Reseptregisteret 2014–2018 the Norwegian Prescription Database 2014–2018

Total Page:16

File Type:pdf, Size:1020Kb

Reseptregisteret 2014–2018 the Norwegian Prescription Database 2014–2018 LEGEMIDDELSTATISTIKK 2019:2 Reseptregisteret 2014–2018 The Norwegian Prescription Database 2014–2018 Reseptregisteret 2014–2018 The Norwegian Prescription Database 2014–2018 Christian Lie Berg Kristine Olsen Solveig Sakshaug Utgitt av Folkehelseinstituttet / Published by Norwegian Institute of Public Health Område for Helsedata og digitalisering Avdeling for Legemiddelstatistikk Juni 2019 Tittel/Title: Legemiddelstatistikk 2019:2 Reseptregisteret 2014–2018 / The Norwegian Prescription Database 2014–2018 Forfattere/Authors: Christian Berg, redaktør/editor Kristine Olsen Solveig Sakshaug Acknowledgement: Julie D. W. Johansen (English text) Bestilling/Order: Rapporten kan lastes ned som pdf på Folkehelseinstituttets nettsider: www.fhi.no / The report can be downloaded from www.fhi.no Grafisk design omslag: Fete Typer Ombrekking: Houston911 Kontaktinformasjon / Contact information: Folkehelseinstituttet / Norwegian Institute of Public Health Postboks 222 Skøyen N-0213 Oslo Tel: +47 21 07 70 00 ISSN: 1890-9647 ISBN: 978-82-8406-014-9 Sitering/Citation: Berg, C (red), Reseptregisteret 2014–2018 [The Norwegian Prescription Database 2014–2018] Legemiddelstatistikk 2019:2, Oslo, Norge: Folkehelseinstituttet, 2019. Tidligere utgaver / Previous editions: 2008: Reseptregisteret 2004–2007 / The Norwegian Prescription Database 2004–2007 2009: Legemiddelstatistikk 2009:2: Reseptregisteret 2004–2008 / The Norwegian Prescription Database 2004–2008 2010: Legemiddelstatistikk 2010:2: Reseptregisteret 2005–2009. Tema: Vanedannende legemidler / The Norwegian Prescription Database 2005–2009. Topic: Addicitiv drugs 2011: Legemiddelstatistikk 2011:2: Reseptregisteret 2006–2010 / The NorwegianPrescription Database 2006–2010 2012: Legemiddelstatistikk 2012:2: Reseptregisteret 2007–2011. Tema: Legemidler og eldre / The Norwegian Prescription Database 2007–2011. Topic: Drug use in the elderly 2013: Legemiddelstatistikk 2013:2: Reseptregisteret 2008–2012 / The Norwegian Prescription Database 2008–2012 2014: Legemiddelstatistikk 2014:2: Reseptregisteret 2009–2013 / The Norwegian Prescription Database 2009–2013 2015: Legemiddelstatistikk 2015:2: Reseptregisteret 2010–2014. Tema: Antibiotika / The Norwegian Prescription Database 2010–2014. Topic: Antibiotics 2016: Legemiddelstatistikk 2016:2: Reseptregisteret 2011–2015 / The NorwegianPrescription Database 2011–2015 2017: Legemiddelstatistikk 2017:2: Reseptregisteret 2012–2016 / The Norwegian Prescription Database 2012–2016 2018: Legemiddelstatistikk 2018:2: Reseptregisteret 2013–2017. Tema: Legemidler og eldre / The Norwegian Prescription Database 2010–2014. Topic: Drug use in the elderly Innhold Sammendrag ....................................................................................................................................................................... 7 1. Generelt om Reseptregisteret (NorPD) og legemiddelstatistikk ................................................................................... 8 1.1 Reseptregisteret .................................................................................................................................................... 8 1.2 Nordiske reseptregistre ...................................................................................................................................... 11 1.3 Grossistbasert legemiddelstatistikk .................................................................................................................... 12 1.4 Anatomisk Terapeutisk Kjemisk (ATC)-klassifikasjon ............................................................................................ 12 1.5 Definert Døgndose (DDD) .................................................................................................................................... 13 1.6 WHO Collaborating Centre for Drug Statistics Methodology .............................................................................. 14 2. Reseptregisteret (NorPD) 2014–2018 .......................................................................................................................... 15 2.1 Utvalgte nøkkeltall fra Reseptregisteret .............................................................................................................. 15 2.2 Reseptkategorier og refusjon av utgifter til legemidler ....................................................................................... 19 2.3 Beskrivelse av hovedtabellene ............................................................................................................................ 20 2.4 ATC main groups .................................................................................................................................................. 24 2.5 ATC group A – Alimentary tract and metabolism................................................................................................. 25 2.6 ATC group B – Blood and bloodforming organs ................................................................................................... 36 2.7 ATC group C – Cardiovascular system .................................................................................................................. 39 2.8 ATC group D – Dermatologicals ........................................................................................................................... 47 2.9 ATC group G – Genito urinary system and sex hormones .................................................................................... 53 2.10 ATC group H – Systemic hormonal preparations, excl. sex hormones and insulins ............................................. 58 2.11 ATC group J – Antiinfectives for systemic use ...................................................................................................... 61 2.12 ATC group L – Antineoplastic and immunomodulating agents ............................................................................ 68 2.13 ATC group M – Musculo-skeletal system ............................................................................................................. 71 2.14 ATC group N – Nervous system ........................................................................................................................... 74 2.15 ATC group P – Antiparasitic products, insecticides and repellents ...................................................................... 84 2.16 ATC group R – Respiratory system ....................................................................................................................... 86 2.17 ATC group S – Sensory organs ............................................................................................................................. 91 2.18 ATC-group V – Various ......................................................................................................................................... 95 Noen forkortelser og definisjoner .................................................................................................................................... 97 Folkemengde i Norge 2014–2018 (per 1. juli) .................................................................................................................. 98 Folkemengde etter alder i 2018 (per 1. juli) ..................................................................................................................... 98 Liste over vitenskapelige publikasjoner basert på data fra Reseptregisteret per 21.02.2019 ...................................... 99 Legemiddelstatistikk 2019:2 • Folkehelseinstituttet 5 Contents Summary ............................................................................................................................................................................. 7 1. General information about the Norwegian Prescription Database (NorPD) and drug statistics ................................. 8 1.1 About the NorPD ................................................................................................................................................... 8 1.2 Prescription statistics in the other Nordic countries ........................................................................................... 11 1.3 The Norwegian Drug Wholesales Statistics ........................................................................................................ 12 1.4 The Anatomical Therapeutic Chemical (ATC) classification system ..................................................................... 12 1.5 The Defined Daily Dose (DDD) ............................................................................................................................. 13 1.6 WHO Collaborating Centre for Drug Statistics Methodology .............................................................................. 14 2. The Norwegian PrescriptionDatabase (NorPD) 2014–2018 ........................................................................................ 15 2.1 Selected key figures from the NorPD................................................................................................................... 15 2.2 Prescription categories and reimbursement of medicinal expenses .................................................................. 19 2.3 Description of the main tables ............................................................................................................................ 20 2.4 ATC main groups .................................................................................................................................................
Recommended publications
  • Appendix a Common Abbreviations Used in Medication
    UNIVERSITY OF AMSTERDAM MASTERS THESIS Impact of Medication Grouping on Fall Risk Prediction in Elders: A Retrospective Analysis of MIMIC-III Critical Care Database Student: SRP Mentor: Noman Dormosh Dr. Martijn C. Schut Student No. 11412682 – SRP Tutor: Prof. dr. Ameen Abu-Hanna SRP Address: Amsterdam University Medical Center - Location AMC Department Medical Informatics Meibergdreef 9, 1105 AZ Amsterdam Practice teaching period: November 2018 - June 2019 A thesis submitted in fulfillment of the requirements for the degree of Master of Medical Informatics iii Abstract Background: Falls are the leading cause of injury in elderly patients. Risk factors for falls in- cluding among others history of falls, old age, and female gender. Research studies have also linked certain medications with an increased risk of fall in what is called fall-risk-increasing drugs (FRIDs), such as psychotropics and cardiovascular drugs. However, there is a lack of consistency in the definitions of FRIDs between the studies and many studies did not use any systematic classification for medications. Objective: The aim of this study was to investigate the effect of grouping medications at different levels of granularity of a medication classification system on the performance of fall risk prediction models. Methods: This is a retrospective analysis of the MIMIC-III cohort database. We created seven prediction models including demographic, comorbidity and medication variables. Medica- tions were grouped using the anatomical therapeutic chemical classification system (ATC) starting from the most specific scope of medications and moving up to the more generic groups: one model used individual medications (ATC level 5), four models used medication grouping at levels one, two, three and four of the ATC and one model did not include med- ications.
    [Show full text]
  • Injectable PLGA Adefovir Microspheres; the Way for Long Term Therapy of T Chronic Hepatitis-B ⁎ Margrit M
    European Journal of Pharmaceutical Sciences 118 (2018) 24–31 Contents lists available at ScienceDirect European Journal of Pharmaceutical Sciences journal homepage: www.elsevier.com/locate/ejps Injectable PLGA Adefovir microspheres; the way for long term therapy of T chronic hepatitis-B ⁎ Margrit M. Ayouba, , Neveen G. Elantounyb, Hanan M. El-Nahasa, Fakhr El-Din S. Ghazya a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt b Department of Internal Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt ARTICLE INFO ABSTRACT Keywords: For patient convenience, sustained release Adefovir Poly-d,l-lactic-co-glycolic acid (PLGA) microspheres were Adefovir formulated to relieve the daily use of the drug which is a problem for patients treated from chronic hepatitis-B. Biodegradable microspheres PLGA microspheres were prepared and characterized by entrapment efficiency, particle size distribution and Poly-lactic-co-glycolic acid scanning electron microscopy (SEM). In-vitro release and in-vivo studies were carried out. Factors such as drug: Entrapment efficiency polymer ratio, polymer viscosity and polymer lactide content were found to be important variables for the preparation of PLGA Adefovir microspheres. Fourier transform infrared (FTIR) analysis and differential scanning calorimetry (DSC) were performed to determine any drug-polymer interactions. One way analysis of variance (ANOVA) was employed to analyze the pharmacokinetic parameters after intramuscular injection of the pure drug and the selected PLGA microspheres into rats. FTIR and DSC revealed a significant interaction between the drug and the polymer. Reports of SEM before and after 1 and 24 h release showed that the microspheres had nonporous smooth surface even after 24 h release.
    [Show full text]
  • Hepsera, INN- Defovir Dipivoxil
    SCIENTIFIC DISCUSSION This module reflects the initial scientific discussion for the approval of Hepsera. For information on changes after approvalplease refer to module 8B 1. Chemical, pharmaceutical and biological aspects Composition Hepsera is presented as an immediate release tablet containing 10 mg of adefovir dipivoxil, as active substance. The other ingredients in this formulation are commonly used in tablets Hepsera is supplied in high-density polyethylene bottle (HDPE), with silica gel desiccant canisters or sachets, and polyester fiber packing material. The closure system consists of a child-resistant polypropylene screw cap lined with an induction activated aluminium foil liner. Active substance Adefovir dipivoxil is an ester prodrug of the nucleotide analogue, adefovir. A structural modification of the parent drug has been carried out in order to increase the lipophilicity and to enhance the oral bioavailability of adefovir. The active substance is a white to off-white crystalline powder. It is soluble in ethanol, sparingly soluble in 0.1N HCl and very slightly soluble in water adjusted to pH 7.2 but relatively highly soluble at physiological pH. The active substance does not contain any chiral center and does not exhibit any optical isomerism. In laboratory studies the anhydrate crystal form has been observed to convert gradually into a dihydrate crystal form when adefovir dipivoxil was exposed to high humidity conditions (75% R.H., 25ºC) over an approximately one-month period. However, the only crystal form produced during the active substance synthesis and utilised in non-clinical and clinical studies has been the anhydrous crystal form. Adefovir dipivoxil undergoes also hydrolysis in aqueous solution and to a smaller degree in the solid state after exposure to humidity and heat for extended periods.
    [Show full text]
  • Pharmacokinetics of Salicylic Acid Following Intravenous and Oral Administration of Sodium Salicylate in Sheep
    animals Article Pharmacokinetics of Salicylic Acid Following Intravenous and Oral Administration of Sodium Salicylate in Sheep Shashwati Mathurkar 1,*, Preet Singh 2 ID , Kavitha Kongara 2 and Paul Chambers 2 1 1B, He Awa Crescent, Waikanae 5036, New Zealand 2 School of Veterinary Sciences, College of Sciences, Massey University, Palmerston North 4474, New Zealand; [email protected] (P.S.); [email protected] (K.K.); [email protected] (P.C.) * Correspondence: [email protected]; Tel.: +64-221-678-035 Received: 13 June 2018; Accepted: 16 July 2018; Published: 18 July 2018 Simple Summary: Scarcity of non-steroidal anti-inflammatory drugs (NSAID) to minimise the pain in sheep instigated the current study. The aim of this study was to know the pharmacokinetic parameters of salicylic acid in New Zealand sheep after administration of multiple intravenous and oral doses of sodium salicylate (sodium salt of salicylic acid). Results of the study suggest that the half-life of the drug was shorter and clearance was faster after intravenous administration as compared to that of the oral administration. The minimum effective concentration required to produce analgesia in humans (16.8 µL) was achieved in sheep for about 0.17 h in the current study after intravenous administration of 100 and 200 mg/kg body weight of sodium salicylate. However, oral administration of these doses failed to achieve the minimum effective concentration as mentioned above. This study is of significance as it adds valuable information on pharmacokinetics and its variation due to breed, species, age, gender and environmental conditions.
    [Show full text]
  • Targeted Topical Delivery of Retinoids in the Management of Acne Vulgaris: Current Formulations and Novel Delivery Systems
    pharmaceutics Review Targeted Topical Delivery of Retinoids in the Management of Acne Vulgaris: Current Formulations and Novel Delivery Systems Gemma Latter 1, Jeffrey E. Grice 2, Yousuf Mohammed 2 , Michael S. Roberts 2,3 and Heather A. E. Benson 1,* 1 School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth 6845, Australia; [email protected] 2 Therapeutics Research Group, The University of Queensland Diamantina Institute, School of Medicine, University of Queensland, Translational Research Institute, Brisbane 4109, Australia; jeff[email protected] (J.E.G.); [email protected] (Y.M.); [email protected] (M.S.R.) 3 School of Pharmacy and Medical Sciences, University of South Australia, Basil Hetzel Institute for Translational Health Research, Adelaide 5011, Australia * Correspondence: [email protected]; Tel.: +61-8-9266-2338 Received: 19 August 2019; Accepted: 17 September 2019; Published: 24 September 2019 Abstract: Acne vulgaris is a common inflammatory pilosebaceous condition that affects 80–90% of adolescents. Since the introduction of tretinoin over 40 years ago, topical retinoid products have been a mainstay of acne treatment. The retinoids are very effective in addressing multiple aspects of the acne pathology as they are comedolytic and anti-inflammatory, and do not contribute to antibiotic resistance or microbiome disturbance that can be associated with long-term antibiotic therapies that are a common alternative treatment. However, topical retinoids are associated with skin dryness, erythema and pain, and may exacerbate dermatitis or eczema. Thus, there is a clear need to target delivery of the retinoids to the pilosebaceous units to increase efficacy and minimise side effects in surrounding skin tissue.
    [Show full text]
  • Expert Review 2
    2021 Expert Committee on Selection and Use of Essential Medicines Application review I.1 Albendazole, mebendazole and praziquantel for the indication of treatment of (item number) taeniid cestode cysts Does the application adequately ☒ Yes address the issue of the public health ☐ need for the medicine? No ☐ Not applicable Comments: The larval stages of three taeniid cestode parasites, Echinococcus granulosus, Echinococcus multilocularis and Taenia solium, produce cysts in humans that are of medical relevance. The diseases caused by these parasitic cysts are called cystic echinococcosis (CE), alveolar echinococcosis (AE), and cysticercosis (being neurocysticercosis (NCC) the most common form) respectively, and they are recognised by WHO as neglected tropical diseases. NCC is mainly a disease of poverty that predominantly affects rural populations in Africa, Asia and Latin America. Access to diagnostic and treatment, to better manage epilepsy and other NCC is a challenge for the people affected in these communities due to the availability and costs of specialised diagnostic and care. Stigma and social discrimination also mean that many people try to “hide” the disease. Briefly summarize the role of the The only real options for treatment of CE are albendazole (ALB) and Mebendazole proposed medicine(s) relative to other (MEB). ALB is the drug of choice as it has better bioavailability. ALB is also preferred to therapeutic agents currently included in MEB, because MEB requires a higher dose and a higher pill burden, for example, an the Model List, or available in the adult patient would require 8 tablets/day of MEB compared with 2 tablets/day ALB. market. ALB and praziquantel ( PZQ) are the only drugs used for the antiparasitic treatment of NCC.
    [Show full text]
  • Cumulative Irritation Comparison of Adapalene Gel and Solution with 2 Tazarotene Gels and 3 Tretinoin Formulations
    THERAPEUTICS FOR THE CLINICIAN Cumulative Irritation Comparison of Adapalene Gel and Solution With 2 Tazarotene Gels and 3 Tretinoin Formulations Alan Greenspan, MD; Christian Loesche, MD; Nancy Vendetti; Kathleen Georgeian; Richard Gilbert, PhD; Michel Poncet, PhD; Michael D. Baker, BS; Pascale Soto, RPh Forty-two subjects with normal skin were enrolled gel 0.025%, and 1 discontinued adapalene in a single-center study to assess the cumula- gel 0.1%. None of the subjects discontinued use tive irritancy potential of adapalene (Differin® of the white petrolatum or the adapalene solu- gel 0.1% and Differin solution 0.1%) compared tion 0.1%. Adapalene gel and solution 0.1% with tazarotene (Tazorac® gels 0.05% and 0.1%), were statistically (PϽ.01) less irritating than tretinoin (Retin-A Micro® gel 0.1%, Avita® cream both tazarotene gels 0.1% and 0.05%, tretinoin 0.025%, and Avita gel 0.025%), and white petro- microsphere gel 0.1%, and tretinoin gel 0.025%, latum (negative control). All test materials were and they were not statistically different from applied randomly, under occlusion, to sites tretinoin gel 0.025%. located on either side of the midline— the mid Cutis. 2003;72:76-81. thoracic area of the subjects’ backs. All patches were applied daily, Monday through Friday, to dapalene (Differin®) is a naphthoic-acid the same sites, unless the degree of reaction to derivative with retinoid activity that is a test product or adhesive necessitated removal A effective in the treatment of mild to moder- (grade 3). ate acne vulgaris.1-4 Adapalene, in both gel and Thirty-eight of the 42 subjects (90.5%) com- cream formulations, at the marketed and approved pleted the study.
    [Show full text]
  • New Insights Into the Effect of Amorolfine Nail Lacquer
    Review article New insights into the effect of amorolfine nail lacquer C. Flagothier, C. Pie´ rard-Franchimont and G. E. Pie´ rard Department of Dermatopathology, University Hospital of Lie`ge, Lie`ge, Belgium Summary Despite improvements in antifungal strategies, the outcome of treating onychomycoses often remains uncertain. Several factors account for treatment failure, of which the pharmacokinetics and pharmacodynamics of the antifungal are of importance. The taxonomic nature and ungual location of the fungus cannot be neglected, besides the type of nail and its growth rate. In addition, the biological cycle of the fungus and the metabolic activity of the pathogen likely play a marked influence in drug response. The presence of natural antimicrobial peptides in the nail is also probably a key feature controlling the cure rates. There are many outstanding publications that cover the full spectrum of the field. The purpose of this review is to put in perspective some facets of activity of the topical treatment using amorolfine nail laquer. The antifungal activity of the drug is likely less pronounced in onychomycosis than that expected from conventional in vitro studies. However, the nail laquer formulation should reduce the propensity to form antifungal-resistant spores and limit the risk of reinfection. Key words: amorolfine, antifungal, fungus, onychomycosis, spore. Topical treatments are often considered to be less Introduction efficacious than current oral treatments. However, some During the last 2 decades, the efficacy of treating topical formulations may provide effects that cannot be onychomycoses has been considerably improved by achieved by other treatments. In discussing the treat- the introduction of new generations of potent antifun- ment of onychomycosis, it should not be forgotten that gals.
    [Show full text]
  • ALBENDAZOLE (Extrapolation to All Ruminants)
    European Medicines Agency Veterinary Medicines and Inspections EMEA/MRL/865/03-FINAL June 2004 COMMITTEE FOR MEDICINAL PRODUCTS FOR VETERINARY USE ALBENDAZOLE (Extrapolation to all ruminants) SUMMARY REPORT (3) 1. Albendazole is a benzimidazole carbamate, used for the treatment of gastrointestinal infestations with roundworms, lungworms and tapeworms and adult flukes of Fasciola hepatica. Albendazole is currently entered into Annex I of Council Regulation (EEC) No. 2377/90 in accordance with the following table: Pharmacologically Marker residue Animal MRLs Target Other active substance(s) species tissues provisions Albendazole Sum of albendazole Bovine, 100 µg/kg Muscle sulphoxide, ovine 100 µg/kg Fat albendazole sulphone 1000 µg/kg Liver and albendazole 2- 500 µg/kg Kidney amino sulphone 100 µg/kg Milk expressed as albendazole 2. In reviewing the availability of endo- and ectoparasiticides for sheep and goats, albendazole was considered for extrapolation from bovine and ovine species to all ruminants. The considerations and criteria leading to the identification of albendazole are described in the Position Paper Regarding Availability of Veterinary Medicines – Extrapolation of MRLs (EMEA/CVMP/457/03-FINAL). 3. The scientific justification for this extrapolation was assessed in accordance with the Notes for Guidance on Risk Analysis Approach for Residues of Veterinary Medicinal Products in Food of Animal Origin (EMEA/CVMP/187/00-FINAL) and on the Establishment of Maximum Residue Limits for Minor Animal Species (EMEA/CVMP/153a/97-FINAL). 4. In setting the ADI in the original assessment of albendazole, the data summarised on the paragraphs below were considered. 5. The mode of action of albendazole is by binding strongly with the tubulin in the cells of nematodes.
    [Show full text]
  • 204684Orig1s000
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 204684Orig1s000 OFFICE DIRECTOR MEMO Deputy Office Director Decisional Memo Page 2 of 17 NDA 204,684 Miltefosine Capsules 1. Introduction Leishmania organisms are intracellular protozoan parasites that are transmitted to a mammalian host by the bite of the female phlebotomine sandfly. The main clinical syndromes are visceral leishmaniasis (VL), cutaneous leishmaniasis (CL), and mucosal leishmaniasis (ML). VL is the result of systemic infection and is progressive over months or years. Clinical manifestations include fever, hepatomegaly, splenomegaly, and bone marrow involvement with pancytopenia. VL is fatal if untreated. Liposomal amphotericin B (AmBisome®) was FDA approved in 1997 for the treatment of VL. CL usually presents as one or more skin ulcers at the site of the sandfly bite. In most cases, the ulcer spontaneously resolves within several months, leaving a scar. The goals of therapy are to accelerate healing, decrease morbidity and decrease the risk of relapse, local dissemination, or mucosal dissemination. There are no FDA approved drugs for the treatment of CL. Rarely, CL disseminates from the skin to the naso-oropharyngeal mucosa, resulting in ML. ML can also develop some time after CL spontaneous ulcer healing. The risk of ML is thought to be highest with CL caused by the subgenus Viannia. ML is characterized in the medical literature as progressive with destruction of nasal and pharyngeal structures, and death may occur due to complicating aspiration pneumonia. There are no FDA approved drugs for the treatment of ML. Paladin Therapeutics submitted NDA 204, 684 seeking approval of miltefosine for the treatment of VL caused by L.
    [Show full text]
  • Candida Auris
    microorganisms Review Candida auris: Epidemiology, Diagnosis, Pathogenesis, Antifungal Susceptibility, and Infection Control Measures to Combat the Spread of Infections in Healthcare Facilities Suhail Ahmad * and Wadha Alfouzan Department of Microbiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; [email protected] * Correspondence: [email protected]; Tel.: +965-2463-6503 Abstract: Candida auris, a recently recognized, often multidrug-resistant yeast, has become a sig- nificant fungal pathogen due to its ability to cause invasive infections and outbreaks in healthcare facilities which have been difficult to control and treat. The extraordinary abilities of C. auris to easily contaminate the environment around colonized patients and persist for long periods have recently re- sulted in major outbreaks in many countries. C. auris resists elimination by robust cleaning and other decontamination procedures, likely due to the formation of ‘dry’ biofilms. Susceptible hospitalized patients, particularly those with multiple comorbidities in intensive care settings, acquire C. auris rather easily from close contact with C. auris-infected patients, their environment, or the equipment used on colonized patients, often with fatal consequences. This review highlights the lessons learned from recent studies on the epidemiology, diagnosis, pathogenesis, susceptibility, and molecular basis of resistance to antifungal drugs and infection control measures to combat the spread of C. auris Citation: Ahmad, S.; Alfouzan, W. Candida auris: Epidemiology, infections in healthcare facilities. Particular emphasis is given to interventions aiming to prevent new Diagnosis, Pathogenesis, Antifungal infections in healthcare facilities, including the screening of susceptible patients for colonization; the Susceptibility, and Infection Control cleaning and decontamination of the environment, equipment, and colonized patients; and successful Measures to Combat the Spread of approaches to identify and treat infected patients, particularly during outbreaks.
    [Show full text]
  • AHFS Pharmacologic-Therapeutic Classification System
    AHFS Pharmacologic-Therapeutic Classification System Abacavir 48:24 - Mucolytic Agents - 382638 8:18.08.20 - HIV Nucleoside and Nucleotide Reverse Acitretin 84:92 - Skin and Mucous Membrane Agents, Abaloparatide 68:24.08 - Parathyroid Agents - 317036 Aclidinium Abatacept 12:08.08 - Antimuscarinics/Antispasmodics - 313022 92:36 - Disease-modifying Antirheumatic Drugs - Acrivastine 92:20 - Immunomodulatory Agents - 306003 4:08 - Second Generation Antihistamines - 394040 Abciximab 48:04.08 - Second Generation Antihistamines - 394040 20:12.18 - Platelet-aggregation Inhibitors - 395014 Acyclovir Abemaciclib 8:18.32 - Nucleosides and Nucleotides - 381045 10:00 - Antineoplastic Agents - 317058 84:04.06 - Antivirals - 381036 Abiraterone Adalimumab; -adaz 10:00 - Antineoplastic Agents - 311027 92:36 - Disease-modifying Antirheumatic Drugs - AbobotulinumtoxinA 56:92 - GI Drugs, Miscellaneous - 302046 92:20 - Immunomodulatory Agents - 302046 92:92 - Other Miscellaneous Therapeutic Agents - 12:20.92 - Skeletal Muscle Relaxants, Miscellaneous - Adapalene 84:92 - Skin and Mucous Membrane Agents, Acalabrutinib 10:00 - Antineoplastic Agents - 317059 Adefovir Acamprosate 8:18.32 - Nucleosides and Nucleotides - 302036 28:92 - Central Nervous System Agents, Adenosine 24:04.04.24 - Class IV Antiarrhythmics - 304010 Acarbose Adenovirus Vaccine Live Oral 68:20.02 - alpha-Glucosidase Inhibitors - 396015 80:12 - Vaccines - 315016 Acebutolol Ado-Trastuzumab 24:24 - beta-Adrenergic Blocking Agents - 387003 10:00 - Antineoplastic Agents - 313041 12:16.08.08 - Selective
    [Show full text]