimicked by selecting the amount of the ingredients, the concentration unit of the ingredients and the conditions of the environment and/or process 2. Corbion ELECSIS is based on electrolytes in solution. The solution within the model is always demineralized water. If the formulation has for example 35% dry solids, the rest of the formulation will be water. 3. Formulation. The ingredients selected in Step 1: the system definition is shown. By clicking on the ingredient several options appear. a) Fix amount, you can add the concentration and select the unit in which you are willing to calculate. Be aware that for a proper calculation all concentrations should have the same units.

b) The units can also be set by default to your own preferences. This can be done by selecting Settings on the right hand side of the screen (see section 2.2). By doing this the concentration units do not have to be changed in each calculation. In the calculations examples in this booklet wt% will be used as default.

11 Version 5, December 2014 c) Calculate amount. With this setting the amount of ingredient can be calculated that is needed to reach a certain parameter. For example  How much lactic acid is needed to reach pH 3.8?  How much chloride is needed to reach an osmolality of 280 mmol/kg water?  How much can be added before precipitation occurs?

d) Range setting. To set a range, you first should define the number of points that should be calculated. Therefore, first go to the Quick menu. Behind Number of steps in range calculation, change 2 into, for example, 25 points. By doing this you will have 24 well distributed intervals. Now you can define the range that you want to calculate.

12 Version 5, December 2014

4. Concentration factor. In this field you can easily calculate the impact on the product parameters when the formulation is diluted or concentrated; like pH, osmolality, solids.  For dilution the factor should be smaller than 1. For example if you change the number into 0.33, the numbers will be decreased be a factor 3.  For mimicking a concentration the factor should be higher than 1. For example if you change the factor into 2, the concentration of the ingredients will be doubled.

Change factor without pressing update The amount of the ingredients will be decreased with factor 0.33, see results field. The original concentration remains as is, in the formulation.

13 Version 5, December 2014

5. Update. By pressing update the concentrations will be adjusted according to the factor you added and the new concentration will be the starting point, factor is 1.

6. Conditions. In the conditions field you can adjust the environmental settings.

a. You can change the temperature, for instance from °C to °K or °F. The default temperature is 25°C (298°K, 77°F). Pasteurization can be simulated by selecting a temperature range. b. Be aware that the temperature should be between 0.1°C and 99.9°C (32.18F and 211.82 F)

14 Version 5, December 2014

5. Examples of frequently used calculations (based on beverage formulations)

As base for the calculations we used the following settings (Quick menu) as default:

Calculation

1. Determine titratable acidity at pH = 7 2. Number of steps in a range calculation: 25 3. Aqueous phase thermodynamics: Davies

Defaults

4. Temperature: 25°C 5. Pressure: 1 bar 6. Component additions: wt% 7. Predefined mixture: wt%

15 Version 5, December 2014

The results of the calculation are given in a new browser window. In this window you can find the results of your calculation:  Components in the blue field show the ingredients and concentration you started with, or the amount of an ingredient for reaching a condition of a certain parameter.  Overall equilibrium results provide an overview of results of calculated parameters. E.g. the pH, temperature and osmolality of your final solution.  Equilibrium components provide an overview of the species in the aqueous phase and the solids

that will be in the system at equilibrium. When for example CO2 is applied a gas phase appears as well

16 Version 5, December 2014

5.1. The pH of a solution Question: What is the pH of this formulation?  : 0.90 wt%  Lactic acid : 0.75 wt%

Calculation of the solution in ELECSIS:  Drag the given components from the Database to the formulation field.  Fill in the concentration of the components and check if all units are the same (wt%).  Press the Calculate button.  Dependent if you checked an option in you settings to calculate the titratable acidity the following intermediate field will appear, include if you want to calculate Titratable acidity

 An intermediate field will appear showing the calculation progress

 Go to results in new browser tap and look in Overall Equilibrium Results for pH.

17 Version 5, December 2014

5.2. The amount of acid needed to obtain a required pH Question: How much lactic acid must be added to reach pH 3.8 in the following recipe?  Glucose : 6.0 wt%  sorbate : 0.12 wt%  Lactic acid : ?

Calculation of the solution in ELECSIS:  Drag the given components from the Database to the formulation field.  Fill in Fix amount the concentration for glucose and potassium sorbate. Check if all units are the same (wt%).  For Lactic acid selected calculate amount select fix pH at, fill in 3.8.

 Press Save.  Press Calculate.  Go to results in new window of the browser and look under Components  For reaching a pH of 3.8, 0.1342 wt% lactic acid is needed.

18 Version 5, December 2014

19 Version 5, December 2014

5.3. Solubility of salts, part 1 Question: Will complexation occur in this syrup?  Glucose : 55 wt%  Calcium lactate : 3.6 wt%  : 1.98 wt%

Calculation of the solution in ELECSIS:  Drag the given components from the Database to the formulation field.  Fill in Fix amount the concentration for the ingredients. Check if all units are the same (wt%).  Press the Calculate button.  Go to results in new window of the browser and look to Equilibrium components and look under Solid phase.  It can be seen that Calcium citrate (4aq) (0.54wt%) is precipitating out of the solution.

20 Version 5, December 2014

5.4. Solubility of salts-part 2

Question: Will complexation occur in this syrup?  Glucose : 55 wt%  Calcium lactate : 3.6 wt%  Lactic acid : 2.0 wt%

Calculation of the solution in ELECSIS:  Drag the given components from the Database to the formulation field.  Fill in Fix amount the concentration for the ingredients. Check if all units are the same. (wt%).  Press the Calculate button.  Check Solid phase. No precipitation or sedimentation will occur.

21 Version 5, December 2014

5.5. Concentration factor

Questions: 1. Will sedimentation occur in concentration? 2. Will the sediment dissolve after dilution, ratio 1:4?  Glucose : 55 wt%  Calcium lactate : 5 wt%  Lactic acid : 2.0 wt%  Concentration factor : 1

Calculation of the solution in ELECSIS:  Drag the given components from the Database to the formulation field.  Fill in Fix amount the concentration for the ingredients. Check if all units are the same. (wt%).  Press the Calculate.

Check Solid phase. It can be seen that the amount of calcium lactate does not completely dissolves in the concentrate.

22 Version 5, December 2014

Question: Will the calcium lactate dissolve after dilution? Dilution ratio is 1:4, so the concentration factor should be 1/5= 0.2

Calculation of the solution in ELECSIS:  Concentration factor : 0.2  Press Calculate (not Update) o By pressing Calculate the original formulation remains o By pressing Update the diluted formulation will be the starting point for next calculations

 Under Components it can be seen that the concentration of the ingredients used for the calculation is divided by 5 compared to the original formulation.  The Overall Equilibrium Results are adjusted to the new formulation  Under Solid phase is can be seen there is no sediment and or precipitate.  Diluting the concentration will dissolve all the calcium lactate

23 Version 5, December 2014

5.6. Impact amount of water

When a formulation is entered into ELECSIS, and for e.g. contains 15% dry solids, the water content will be 85%. In the tool you are able to adjust the water content. Please pay attention to the units used. This will impact the results of the calculation.

Question: What are the properties of the formulation in 1000g in final solution compared to 500g? Use g as unit  Citric acid : 0.5 g  Calcium lactate : 1.0 g

Calculation of the solution in ELECSIS:  Drag the given components from the Database to the formulation field.  Select Water and fill in 1000 g in final solution. Check if all units are the same (g).  Press the Save button.  The second calculation; change the value in 500g in final solution

The results of the calculations show that the properties of the formulations will differ when the amount of ingredients is dissolved in 500 compared to 1000g water. Most of the properties of the calculation with 500g water are about half the value of the calculation with 1000g except the pH.

24 Version 5, December 2014

What are the properties of the formulation in 1000g in final solution compared to 500 g? Use wt% as unit  Citric acid : 0.5 wt%  Calcium lactate : 1.0 wt%

Calculation of the solution in ELECSIS:  Change the units of the components into wt% in the formulation field.  Select Water and fill in 1000 g in final solution. Check if all units are the same (wt%).  The second calculation change the value in 500g in final solution

The formulation properties of the example calculations in wt% do not differ a lot.

For mimicking dilution or concentration it is advised to use the concentration factor which is explained in the previous chapter!

25 Version 5, December 2014

5.7. A pH range

Question: At which pH does the precipitation dissolve, when lactic acid is used for decreasing the pH of the following formulation?  Sodium citrate 2aq : 0.5 wt%  Calcium lactate : 1.0 wt%  Lactic acid : 0 wt%

Calculation of the solution in ELECSIS:  Drag the given components from the Database to the formulation field.  Fill in "Fix amount" the concentration for the ingredients. Check if all units are the same (wt%).  Press the Calculate button.

Without Lactic acid precipitation occurs.

At which concentration of lactic acid and corresponding pH the calcium citrate dissolves?  For lactic acid select range  Enter 0 to 1 wt%  Press Save  And press Calculate  Range calculations can take a little more time, since obviously more points have to be calculated.

A Display configuration popup will appear. In these popup the results of the range calculation, displayed in an Excel file, can be configured

26 Version 5, December 2014

 In the Model Parameters you can select the units in which you want to display the results

The Equilibrium Constants can be of interest for scientist who are performing temperature range calculations and need the equilibrium constants at different temperature points. As default this is not selected.

 When scrolling down the Overall field appaers. Select the wanted parameter results.

 The Species are always selected

27 Version 5, December 2014

 Press Apply  A new browser tap appears.  Look at column showing calcium citrate 4aq (s)  At a certain point all calcium citrate is dissolved, o This is at pH 4.6113 o Lactic acid concentration of 0.2917 wt%

28 Version 5, December 2014

 If you want to edit the Excel file, press Export to Excel.

 This is a normal Excel environment you can make graps, see example below.  The Excel file can be saved in your own system.

0.45 9.00

0.40 8.00 0.35 7.00 0.30 6.00

0.25 5.00

0.20 4.00 pH 0.15 3.00 0.10 2.00

0.05 1.00 Calciumcitrate 4aq in [wt%] 0E+00 0E+00 0E+00 0.20 0.40 0.60 0.80 1.00 Lactic acid [wt%]

29 Version 5, December 2014

5.8. Osmolality

Osmolality is a measure of the number of moles of solute that contribute to a solutions osmotic pressure per kilogram of solvent: mol/kg

Osmolarity is a measure of the number of moles of solute that contribute to a solutions osmotic pressure per liter of solution: mol/L

Question: What is the osmolality of this drink?  Glucose : 4.0 wt%  Calcium lactate : 0.035 wt%  : 0.070 wt%  Ascorbic acid : 0.010 wt%  Citric acid : 0.20 wt%

Calculation of the solution in ELECSIS:  Drag the given components from the Database to the formulation field.  Fill in Fix amount the concentration for the ingredients. Check if all units are the same (wt%).  Press the Calculate button.  Go to Overall Equilibrium Results and look for Osmolality.

30 Version 5, December 2014

Osmolality: Practical work compared to ELECSIS calculations

Ingredient 1 2 3 4 5 Demi water 100.00% 96.00% 95.82% 95.59% 95.49% Glucose 4.00% 4.00% 4.00% 4.00% Potassium sorbate 0.02% Sodium benzoate 0.02% Sodium chloride 0.18% 0.18% 0.18% Sodium citrate 0.04% Ascorbic acid 0.02% Citric acid 0.23% 0.23% Total 100.00% 100.00% 100.00% 100.00% 100.00%

ELECSIS Osmolality 0 231 295 312 323 Measured Osmolality 0 233 293 313 325 ELECSIS pH 2.57 3.13 Measured pH 2.54 3.07

31 Version 5, December 2014

5.9. Titratable Acidity (=total acidity=TA)

The Titratable Acidity is used to indicate the sourness of a product • Products with the same pH are not per definition perceived as equally sour • Whereas products with the same TA do taste (more or less) equally sour

The difference between pH and TA: • pH is only a measure for the concentration free H+ ions • TA is a measure for all H+ -groups in the formulation; the free H+ -ions as well as the Hydrogen groups present in acids and partly dissociated acids

 Adjust the Setting  Select calculation tap  Check ”Always include titratable acidity in the calculation results”

32 Version 5, December 2014

Question 1: What is the titratable acidity of 1wt% citric acid?

TA determination with ELECSIS; Sum of all acids and acid forms of the species within the beverage. Calculation example: Values in table; dark blue times 3 (e.g. citric acid has 3H+ which can go into solution), middle bleu times 2 and light blue times 1) 0.0462*3 +0.0064*2+0.0064+0.00002=0.15 mol/kg water

The Titratable Acidity can also be calculated easily in ELECSIS. Question 2: The Titratable acidity for the following formulation is? Sodium lactate 1.0 wt% Citric acid 0.008 wt%

First calculate the pH and TA of a solution with only the citric acid, 0.008wt%.

33 Version 5, December 2014

Then calculate the pH and TA of a solution with both the sodium lactate as well as the citric acid.

In this case the addition of the sodium lactate to the formulation changes the concentration of H+, hence the pH, but the TA remains the same.

34 Version 5, December 2014

5.10. Influence the buffer system

A buffer solution is an consisting of a mixture of a weak acid and its conjugate base or a weak base and its conjugate acid. It has the property that the pH of the solution changes very little if a small amount of strong acid or base is added to it. The extent of the resistance against this pH change is called the buffer capacity. The buffer capacity is a critical parameter in many food products, as a fluctuating pH can have an adverse effect on flavor, color and microbiological stability.

The buffering capacity is expressed as the molarity of sodium hydroxide (NaOH) required increasing the pH by 1.0. Buffer solutions achieve their resistance to pH change because of the presence of the equilibrium between the acid, HA, and its conjugated base A-:

퐻퐴 ⇄ 퐻+ + 퐴−

Calculation example: The citric acid and the potassium citrate are needed for the buffer of this beverage

• Citric acid 0.5wt% • Sucrose 5.0wt% • Ascorbic acid 0.25wt% • Potassium citrate 0.19wt%

Calculation of the solution in ELECSIS:  Drag the given components from the Database to the formulation field.  Fill in Fix amount the concentration for the ingredients. Check if all units are the same (wt%).  Press the Calculate button.

ELECSIS calculates that the pH of this beverage is 3.11 (formulation without calcium lactate).

We know that addition of calcium lactate will increase the pH of beverages. To the formulation 7.5 mg Ca/100ml in the form of calcium lactate is added, i.e. 0.053wt% calcium lactate

ELECSIS calculates that the pH increases from 3.11 to 3.23. 35 Version 5, December 2014

For beverages it can be important to adjust the pH to a certain level to for ensure microbiological stability. Therefore pH adjustment after calcium lactate fortification must be performed. The options are:  Increase the amount of citric acid  Decrease amount of buffering salt

By increasing the amount of citric acid to 0.62wt% instead of 0.50wt% the pH drops to 3.11 again. The TA increases from 0.0964 to 0.1165 mol/kg water, indicating the sourness of the beverages increases.

36 Version 5, December 2014

Reducing the amount of potassium citrate from 0.19wt% to 0.14wt% will result in a pH of 3.11 as well. TA remains 0.0966 mol/kg water.

Summary of the Titratable Acidity of the formulations. TA provides an indication of the sourness of the beverage.

Component Reference calculation 1 calculation 2 calculation 3 citric acid 0.5 0.5 0.63 0.5 calcium lactate 0.053 0.053 0.053 sucrose 5.0 5.0 5.0 5.0 ascorbic acid 0.25 0.25 0.25 0.25 potassium citrate 0.19 0.19 0.19 0.14 pH 3.11 3.23 3.11 3.11 TA 0.0964 0.0966 0.1165 0.0966

In this case, reducing the amount of potassium citrate results in a solution with the same pH and TA (~sourness) as the reference solution without calcium lactate.

37 Version 5, December 2014

5.11. Carbonation of a beverage

Carbonation levels in Carbonated Soft Drinks are measured in terms of CO2 gas volumes. The gas volume of a beverage is calculated from its temperature and pressure relationship. A gas volume chart is required, see table below, for determining the amount of gas per volume, g/l.

Amount of CO2 in water (g/l)

CO2 in water (g/L) Temp Pressure (bar) (ºC) 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 3,0 1,0 3,5 3,8 4,1 4,5 4,8 5,1 5,4 5,7 6,0 6,3 6,7 7,0 7,3 7,6 7,9 8,2 8,5 8,9 9,2 9,5 9,8 10,1 10,4 10,7 11,1 11,4 11,7 12,0 12,3 12,6 1,5 3,5 3,8 4,1 4,4 4,7 5,0 5,3 5,6 5,9 6,2 6,6 6,9 7,2 7,5 7,8 8,1 8,4 8,7 9,0 9,3 9,6 10,0 10,3 10,6 10,9 11,2 11,5 11,8 12,1 12,4 2,0 3,4 3,7 4,0 4,3 4,6 4,9 5,2 5,5 5,8 6,1 6,4 6,7 7,1 7,4 7,7 8,0 8,3 8,6 8,9 9,2 9,5 9,8 10,1 10,4 10,7 11,0 11,3 11,6 11,9 12,2 2,5 3,3 3,6 3,9 4,2 4,5 4,8 5,1 5,4 5,7 6,0 6,3 6,6 6,9 7,2 7,5 7,8 8,1 8,4 8,7 9,0 9,3 9,6 9,9 10,2 10,5 10,8 11,1 11,4 11,7 12,0 3,0 3,3 3,6 3,9 4,2 4,5 4,8 5,1 5,4 5,6 5,9 6,2 6,5 6,8 7,1 7,4 7,7 8,0 8,3 8,6 8,9 9,2 9,5 9,8 10,1 10,4 10,7 10,9 11,2 11,5 11,8 3,5 3,2 3,5 3,8 4,1 4,4 4,7 5,0 5,3 5,6 5,8 6,1 6,4 6,7 7,0 7,3 7,6 7,9 8,2 8,5 8,7 9,0 9,3 9,6 9,9 10,2 10,5 10,8 11,1 11,3 11,6 4,0 3,2 3,5 3,8 4,0 4,3 4,6 4,9 5,2 5,5 5,8 6,0 6,3 6,6 6,9 7,2 7,5 7,7 8,0 8,3 8,6 8,9 9,2 9,5 9,7 10,0 10,3 10,6 10,9 11,2 11,4 4,5 3,1 3,4 3,7 4,0 4,3 4,5 4,8 5,1 5,4 5,7 5,9 6,2 6,5 6,8 7,1 7,3 7,6 7,9 8,2 8,5 8,7 9,0 9,3 9,6 9,9 10,1 10,4 10,7 11,0 11,3 5,0 3,1 3,4 3,6 3,9 4,2 4,5 4,7 5,0 5,3 5,6 5,8 6,1 6,4 6,7 6,9 7,2 7,5 7,8 8,0 8,3 8,6 8,9 9,1 9,4 9,7 10,0 10,3 10,5 10,8 11,1 5,5 3,0 3,3 3,6 3,8 4,1 4,4 4,7 4,9 5,2 5,5 5,7 6,0 6,3 6,6 6,8 7,1 7,4 7,6 7,9 8,2 8,5 8,7 9,0 9,3 9,5 9,8 10,1 10,4 10,6 10,9 6,0 3,0 3,3 3,5 3,8 4,1 4,3 4,6 4,9 5,1 5,4 5,7 5,9 6,2 6,5 6,7 7,0 7,3 7,5 7,8 8,1 8,3 8,6 8,9 9,1 9,4 9,7 9,9 10,2 10,5 10,7 6,5 2,9 3,2 3,5 3,7 4,0 4,2 4,5 4,8 5,0 5,3 5,6 5,8 6,1 6,3 6,6 6,9 7,1 7,4 7,7 7,9 8,2 8,4 8,7 9,0 9,2 9,5 9,8 10,0 10,3 10,5 7,0 2,9 3,1 3,4 3,7 3,9 4,2 4,4 4,7 5,0 5,2 5,5 5,7 6,0 6,2 6,5 6,8 7,0 7,3 7,5 7,8 8,1 8,3 8,6 8,8 9,1 9,3 9,6 9,9 10,1 10,4 7,5 2,8 3,1 3,3 3,6 3,9 4,1 4,4 4,6 4,9 5,1 5,4 5,6 5,9 6,1 6,4 6,7 6,9 7,2 7,4 7,7 7,9 8,2 8,4 8,7 8,9 9,2 9,4 9,7 10,0 10,2 8,0 2,8 3,0 3,3 3,5 3,8 4,0 4,3 4,5 4,8 5,0 5,3 5,5 5,8 6,0 6,3 6,5 6,8 7,0 7,3 7,5 7,8 8,0 8,3 8,5 8,8 9,0 9,3 9,5 9,8 10,0 8,5 2,8 3,0 3,2 3,5 3,7 4,0 4,2 4,5 4,7 5,0 5,2 5,5 5,7 5,9 6,2 6,4 6,7 6,9 7,2 7,4 7,7 7,9 8,2 8,4 8,6 8,9 9,1 9,4 9,6 9,9 9,0 2,7 2,9 3,2 3,4 3,7 3,9 4,2 4,4 4,6 4,9 5,1 5,4 5,6 5,8 6,1 6,3 6,6 6,8 7,1 7,3 7,5 7,8 8,0 8,3 8,5 8,8 9,0 9,2 9,5 9,7 9,5 2,7 2,9 3,1 3,4 3,6 3,9 4,1 4,3 4,6 4,8 5,0 5,3 5,5 5,8 6,0 6,2 6,5 6,7 6,9 7,2 7,4 7,7 7,9 8,1 8,4 8,6 8,8 9,1 9,3 9,6 10,0 2,6 2,9 3,1 3,3 3,6 3,8 4,0 4,3 4,5 4,7 5,0 5,2 5,4 5,7 5,9 6,1 6,4 6,6 6,8 7,1 7,3 7,5 7,8 8,0 8,2 8,5 8,7 8,9 9,2 9,4 10,5 2,6 2,8 3,0 3,3 3,5 3,7 4,0 4,2 4,4 4,6 4,9 5,1 5,3 5,6 5,8 6,0 6,3 6,5 6,7 6,9 7,2 7,4 7,6 7,9 8,1 8,3 8,6 8,8 9,0 9,3 11,0 2,5 2,8 3,0 3,2 3,4 3,7 3,9 4,1 4,3 4,6 4,8 5,0 5,3 5,5 5,7 5,9 6,2 6,4 6,6 6,8 7,1 7,3 7,5 7,7 8,0 8,2 8,4 8,6 8,9 9,1 11,5 2,5 2,7 2,9 3,2 3,4 3,6 3,8 4,1 4,3 4,5 4,7 4,9 5,2 5,4 5,6 5,8 6,1 6,3 6,5 6,7 6,9 7,2 7,4 7,6 7,8 8,1 8,3 8,5 8,7 9,0 12,0 2,5 2,7 2,9 3,1 3,3 3,5 3,8 4,0 4,2 4,4 4,6 4,9 5,1 5,3 5,5 5,7 6,0 6,2 6,4 6,6 6,8 7,1 7,3 7,5 7,7 7,9 8,2 8,4 8,6 8,8 12,5 2,4 2,6 2,8 3,1 3,3 3,5 3,7 3,9 4,1 4,4 4,6 4,8 5,0 5,2 5,4 5,6 5,9 6,1 6,3 6,5 6,7 6,9 7,2 7,4 7,6 7,8 8,0 8,2 8,4 8,7 13,0 2,4 2,6 2,8 3,0 3,2 3,4 3,6 3,9 4,1 4,3 4,5 4,7 4,9 5,1 5,3 5,6 5,8 6,0 6,2 6,4 6,6 6,8 7,0 7,3 7,5 7,7 7,9 8,1 8,3 8,5 13,5 2,3 2,5 2,8 3,0 3,2 3,4 3,6 3,8 4,0 4,2 4,4 4,6 4,8 5,0 5,3 5,5 5,7 5,9 6,1 6,3 6,5 6,7 6,9 7,1 7,3 7,6 7,8 8,0 8,2 8,4 14,0 2,3 2,5 2,7 2,9 3,1 3,3 3,5 3,7 3,9 4,1 4,3 4,6 4,8 5,0 5,2 5,4 5,6 5,8 6,0 6,2 6,4 6,6 6,8 7,0 7,2 7,4 7,6 7,8 8,0 8,2 14,5 2,3 2,5 2,7 2,9 3,1 3,3 3,5 3,7 3,9 4,1 4,3 4,5 4,7 4,9 5,1 5,3 5,5 5,7 5,9 6,1 6,3 6,5 6,7 6,9 7,1 7,3 7,5 7,7 7,9 8,1 15,0 2,2 2,4 2,6 2,8 3,0 3,2 3,4 3,6 3,8 4,0 4,2 4,4 4,6 4,8 5,0 5,2 5,4 5,6 5,8 6,0 6,2 6,4 6,6 6,8 7,0 7,2 7,4 7,6 7,8 8,0 15,5 2,2 2,4 2,6 2,8 3,0 3,2 3,4 3,6 3,8 3,9 4,1 4,3 4,5 4,7 4,9 5,1 5,3 5,5 5,7 5,9 6,1 6,3 6,5 6,7 6,9 7,1 7,3 7,5 7,7 7,9 16,0 2,2 2,3 2,5 2,7 2,9 3,1 3,3 3,5 3,7 3,9 4,1 4,3 4,5 4,7 4,8 5,0 5,2 5,4 5,6 5,8 6,0 6,2 6,4 6,6 6,8 7,0 7,1 7,3 7,5 7,7 16,5 2,1 2,3 2,5 2,7 2,9 3,1 3,3 3,4 3,6 3,8 4,0 4,2 4,4 4,6 4,8 5,0 5,1 5,3 5,5 5,7 5,9 6,1 6,3 6,5 6,7 6,8 7,0 7,2 7,4 7,6 17,0 2,1 2,3 2,5 2,6 2,8 3,0 3,2 3,4 3,6 3,8 3,9 4,1 4,3 4,5 4,7 4,9 5,1 5,2 5,4 5,6 5,8 6,0 6,2 6,4 6,5 6,7 6,9 7,1 7,3 7,5 17,5 2,0 2,2 2,4 2,6 2,8 3,0 3,1 3,3 3,5 3,7 3,9 4,1 4,2 4,4 4,6 4,8 5,0 5,2 5,3 5,5 5,7 5,9 6,1 6,3 6,4 6,6 6,8 7,0 7,2 7,4 18,0 2,0 2,2 2,4 2,6 2,7 2,9 3,1 3,3 3,5 3,6 3,8 4,0 4,2 4,4 4,5 4,7 4,9 5,1 5,3 5,4 5,6 5,8 6,0 6,2 6,3 6,5 6,7 6,9 7,1 7,2 18,5 2,0 2,2 2,3 2,5 2,7 2,9 3,0 3,2 3,4 3,6 3,8 3,9 4,1 4,3 4,5 4,6 4,8 5,0 5,2 5,3 5,5 5,7 5,9 6,1 6,2 6,4 6,6 6,8 6,9 7,1 19,0 1,9 2,1 2,3 2,5 2,6 2,8 3,0 3,2 3,3 3,5 3,7 383,9 4,0 4,2 4,4 4,6 4,7 4,9 5,1Version5,3 55,4, December5,6 5,8 6,020146,1 6,3 6,5 6,7 6,8 7,0 19,5 1,9 2,1 2,3 2,4 2,6 2,8 2,9 3,1 3,3 3,5 3,6 3,8 4,0 4,1 4,3 4,5 4,7 4,8 5,0 5,2 5,3 5,5 5,7 5,9 6,0 6,2 6,4 6,5 6,7 6,9 20,0 1,9 2,1 2,2 2,4 2,6 2,7 2,9 3,1 3,2 3,4 3,6 3,7 3,9 4,1 4,2 4,4 4,6 4,8 4,9 5,1 5,3 5,4 5,6 5,8 5,9 6,1 6,3 6,4 6,6 6,8

Questions:

1. What are the parameters of the formulation without CO2 2. How much CO2 should be added to reach 8g/l at 20°C and 2.2 bar? 3. What is the effect of CO2 on the parameters of a soft drink formulation?

Calculation of the solution in ELECSIS, question 1:  Add ingredients and amounts as indicated by table below, into ELECSIS

ingredients Without CO2 Carbon dioxide 0.00 Citric acid 0.33 Calcium lactate 0.76 Sodium benzoate 0.0075 Sodium citrate 0.004 Sucrose 9 Temperature 20°C

 Set temperature on 20°C (68F, 293.15K)  Calculate the properties of the formulation

39 Version 5, December 2014

Calculation of the solution in ELECSIS, question 2  Make sure the pressure can be calculated, by o Go to Settings in the quick menu

o Go to the Calculation tab. o Deselect Ignore gas phase if present.

40 Version 5, December 2014

 For Carbon dioxide selected calculate amount select fix pressure at, fill in 2.2 bar.

 Press Calculate  Go to results in new browser tap and look in composition field for carbon dioxide for the concentration.

41 Version 5, December 2014

Calculation of the solution in ELECSIS, question 3

The addition of CO2 has impact on the parameters of the formulation, see table below. In the Equilibrium components field, a Gas phase appears.

42 Version 5, December 2014

6. Other applications

6.12. General brine for ham production Will there be a precipitation in this brine? Ingredients % in brine

Water 71.6 Sodium tri poly phosphate 1 Sodium chloride 8.4 Potassium lactate 14 Glucose 5 Total 100.00

Calculation of the solution in ELECSIS:  Drag the given components from the Database to the formulation field.  Fill in Fix amount the concentration for the ingredients. Check if all units are the same (wt%).  Press the Calculate button.  The number is very small, there will be no sedimentation

43 Version 5, December 2014

6.13. Asian sauce

How can the water activity, aw, from the low salt soy sauce be decreased to a level that is the same as normal soy sauce? component Normal Low salt formic acid 0.10 0.39 acetic acid 0.15 0.46 lactic acid 0.44 0.48 succinic acid 0.05 0.05 sucrose (carbohydrates) 8.0 8.0 sodium Chloride 16.4 10 potassium lactate ?

Calculated aw 0.828 0.889

Calculation of the solution in ELECSIS:  Drag the given components from the Database of the normal formulation to the formulation field.  Fill in Fix amount the concentration for the ingredients. Check if all units are the same (wt%).  Press the Calculate button.

Reducing the sodium chloride from 16.4wt% to 10wt%. The aw increases from 0.828 to 0.889.

44 Version 5, December 2014

The aw will decrease by the addition of potassium lactate. ELECSIS calculates how much potassium lactate is need to reach the aw of 0.828.

 Select potassium lactate,  Select calculate amount,  Select fix aw at,

 Put in the aw which number you want to achieve: 0.828  Save,  Click Calculate.

45 Version 5, December 2014

The results show that 13.76 wt% sodium lactate is needed to lower the aw to 0.828

Both of the aw ’s calculated were higher than measured, the measured values were X and Y. This higher calculated aw can occur due to:

 Carbohydrates, in ELECSIS filled in as sucrose  The proteins, which cannot be filled in Corbion ELECSIS

13.76% Potassium lactate (100%) is needed to decrease the aw from 0.889 to 0.828.

46 Version 5, December 2014

7. Tips & Tricks  Neglect polymers and fats and calculate concentrations of electrolytes and sugars on aqueous phase: o 5 wt% sugar in a 30 wt% oil based formulation = 7.1 wt% sugar in the aqueous phase  The sourness (taste) of a product is determined by Titratable Acidity rather than pH.  Save your calculations in an Excel file.

Regarding Brix Corbion takes as a role that °B equals the wt% of sugars ELECSIS calculation. In other words; One degree Brix is, 1 gram of sucrose in 100 grams of solution and represents the strength of the solution as percentage by mass. If the solution contains dissolved solids other than pure sucrose, then the °B only approximates the dissolved solid content.

Temperature conversion, K, F and °C http://www.onlineconversion.com/temperature.htm

47 Version 5, December 2014

8. Background information about the model Most foods are for the major part an aqueous phase. This means that the characteristics of these foods, such as pH, buffer capacity, stability (salt precipitation) and titratable acidity (taste perception) are mainly depicted by ionic chemical species (electrolytes). These aqueous electrolytes may include acids, bases, salts, or amphoteres (species that have both basic and acidic properties). Moreover, these electrolytes can either be weak or strong. A strong electrolyte fully dissociates into its constituent ions (e.g. NaCl  Na+ + Cl-). The association/dissociation behavior of a weak electrolyte can be described with an equilibrium reaction. The direction of this reaction is determined by a temperature dependent equilibrium constant. The Corbion database contains (temperature dependent) equilibrium constants and other physical properties for most electrolytes that are commonly used in the food industry.

In order to describe the chemical equilibria of such aqueous electrolyte mixtures, a mathematical model can be set up. Such models include equations for mass balances, ionic equilibria, precipitation reactions, G-excess models, electro-neutrality, equations for calculating parameters such as ionic strength and unit conversions.

All association and dissociation reactions (equilibria) in our models are described on an activity basis. Also precipitation of salts is described with an activity based solubility product. Activities and activity coefficients are a/o used to correct for the non-ideal behavior caused by electrostatic interactions.

Depending on the selected components (beverage composition) and the initial concentrations, mathematical models are generated automatically that describe the equilibrium situations. These models are then solved by a solver that was developed specifically for solving large sets of strongly non-linear, algebraic equations. The number of model equations can become very large, even with only a limited number of dissociating species. For example, a beverage consisting of only glucose, lactic acid, and sodium citrate results will yield a model consisting of 83 non-linear equations that need to be solved simultaneously.

48 Version 5, December 2014

9. Contact information For questions about ELECSIS calculations you can contact your local Corbion contact.

49 Version 5, December 2014

10. Notes

50 Version 5, December 2014