Chlorthalidone Is Superior to Potassium Citrate in Reducing Calcium Phosphate Stones and Increasing Bone Quality in Hypercalciuric Stone-Forming Rats

Total Page:16

File Type:pdf, Size:1020Kb

Chlorthalidone Is Superior to Potassium Citrate in Reducing Calcium Phosphate Stones and Increasing Bone Quality in Hypercalciuric Stone-Forming Rats BASIC RESEARCH www.jasn.org Chlorthalidone Is Superior to Potassium Citrate in Reducing Calcium Phosphate Stones and Increasing Bone Quality in Hypercalciuric Stone-Forming Rats Nancy S. Krieger,1 John R. Asplin,2 Ignacio Granja,2 Felix M. Ramos,1 Courtney Flotteron,1 Luojing Chen,1 Tong Tong Wu,3 Marc D. Grynpas,4 and David A. Bushinsky1 1Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; 2Litholink Corporation, Laboratory Corporation of America Holdings, Chicago, Illinois; 3Department of Biostatistics and Computational Biology, University of Rochester School of Medicine, Rochester, New York; and 4Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada ABSTRACT Background The pathophysiology of genetic hypercalciuric stone-forming rats parallels that of human idiopathic hypercalciuria. In this model, all animals form calcium phosphate stones. We previously found that chlorthalidone, but not potassium citrate, decreased stone formation in these rats. Methods To test whether chlorthalidone and potassium citrate combined would reduce calcium phos- BASIC RESEARCH phate stone formation more than either medication alone, four groups of rats were fed a fixed amount of a normal calcium and phosphorus diet, supplemented with potassium chloride (as control), potassium citrate, chlorthalidone (with potassium chloride to equalize potassium intake), or potassium citrate plus chlorthalidone. We measured urine every 6 weeks and assessed stone formation and bone quality at 18 weeks. Results Potassium citrate reduced urine calcium compared with controls, chlorthalidone reduced it fur- ther, and potassium citrate plus chlorthalidone reduced it even more. Chlorthalidone increased urine citrate and potassium citrate increased it even more; the combination did not increase it further. Potassium citrate, alone or with chlorthalidone, increased urine calcium phosphate supersaturation, but chlorthali- done did not. All control rats formed stones. Potassium citrate did not alter stone formation. No stones formed with chlorthalidone, and rats given potassium citrate plus chlorthalidone had some stones but fewer than controls. Rats given chlorthalidone with or without potassium citrate had higher bone mineral density and better mechanical properties than controls, whereas those given potassium citrate did not. Conclusions In genetic hypercalciuric stone-forming rats, chlorthalidone is superior to potassium citrate alone or combined with chlorthalidone in reducing calcium phosphate stone formation and improving bone quality. JASN 30: 1163–1173, 2019. doi: https://doi.org/10.1681/ASN.2018101066 Idiopathic hypercalciuria (IH), an excess of urinary calcium (Ca) without a demonstrable metabolic cause, is the most common metabolic abnormality Received October 31, 2018. Accepted March 14, 2019. 1–3 in patients who form Ca-based kidney stones. Published online ahead of print. Publication date available at Elevated levels of urinary Ca increase the probabil- www.jasn.org. ity for nucleation and growth of calcium oxalate Correspondence: Dr. Nancy S. Krieger, Division of Nephrology, (CaOx) or calcium hydrogen phosphate (brushite) Department of Medicine, University of Rochester School of crystals into clinically significant kidney stones.4 Medicine and Dentistry, 601 Elmwood Avenue, Box 675, Ro- Patients with IH generally have normal serum Ca, chester, NY 14642. Email: [email protected] normal or elevated serum 1,25–dihydroxyvitamin Copyright © 2019 by the American Society of Nephrology JASN 30: 1163–1173, 2019 ISSN : 1046-6673/3007-1163 1163 BASIC RESEARCH www.jasn.org D , normal or elevated serum parathyroid hormone, and low 3 Significance Statement bone mineral density (BMD).4,5 IH exhibits a polygenic mode of inheritance.3,6,7 Genetic hypercalciuric stone-forming rats, which universally and To study this disorder we generated a strain of rats, the spontaneously form calcium phosphate stones, have a pathophys- genetic hypercalciuric stone-forming (GHS) rats to model hu- iology resembling that of human idiopathic hypercalciuria. The authors previously demonstrated that chlorthalidone, but not po- man IH. Selectively inbred for over 111 generations, GHS rats tassium citrate, decreased stone formation in this rat model. In this excrete approximately ten times the normal urine Ca of their study, they investigated whether chlorthalidone and potassium parent Sprague–Dawley rats.8,9 When fed a normal Ca diet, citrate combined would reduce calcium phosphate stone formation all form calcium phosphate (CaP) kidney stones.10 We have more than either medication alone. They found that chlorthalidone shownthathypercalciuriainGHSratsispolygenic.11,12 was more effective than potassium citrate alone or combined with chlorthalidone in reducing stone formation and increasing me- Like patients with IH, these rats have increased intestinal chanical strength and bone quality. However, replication of these Ca absorption,10,13 decreased renal Ca reabsorption,14 findings in patients with nephrolithiasis is needed before concluding and increased bone resorption,15 leading to increased urine that chlorthalidone alone is more efficacious in this regard than Ca excretion and CaP stone formation10,16,17 as well as a de- potassium citrate alone or in combination with chlorthalidone. 18,19 crease in BMD. Serum 1,25-dihydroxyvitamin D3 levels 13,20,21 are normal. imaging in a Faxitron. Femurs, humeri, tibiae, and vertebral Two important strategies that are used to decrease recurrent columns were harvested and prepared for BMD, histologic stone formation in humans are the use of potassium citrate studies, and mechanical testing. The University of Rochester 22,23 (KCit) or thiazide diuretics, alone or in combination. In Committee for Animal Resources approved all procedures. humans both KCit and thiazides alone have been shown to decrease stone formation24; however, there is a paucity of Urine and Serum Chemistries data directly comparing the efficacy of these two medications Urine Ca, magnesium, phosphorus, ammonium, and creati- in combination to prevent recurrent stone formation. We nine were measured spectrophotometrically using a Beckman have previously shown that giving GHS rats thiazides (specif- AU autoanalyzer (Beckman Coulter, Brea, CA). Urine potas- ically chlorthalidone [CTD]) decreases urine Ca, reduces sium, chloride, and sodium were measured by ion-specific urine CaP supersaturation, and decreases stone formation.25 electrodes on the Beckman AU and urine pH using a glass We also found that CTD improves BMD and bone quality in electrode. Urine citrate, oxalate, and sulfate were measured GHS rats.26 In a separate study we observed that giving by ion chromatography using a Dionex ICS 2000 system GHS rats KCit also decreases urine Ca, but increases CaP su- (Dionex Corp., Sunnyvale, CA). Oxalate was measured enzy- persaturation and does not decrease stone formation.27 In this matically using oxalate oxidase. All urine solutes were mea- study, we tested the hypothesis that CTD and KCit combined sured at 6, 12, and 18 weeks and a mean value for each time would more effectively reduce CaP stone formation and im- period as well as an overall mean was calculated. Serum Ca and prove BMD and bone quality in GHS rats than either treat- phosphorus were determined colorimetrically (BioVision, ment alone. Milpitas,CA).SerumparathyroidhormoneandReceptor activator of NF-kB ligand were determined by enzyme im- munoassay (Immutopics, San Clemente, CA and R&D Sys- METHODS tems, Minneapolis, MN). All of these methods have been used previously.16,26–30 Study Protocol Three-month-old GHS rats from the 111th generation were Urine Supersaturation randomly divided into four groups (each n=10) and housed Urine supersaturation with respect to CaOx and CaP solid individually in metabolic cages. All rats were fed a fixed phases were calculated from solute measurements using the amount of a normal Ca (1.2% Ca) and phosphorus computer program EQUIL2,31 as we have done previ- (0.65%) diet, supplemented with either potassium chloride ously.10,27,30,32–34 (4 mmol/d), KCit (4 mmol/d), CTD (1.25 mg/d) plus potas- sium chloride (to keep potassium intake constant), or KCit plus Kidney Stone Formation CTD, and had free access to deionized, distilled water. At weeks Kidneys and ureters were removed from each rat en bloc, fro- 6, 12, and 18, each rat was weighed and 24-hour urine was zen, and imaged in a Faxitron radiography device (Tucson, collected over 4 days, with two collections in thymol for pH, AZ) to determine extent of kidney stone formation. Three uric acid, and chloride, and two collections in hydrogen chlo- observers blinded to treatment scored all radiographs on a ride for all other measurements. Each rat received an intraper- scale ranging from 0 (no stones) to 4 (extensive stones). itoneal injection of 1% calcein green at 10 and 2 days before being euthanized for dynamic histomorphometry. At 18 weeks, Dual-Energy X-Ray Absorptiometry rats were euthanized and blood was collected via cardiac punc- Dual-energy x-ray absorptiometry with a Lunar PIXImus Bone ture. Kidneys, ureters, and bladders were removed for x-ray Densitometer (Lunar GE, Mississauga, Canada) was used to 1164 JASN JASN 30: 1163–1173, 2019 www.jasn.org BASIC RESEARCH determine tissue density and mineral content. The areal BMD, Biomechanical Properties bone mineral content, and bone area were measured. Biomechanics of femurs
Recommended publications
  • Bleach Plant Scale Control Best Practices to Minimize Barium Sulfate and Calcium Oxalate Scale, Down Time and Cost
    Bleach Plant Scale Control Best Practices to Minimize Barium Sulfate and Calcium Oxalate Scale, Down Time and Cost Michael Wang, Ph.D. Solenis LLC, [email protected] Scott Boutilier, P.Eng. Solenis LLC ABSTRACT Chlorine dioxide used as a delignification agent in the first stage (D0) of a bleach plant is a common practice in North America. Compared to a conventional chlorination stage, using chlorine dioxide at the D0 stage requires a relatively high pH (2.5 – 4.5) to achieve maximum delignification and bleaching efficiency. These operating conditions often result in an increased risk of developing either barium sulphate and/or calcium oxalate scale, depending on the operating pH range. This can lead to significant production losses, extra maintenance costs, high bleaching chemical costs and quality issues. Through process modification, many mills are able to reduce or eliminate calcium oxalate scale formation by running the D0 stage at a relatively low pH. These same mills incur higher costs though as a result of higher acid and caustic costs. For mills with higher barium levels, lowering the pH in the first chlorine dioxide (D0) stage will also increase the risk of barium sulphate scale, particularly if the mill uses spent acid from chlorine dioxide generation. For mills having limited water supply or using water with high hardness, calcium oxalate issues can be even more problematic when those mills operate at the higher end of the pH range (3.5 – 4.5). This paper will discuss how several mills have improved their bleach operation efficiency, reduced down time and decreased maintenance costs with a scale control program that manages both barium sulphate and calcium oxalate scale.
    [Show full text]
  • Educate Your Patients About Kidney Stones a REFERENCE GUIDE for HEALTHCARE PROFESSIONALS
    Educate Your Patients about Kidney Stones A REFERENCE GUIDE FOR HEALTHCARE PROFESSIONALS Kidney stones Kidney stones can be a serious problem. A kidney stone is a hard object that is made from chemicals in the urine. There are five types of kidney stones: Calcium oxalate: Most common, created when calcium combines with oxalate in the urine. Calcium phosphate: Can be associated with hyperparathyroidism and renal tubular acidosis. Uric acid: Can be associated with a diet high in animal protein. Struvite: Less common, caused by infections in the upper urinary tract. Cystine: Rare and tend to run in families with a history of cystinuria. People who had a kidney stone are at higher risk of having another stone. Kidney stones may also increase the risk of kidney disease. Symptoms A stone that is small enough can pass through the ureter with no symptoms. However, if the stone is large enough, it may stay in the kidney or travel down the urinary tract into the ureter. Stones that don’t move may cause significant pain, urinary outflow obstruction, or other health problems. Possible symptoms include severe pain on either side of the lower back, more vague pain or stomach ache that doesn’t go away, blood in the urine, nausea or vomiting, fever and chills, or urine that smells bad or looks cloudy. Speak with a healthcare professional if you feel any of these symptoms. Risk factors Risk factors can include a family or personal history of kidney stones, diets high in protein, salt, or sugar, obesity, or digestive diseases or surgeries.
    [Show full text]
  • Potassium-Magnesium Citrate Is an Effective Prophylaxis Against Recurrent Calcium Oxalate Nephrolithiasis
    0022-5347/97/1586-2069$03.00/0 JOURNAL OF UROLOGY Vol. 158,2069-2073, December 1997 Copyright Q 1997 by AMERICANUROLOGICAL ASS~CIATION, INC. Printed in U.S.A. POTASSIUM-MAGNESIUM CITRATE IS AN EFFECTIVE PROPHYLAXIS AGAINST RECURRENT CALCIUM OXALATE NEPHROLITHIASIS BRUCE ETTINGER,* CHARLES Y. C. PAK, JOHN T. CITRON, CARL THOMAS, BEVERLEY ADAMS-HIJET AND ARLINE VANGESSEL From the Diuision of Research, Kaiser Permanente Medical Care Program, Oakland, California, the Department of Mineral Metabolism, Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, Department of Medicine, Kaiser Permanente Medical Center, Walnut Creek, California, Department of Urology, Kaiser Permanente Medical Center, San Francisco, California, and Kaiser Foundation Research Institute, Kaiser Foundation Hospitals, Oakland, California ABSTRACT Purpose: We examined the efficacy of potassium-magnesium citrate in preventing recurrent calcium oxalate kidney calculi. Materials and Methods: We conducted a prospective double-blind study of 64 patients who were randomly assigned to receive placebo or potassium-magnesium citrate (42 mEq. potassium, 21 mEq. magnesium, and 63 mEq. citrate) daily for up to 3 years. Results. New calculi formed in 63.6%of subjects receiving placebo and in 12.9%of subjects receiving potassium-magnesiumcitrate. When compared with placebo, the relative risk of treat- ment failure for potassium-magnesium citrate was 0.16 (95%confidence interval 0.05 to 0.46). potassium-magnesium citrate had a statistically significant effect (relative risk 0.10,95%confi- dence interval 0.03 to 0.36) even after adjustment for possible confounders, including age, pretreatment calculous event rate and urinary biochemical abnormalities.
    [Show full text]
  • Electro-Activation of Potassium Acetate, Potassium Citrate and Calcium
    Liato et al. SpringerPlus (2016) 5:1760 DOI 10.1186/s40064-016-3453-1 RESEARCH Open Access Electro‑activation of potassium acetate, potassium citrate and calcium lactate: impact on solution acidity, Redox potential, vibrational properties of Raman spectra and antibacterial activity on E. coli O157:H7 at ambient temperature Viacheslav Liato1,2, Steve Labrie1,3 and Mohammed Aïder1,2,4* *Correspondence: [email protected] Abstract 1 Institute of Nutrition and Functional Foods (INAF), Aims: To study the electro-activation of potassium acetate, potassium citrate and Université Laval, Quebec, QC calcium lactate aqueous solutions and to evaluate their antimicrobial effect against E. G1V 0A6, Canada coli O157:H7 at ambient temperature. Full list of author information is available at the end of the Methods and results: Potassium acetate, potassium citrate and calcium lactate aque- article ous solutions were electrically excited in the anodic compartment of a four sectional electro-activation reactor. Different properties of the electro-activated solutions were measured such as: solutions acidity (pH and titratable), Redox potential and vibrational properties by Raman spectroscopy. Moreover, the antimicrobial activity of these solu- tions was evaluated against E. coli O157:H7. The results showed a pH decrease from 7.07 0.08, 7.53 0.12 and 6.18 0.1 down to 2.82 0.1, 2.13 0.09 and 2.26 0.15, after ±180 min of electro-activation± ± of potassium acetate,± potassium± citrate and calcium± lactate solution, respectively. These solutions were characterized by high oxidative ORP of 1076 12, 958 11 and 820 14 mV, respectively.
    [Show full text]
  • Reflections on Dentifrice Ingredients, Benefits and Recommendations a Peer-Reviewed Publication Written by Fiona M
    Earn 4 CE credits This course was written for dentists, dental hygienists, and assistants. Reflections on Dentifrice Ingredients, Benefits and Recommendations A Peer-Reviewed Publication Written by Fiona M. Collins, BDS, MBA, MA This course has been made possible through an unrestricted educational grant from Colgate-Palmolive, Co. The cost of this CE course is $59.00 for 4 CE credits. Cancellation/Refund Policy: Any participant who is not 100% satisfied with this course can request a full refund by contacting PennWell in writing. Educational Objectives dentifrice use. Recommendations should be based on an The overall goal of this article is to provide dental profession- individual patient’s specific needs and desires as well as the als with information on the active and inactive ingredients in scientific support for a dentifrice. Both the Food and Drug dentifrices and their benefits. Administration (FDA) and the American Dental Associa- Upon completion of this course, the clinician will be able tion (ADA) have played roles in controlling (FDA) and ac- to do the following: cepting (ADA) dentifrices. 1. List active ingredients in dentifrices and their therapeutic benefits. Dentifrice Ingredients 2. List inactive ingredients in dentifrices and their functions. Dentifrices contain both active and inactive ingredients. Ac- 3. Know the roles of the FDA and ADA with respect to tive ingredients are those that offer a therapeutic benefit, while over-the-counter dentifrices. inactive ingredients are non-therapeutic and also contribute 4. Understand the considerations involved and importance of to the physicochemical properties of the dentifrice – its feel, recommending OTC dentifrices for individual patients.
    [Show full text]
  • Thermogravimetric Analysis Advanced Techniques for Better Materials
    Thermogravimetric Analysis Advanced Techniques for Better Materials Characterisation Philip Davies TA Instruments UK TAINSTRUMENTS.COM Thermogravimetric Analysis •Change in a samples weight (increase or decrease) as a function of temperature (increasing) or time at a specific temperature. •Basic analysis would run a sample (~10mg) at 10 or 20°C/min •We may be interested in the quantification of the weight loss or gain, relative comparison of transition temperatures and quantification of residue. .These values generally represent the gravimetric factors we are interested in. Decomposition Temperature Volatile content Composition Filler Residue Soot …… TAINSTRUMENTS.COM Discovery TGA 55XX TAINSTRUMENTS.COM Discovery TGA 55XX Null Point Balance TAINSTRUMENTS.COM Vapour Sorption •Technique associated with TGA •Looking at the sorption and desorption of a vapour species on a material. •Generally think about water vapour (humidity) but can also look at solvent vapours or other gas species (eg CO, CO2, NOx, SOx) TAINSTRUMENTS.COM Vapour Sorption Systems TAINSTRUMENTS.COM Rubotherm – Magnetic Suspension Balance Allowing sorption studies at elevated pressures. Isolation of the balance means studies with corrosive gasses is much easier. TAINSTRUMENTS.COM Mechanisms of Weight Change in TGA •Weight Loss: .Decomposition: The breaking apart of chemical bonds. .Evaporation: The loss of volatiles with elevated temperature. .Reduction: Interaction of sample to a reducing atmosphere (hydrogen, ammonia, etc). .Desorption. •Weight Gain: .Oxidation:
    [Show full text]
  • Innovative Prolonged-Release Oral Alkalising Formulation
    www.nature.com/scientificreports OPEN Innovative prolonged‑release oral alkalising formulation allowing sustained urine pH increase with twice daily administration: randomised trial in healthy adults C. Guittet1, C. Roussel‑Maupetit1, M. A. Manso‑Silván 1, F. Guillaumin1, F. Vandenhende2 & L. A. Granier 1* A multi-particulate fxed-dose combination product, consisting of a combination of two alkalising salts formulated as prolonged-release granules, ADV7103, was developed to obtain a sustained and prolonged alkalising efect. The specifc release of both types of granules was shown in vitro through their dissolution profles, which indicated that potassium citrate was released within the frst 2–3 h and potassium bicarbonate up to 10–12 h after administration. The long-lasting coverage of ADV7103 was confrmed through a randomised, placebo-controlled, double-blind, two-period study, measuring its efect on urine pH in healthy adults (n = 16) at doses of alkalising agent ranging between 0.98 and 2.88 meq/kg/day. A signifcant increase of urine pH with a positive dose–response in healthy adult subjects was shown. Urine pH above 7 was maintained during 24 h with a dosing equivalent to 1.44 meq/kg twice a day, while urine pH was below 6 most of the time with placebo. The efect observed was non-saturating within the range of doses evaluated and the formulation presented a good safety profle. ADV7103 provided an efective prolonged release of alkalising salts to cover a 12-h efect with adequate tolerability and could aford a twice a day (morning and evening) dosing in patients requiring long-term treatment.
    [Show full text]
  • A Comprehensive Review on Kidney Stones, Its Diagnosis and Treatment with Allopathic and Ayurvedic Medicines
    Urology & Nephrology Open Access Journal Review Article Open Access A comprehensive review on kidney stones, its diagnosis and treatment with allopathic and ayurvedic medicines Abstract Volume 7 Issue 4 - 2019 Kidney stone is a major problem in India as well as in developing countries. The kidney 1 1 stone generally affected 10-12% of industrialized population. Most of the human beings Firoz Khan, Md Faheem Haider, Maneesh 1 1 2 develop kidney stone at later in their life. Kidney stones are the most commonly seen in Kumar Singh, Parul Sharma, Tinku Kumar, 3 both males and females. Obesity is one of the major risk factor for developing stones. Esmaeilli Nezhad Neda The common cause of kidney stones include the crystals of calcium oxalate, high level 1College of Medical Sciences, IIMT University, India 2 of uric acid and low amount of citrate in the body. A small reduction in urinary oxalate Department of Pharmacy, Shri Gopichand College of Pharmacy, has been found to be associated with significant reduction in the formation of calcium India 3 oxalate stones; hence, oxalate-rich foods like cucumber, green peppers, beetroot, spinach, Department of Medicinal Plants, Islamic Azad University of Bijnord, Iran soya bean, chocolate, rhubarb, popcorn, and sweet potato advised to avoid. Mostly kidney stone affect the parts of body like kidney ureters and urethra. More important, kidney stone Correspondence: Firoz Khan, Asst. Professor, M Pharm. is a recurrent disorder with life time recurrence risk reported to be as high as 50% by Pharmacology, IIMT University, Meerut, U.P- 250001, India, Tel +91- calcium oxalate crystals.
    [Show full text]
  • Methods for the Study of Calcium Oxalate Crystallisation and Their Application to Urolithiasis Research
    Scanning Microscopy Volume 6 Number 3 Article 6 8-12-1992 Methods for the Study of Calcium Oxalate Crystallisation and Their Application to Urolithiasis Research J. P. Kavanagh University Hospital of South Manchester Follow this and additional works at: https://digitalcommons.usu.edu/microscopy Part of the Biology Commons Recommended Citation Kavanagh, J. P. (1992) "Methods for the Study of Calcium Oxalate Crystallisation and Their Application to Urolithiasis Research," Scanning Microscopy: Vol. 6 : No. 3 , Article 6. Available at: https://digitalcommons.usu.edu/microscopy/vol6/iss3/6 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Scanning Microscopy by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Scanning Microscopy, Vol. 6, No. 3, 1992 (Pages 685-705) 0891-7035/92$5 .00 + .00 Scanning Microscopy International, Chicago (AMF O'Hare), IL 60666 USA METHODS FOR THE STUDY OF CALCIUM OXALATE CRYSTALLISATION AND THEIR APPLICATION TO UROLITHIASIS RESEARCH J.P. Kavanagh Department of Urology, University Hospital of South Manchester, Manchester, M20 SLR, UK Phone No.: 061-447-3189 (Received for publication March 30, 1992, and in revised form August 12, 1992) Abstract Introduction Many methods have been used to study calcium Many different methods have been used to study oxalate crystallisation. Most can be characterised by calcium oxalate crystallisation, some differing in changes in
    [Show full text]
  • Dietary Plants for the Prevention and Management of Kidney Stones: Preclinical and Clinical Evidence and Molecular Mechanisms
    International Journal of Molecular Sciences Review Dietary Plants for the Prevention and Management of Kidney Stones: Preclinical and Clinical Evidence and Molecular Mechanisms Mina Cheraghi Nirumand 1, Marziyeh Hajialyani 2, Roja Rahimi 3, Mohammad Hosein Farzaei 2,*, Stéphane Zingue 4,5 ID , Seyed Mohammad Nabavi 6 and Anupam Bishayee 7,* ID 1 Office of Persian Medicine, Ministry of Health and Medical Education, Tehran 1467664961, Iran; [email protected] 2 Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; [email protected] 3 Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran 1416663361, Iran; [email protected] 4 Department of Life and Earth Sciences, Higher Teachers’ Training College, University of Maroua, Maroua 55, Cameroon; [email protected] 5 Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaounde 812, Cameroon 6 Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran; [email protected] 7 Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA * Correspondence: [email protected] (M.H.F.); [email protected] or [email protected] (A.B.); Tel.: +98-831-427-6493 (M.H.F.); +1-305-760-7511 (A.B.) Received: 21 January 2018; Accepted: 25 February 2018; Published: 7 March 2018 Abstract: Kidney stones are one of the oldest known and common diseases in the urinary tract system. Various human studies have suggested that diets with a higher intake of vegetables and fruits play a role in the prevention of kidney stones. In this review, we have provided an overview of these dietary plants, their main chemical constituents, and their possible mechanisms of action.
    [Show full text]
  • Calcium Chloride
    Electrolytes Livestock 1 2 Identification of Petitioned Substance 3 4 Chemical Names (Compiled from commercial 44 Calcium propionate, propanoic acid, calcium salt 5 electrolyte formulations): 45 Ca(CH3.CH2.COO)2 6 Calcium chloride (10043-52-4) 46 Calcium oxide, lime CaO 7 Calcium borogluconate (5743-34-0) 47 Calcium sulfate, gypsum CaSO4 8 Calcium gluconate (299-28-5) 48 9 Calcium hypophosphite (7789-79-9) 49 Magnesium diborogluconate, Mg[(HO.CH2CH 10 Calcium lactate (814-80-2) 50 (HBO3)CH(CH.OH)2 COO]2 11 Calcium phosphate tribasic (7758-87-4) 51 Magnesium citrate, Mg3(C6H5O7)2 12 Calcium phosphate dibasic (7757-93-9) 52 Magnesium hypophosphite Mg(H2PO2)2 13 Calcium phosphate monobasic (10031-30-8) 53 Magnesium sulfate, Epsom salts MgSO4 14 Calcium propionate (4075-81-4) 54 Potassium chloride KCl 15 Calcium oxide (1305-78-8) 55 Potassium citrate, K3(C6H5O7) 16 Calcium sulfate (7778-18-19) 56 Tripotassium phosphate K3(PO4) 17 Magnesium borogluconate (not available) 57 Dipotassium hydrogen phosphate K2HPO4 18 Magnesium citrate, tribasic (3344-18-1) 58 Potassium dihydrogen phosphate KH2PO4 19 Magnesium hypophosphite (10377-57-8) 59 Sodium acetate Na(CH3COO) 20 Magnesium sulfate (7487-88-9) 60 Sodium bicarbonate, baking soda NaHCO3 21 Potassium chloride (7447-40-7) 61 Sodium chloride, table salt, NaCl 22 Potassium citrate (866-84-2) 62 Sodium citrate, trisodium citrate Na3(C6H5O7) 23 Potassium phosphate, tribasic (7778-53-2) 63 Trisodium phosphate Na3(PO4) 24 Potassium phosphate, dibasic (7758-11-4) 64 Disodium hydrogen phosphate Na2HPO4 25 Potassium phosphate, monobasic (7778-77-0) 65 Sodium dihydrogen phosphate NaH2PO4 26 Sodium acetate (127-09-3) 66 27 Sodium bicarbonate (144-55-8) 67 Trade Names: 28 Sodium chloride (7647-14-5) 68 These individual electrolyte salts are not sold 29 Sodium citrate (68-04-2) 69 with Trade Names.
    [Show full text]
  • TGA Measurements on Calcium Oxalate Monohydrate
    APPLICATION NOTE TGA Measurements on Calcium Oxalate Monohydrate Dr. Ekkehard Füglein and Dr. Stefan Schmölzer Introduction in Germany‘s Erzgebirge Mountain Range. In addition to Whewellite, weddellite is also known as a second mineral Oxalates are the salts of the oxalic acid C2H2O4 (COOH)2 species [1]. (ethanedicarboxylic acid). The calcium salt of oxalic acid, calcium oxalate, crystallizes in the anhydrous form and as a Calcium oxalate is also the main component of kidney stones. solvate with one molecule of water per formula, as calcium oxalate monohydrate CaC2O4*H2O. In thermal analysis, calcium oxalate monohydrate is used to check the functionality of thermobalances. This substance Occurrence and Application has good storage stability; it is not subject to change over time, nor does it have any tendency to adsorb humidity from Although calcium oxalate monohydrate is the salt of an the laboratory atmosphere. These features make it an ideal organic aicd, it can be found in nature as a primary mineral. referene substance for use in checking the temperature-base Figure 1 shows a Whewellite crystal from the Schlema locality functionality of a thermobalance. Measurement Conditions Instrument: TG 209 F1 Libra® Sample: CaC2O4*H2O Sample weights: 8.43 mg (black curve in figure 2) and 8.67 mg (red curve in figure 2) Crucible: Al2O3 Atmosphere: Nitrogen Source: Rob Levinsky, iRocks.com, CC-BY-SA-3.0 Source: Gas flow rate: 40 ml/min 1 Whewellite crystal from Schlema in Germany‘s Erzgebirge Mountain Range Heating rate: 10 K/min (black curve in figure 2) and 200 K/min (red curve in figure 2) NGB · Application Note 0 16 · E · 04/12 · Technical changes are subject to change.
    [Show full text]