204684Orig1s000

Total Page:16

File Type:pdf, Size:1020Kb

204684Orig1s000 CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 204684Orig1s000 OFFICE DIRECTOR MEMO Deputy Office Director Decisional Memo Page 2 of 17 NDA 204,684 Miltefosine Capsules 1. Introduction Leishmania organisms are intracellular protozoan parasites that are transmitted to a mammalian host by the bite of the female phlebotomine sandfly. The main clinical syndromes are visceral leishmaniasis (VL), cutaneous leishmaniasis (CL), and mucosal leishmaniasis (ML). VL is the result of systemic infection and is progressive over months or years. Clinical manifestations include fever, hepatomegaly, splenomegaly, and bone marrow involvement with pancytopenia. VL is fatal if untreated. Liposomal amphotericin B (AmBisome®) was FDA approved in 1997 for the treatment of VL. CL usually presents as one or more skin ulcers at the site of the sandfly bite. In most cases, the ulcer spontaneously resolves within several months, leaving a scar. The goals of therapy are to accelerate healing, decrease morbidity and decrease the risk of relapse, local dissemination, or mucosal dissemination. There are no FDA approved drugs for the treatment of CL. Rarely, CL disseminates from the skin to the naso-oropharyngeal mucosa, resulting in ML. ML can also develop some time after CL spontaneous ulcer healing. The risk of ML is thought to be highest with CL caused by the subgenus Viannia. ML is characterized in the medical literature as progressive with destruction of nasal and pharyngeal structures, and death may occur due to complicating aspiration pneumonia. There are no FDA approved drugs for the treatment of ML. Paladin Therapeutics submitted NDA 204, 684 seeking approval of miltefosine for the treatment of VL caused by L. donovani and for the treatment of CL and ML caused by members of the subgenus Viannia. The dosage form is a 50 mg capsule for oral use. The proposed dosing regimen is daily for 28 days with food for patients 12 years of age and weighing ≥ 30 kg. The number of 50 mg capsules per day is determined by bodyweight. For a body weight of 30-44 kg the dose proposed is: two 50 mg capsules daily; 1 capsule taken with breakfast and 1 with dinner. For a body weight of ≥ 45 kg the dose proposed is: three 50 mg capsules daily; one taken with breakfast, lunch, and dinner. The efficacy review for this NDA relies upon the results of the following studies: VL o Study 3154, a randomized, open-label, noninferiority trial conducted in VL patients in India in 1999-2000. o Study Z025, a randomized, open-label trial conducted in Ethiopia in 2003-2005. CL o Study 3168, a randomized, placebo-controlled trial conducted in Colombia and Guatemala in CL patients in 2000-2002. o Study Z020, a randomized, open-label trial conducted in Brazil in 2007-2009 o Study Soto, an open-label study conducted in Bolivia in 2005-2007. ML o Study Z022, a single-arm study conducted at a single site in Bolivia in ML patients in 2004-2006. The applicant submitted patient level data for each of these studies with the exception of Study Z025. The applicant did not conduct these studies. Page 2 of 17 Reference ID: 3472914 Deputy Office Director Decisional Memo Page 3 of 17 NDA 204,684 Miltefosine Capsules The review team has reviewed issues pertinent to their respective disciplines with regard to the safety and efficacy of miltefosine for the indications proposed. For a detailed discussion of NDA 204,684, the reader is referred to individual discipline specific reviews, the Cross- Discipline Team Leader Review, and the Division Director Review. 2. Background The genus Leishmania is divided into two subgenera, Leishmania and Viannia. The Leishmania subgenus includes L. donovani, L. chagasi/infantum, L. tropica, L. major, L. aethiopica, L. mexicana and L. amazonensis. The subgenus Viannia includes L. braziliensis, L. peruviana, L. guyanensis and L. panamensis. Traditionally, Leishmania infections that occur in Asia, Africa, Europe and the Middle East are designated “Old World”, while infections that occur in the Americas are designated “New World”. Miltefosine is an alkyllysophospholipid analogue with in vitro activity against the promastigote and amastigote stages of Leishmania species. In vitro, L. donovani is generally considered the most susceptible, and L. braziliensis and L. major the least susceptible. Variability in susceptibility between species and within species from different geographic areas as well as the limitations of the NDA data with respect to these issues were discussed at the Advisory Committee meeting (see Section 9) and is a review issue impacting labeling (see Section 12). The mechanism of action of miltefosine is likely to involve interaction with lipids (phospholipids and sterols), including membrane lipids, inhibition of cytochrome c oxidase (mitochondrial function), and apoptosis-like cell death. Adverse drug effects are anticipated based on the mechanism of action and were observed in pre-clinical studies (see Section 4). The adverse drug effects observed in clinical trials and post-marketing in other countries are described in Section 8 and are addressed in labeling (see Section 12). Miltefosine is registered in Germany as a topical drug to treat cutaneous cancers. As an oral dosage form, it is registered in Germany, several countries in South America and the Indian subcontinent for the treatment of VL and CL. Miltefosine was included in the WHO essential medicines list as an anti-leishmaniasis medicine in March 20111. The FDA granted miltefosine orphan designation in October 2006 and Fast Track Designation in May 2010. The NDA was submitted on April 19, 2013 and granted a priority review with an original goal date of December 19, 2013. During the initial CMC review, validation data for the high-performance thin layer chromatography (HPTLC) method used to analyze some of the impurities was found to be inadequate. The applicant’s response to this deficiency was considered a major amendment, and the user fee goal date was extended 3 months to March 19, 2014. The applicant has requested a tropical disease priority review voucher as authorized by Section 524 of the Food, Drug, and Cosmetic Act, which lists leishmaniasis as a tropical disease for the purposes of the legislation. 1Available at: http://whqlibdoc.who.int/hq/2011/a95053_eng.pdf Page 3 of 17 Reference ID: 3472914 Deputy Office Director Decisional Memo Page 4 of 17 NDA 204,684 Miltefosine Capsules 3. CMC I concur with the conclusions reached by the CMC reviewers regarding the acceptability of the manufacturing of the drug product and drug substance. There are no outstanding CMC issues precluding approval, but PMCs are recommended to develop a method for release and stability testing appropriate for life-cycle management. Miltefosine is a new chemical entity (NCE). The specifications for miltefosine drug substance include tests for description, identity, water, impurities, (b) (4) heavy metals, and residual solvents. Inadequate validation data to support the HPTLC method used to analyze some of the impurities was identified as a deficiency early in the course of review. Upon review of an amendment submitted by the applicant, the CMC reviewers concluded that adequate validation data for the HPTLC method had been provided and that the method may be used as an interim method. The reviewers recommended that an HPLC method rather than an HPTLC method was more appropriate for life-cycle management. They recommended a PMC for the applicant to develop an appropriate method (such as HPLC) for release and stability testing (assay and impurities) of the drug product and the drug substance to facilitate life-cycle management of miltefosine capsules. They recommended an additional PMC in conjunction with the development and implementation of the HPLC methodology to perform (b) (4) testing in accordance with the 2003 FDA draft guidance for stratified testing. I concur with their recommendations. The applicant provided 12 month stability data under long term conditions and 6 month stability data under accelerated conditions for close to commercial scale batches of the drug substance. The data support an expiration dating period of 24 months for the drug product, when stored at 20-25 oC (68-77 oF); excursions permitted to 15-30 oC (59-86 oF). The proposed dissolution method and the revised dissolution acceptance criteria were deemed acceptable. The product quality microbiology reviewer has found the NDA acceptable. The Office of Compliance has made an “Acceptable” overall recommendation for all the drug manufacturing facilities. 4. Nonclinical Pharmacology/Toxicology I concur with the conclusions reached by the pharmacology/toxicology reviewer that there are no outstanding pharm/tox issues that preclude approval. Embryotoxicity and teratogenicity were observed in animal studies which impact the overall risk benefit of the drug in pregnant women. The effect on male fertility warrants further clinical evaluation. Miltefosine is embryotoxic and teratogenic in animals at doses lower than the therapeutic human dose. Embryo-fetal toxicity, including death and teratogenicity, was observed in animals administered prior to mating, during early pregnancy, and during organogenesis at doses lower than the maximum recommended human dose (MRHD). Miltefosine caused fetal resorption Page 4 of 17 Reference ID: 3472914 Deputy Office Director Decisional Memo Page 5 of 17 NDA 204,684 Miltefosine Capsules during the period of organogenesis and fetal deaths in rats and rabbits and was a potent teratogen in rats. Female fertility was affected in both rats and dogs. In a rat study, estrus cycle arrest in the metestrus or diestrus phases occurred at 1.0 times the MRHD based on BSA comparison. In a 52 week dog study, increased numbers of atretic follicles in the ovaries, and cycle arrest in the uterus, vagina, and mammary gland with morphology consistent with anestrus or diestrus was observed at doses below the MRHD based on BSA comparison. There were effects on male fertility noted in rats; these effects were attenuated or absent in dogs at similar plasma exposures.
Recommended publications
  • Miltefosine Combined with Intralesional Pentamidine for Leishmania Braziliensis Cutaneous Leishmaniasis in Bolivia
    Am. J. Trop. Med. Hyg., 99(5), 2018, pp. 1153–1155 doi:10.4269/ajtmh.18-0183 Copyright © 2018 by The American Society of Tropical Medicine and Hygiene Miltefosine Combined with Intralesional Pentamidine for Leishmania braziliensis Cutaneous Leishmaniasis in Bolivia Jaime Soto,1* Paula Soto,1 Andrea Ajata,2 Daniela Rivero,3 Carmelo Luque,2 Carlos Tintaya,2 and Jonathan Berman4 1FUNDERMA (Fundacion ´ Nacional de Dermatolog´ıa), Santa Cruz, Bolivia; 2Servicio Departamental de Salud, Departamento de La Paz, La Paz, Bolivia; 3Hospital Dermatologico ´ de Jorochito, Santa Cruz, Bolivia; 4AB Foundation, North Bethesda, Maryland Abstract. Bolivian cutaneous leishmaniasis due to Leishmania braziliensis was treated with the combination of mil- tefosine (150 mg/day for 28 days) plus intralesional pentamidine (120 μg/mm2 lesion area on days 1, 3, and 5). Ninety-two per cent of 50 patients cured. Comparison to historic controls at our site suggests that the efficacy of the two drugs was additive. Adverse effects and cost were also additive. This combination may be attractive when a prime consideration is efficacy (e.g., in rescue therapy), avoidance of parenteral therapy, or the desire to treat locally and also provide systemic protection against parasite dissemination. INTRODUCTION METHODS AND PATIENTS Cutaneous leishmaniasis (CL) in the New World gener- Study design and treatments. This was an open-label ally presents as a papule that enlarges and ulcerates over evaluation of one intervention: standard treatment with oral 1–3 months and then self-cures, but the predominant spe- miltefosine in combination with intralesional treatment with cies at our site in Bolivia, Leishmania (Viannia) braziliensis pentamidine.
    [Show full text]
  • Pharmacokinetics of Salicylic Acid Following Intravenous and Oral Administration of Sodium Salicylate in Sheep
    animals Article Pharmacokinetics of Salicylic Acid Following Intravenous and Oral Administration of Sodium Salicylate in Sheep Shashwati Mathurkar 1,*, Preet Singh 2 ID , Kavitha Kongara 2 and Paul Chambers 2 1 1B, He Awa Crescent, Waikanae 5036, New Zealand 2 School of Veterinary Sciences, College of Sciences, Massey University, Palmerston North 4474, New Zealand; [email protected] (P.S.); [email protected] (K.K.); [email protected] (P.C.) * Correspondence: [email protected]; Tel.: +64-221-678-035 Received: 13 June 2018; Accepted: 16 July 2018; Published: 18 July 2018 Simple Summary: Scarcity of non-steroidal anti-inflammatory drugs (NSAID) to minimise the pain in sheep instigated the current study. The aim of this study was to know the pharmacokinetic parameters of salicylic acid in New Zealand sheep after administration of multiple intravenous and oral doses of sodium salicylate (sodium salt of salicylic acid). Results of the study suggest that the half-life of the drug was shorter and clearance was faster after intravenous administration as compared to that of the oral administration. The minimum effective concentration required to produce analgesia in humans (16.8 µL) was achieved in sheep for about 0.17 h in the current study after intravenous administration of 100 and 200 mg/kg body weight of sodium salicylate. However, oral administration of these doses failed to achieve the minimum effective concentration as mentioned above. This study is of significance as it adds valuable information on pharmacokinetics and its variation due to breed, species, age, gender and environmental conditions.
    [Show full text]
  • Natural Products That Target the Arginase in Leishmania Parasites Hold Therapeutic Promise
    microorganisms Review Natural Products That Target the Arginase in Leishmania Parasites Hold Therapeutic Promise Nicola S. Carter, Brendan D. Stamper , Fawzy Elbarbry , Vince Nguyen, Samuel Lopez, Yumena Kawasaki , Reyhaneh Poormohamadian and Sigrid C. Roberts * School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; cartern@pacificu.edu (N.S.C.); stamperb@pacificu.edu (B.D.S.); fawzy.elbarbry@pacificu.edu (F.E.); nguy6477@pacificu.edu (V.N.); lope3056@pacificu.edu (S.L.); kawa4755@pacificu.edu (Y.K.); poor1405@pacificu.edu (R.P.) * Correspondence: sroberts@pacificu.edu; Tel.: +1-503-352-7289 Abstract: Parasites of the genus Leishmania cause a variety of devastating and often fatal diseases in humans worldwide. Because a vaccine is not available and the currently small number of existing drugs are less than ideal due to lack of specificity and emerging drug resistance, the need for new therapeutic strategies is urgent. Natural products and their derivatives are being used and explored as therapeutics and interest in developing such products as antileishmanials is high. The enzyme arginase, the first enzyme of the polyamine biosynthetic pathway in Leishmania, has emerged as a potential therapeutic target. The flavonols quercetin and fisetin, green tea flavanols such as catechin (C), epicatechin (EC), epicatechin gallate (ECG), and epigallocatechin-3-gallate (EGCG), and cinnamic acid derivates such as caffeic acid inhibit the leishmanial enzyme and modulate the host’s immune response toward parasite defense while showing little toxicity to the host. Quercetin, EGCG, gallic acid, caffeic acid, and rosmarinic acid have proven to be effective against Leishmania Citation: Carter, N.S.; Stamper, B.D.; in rodent infectivity studies.
    [Show full text]
  • Systemic Antifungal Drug Use in Belgium—
    Received: 7 October 2018 | Revised: 28 March 2019 | Accepted: 14 March 2019 DOI: 10.1111/myc.12912 ORIGINAL ARTICLE Systemic antifungal drug use in Belgium—One of the biggest antifungal consumers in Europe Berdieke Goemaere1 | Katrien Lagrou2,3* | Isabel Spriet4,5 | Marijke Hendrickx1 | Eline Vandael6 | Pierre Becker1 | Boudewijn Catry6,7 1BCCM/IHEM Fungal Collection, Service of Mycology and Aerobiology, Sciensano, Summary Brussels, Belgium Background: Reports on the consumption of systemic antifungal drugs on a national 2 Department of Microbiology and level are scarce although of high interest to compare trends and the associated epi- Immunology, KU Leuven, Leuven, Belgium 3Clinical Department of Laboratory demiology in other countries and to assess the need for antifungal stewardship Medicine, National Reference Centre for programmes. Mycosis, University Hospitals Leuven, Leuven, Belgium Objectives: To estimate patterns of Belgian inpatient and outpatient antifungal use 4Department of Pharmaceutical and and provide reference data for other countries. Pharmacological Sciences, KU Leuven, Methods: Consumption records of antifungals were collected in Belgian hospitals Leuven, Belgium between 2003 and 2016. Primary healthcare data were available for the azoles for 5Pharmacy Department, University Hospitals Leuven, Leuven, Belgium the period 2010-2016. 6 Healthcare‐Associated Infections and Results: The majority of the antifungal consumption resulted from prescriptions of Antimicrobial Resistance, Sciensano, Brussels, Belgium fluconazole and itraconazole in the ambulatory care while hospitals were responsible 7Faculty of Medicine, Université Libre de for only 6.4% of the total national consumption and echinocandin use was limited. Bruxelles (ULB), Brussels, Belgium The annual average antifungal consumption in hospitals decreased significantly by Correspondence nearly 25% between 2003 and 2016, due to a decrease solely in non-university hos- Berdieke Goemaere, Sciensano, Mycology pitals.
    [Show full text]
  • The Epidemiology and Clinical Features of Balamuthia Mandrillaris Disease in the United States, 1974 – 2016
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Clin Infect Manuscript Author Dis. Author manuscript; Manuscript Author available in PMC 2020 August 28. Published in final edited form as: Clin Infect Dis. 2019 May 17; 68(11): 1815–1822. doi:10.1093/cid/ciy813. The Epidemiology and Clinical Features of Balamuthia mandrillaris Disease in the United States, 1974 – 2016 Jennifer R. Cope1, Janet Landa1,2, Hannah Nethercut1,3, Sarah A. Collier1, Carol Glaser4, Melanie Moser5, Raghuveer Puttagunta1, Jonathan S. Yoder1, Ibne K. Ali1, Sharon L. Roy6 1Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA 2James A. Ferguson Emerging Infectious Diseases Fellowship Program, Baltimore, MD, USA 3Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA 4Kaiser Permanente, San Francisco, CA, USA 5Office of Financial Resources, Centers for Disease Control and Prevention Atlanta, GA, USA 6Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA Abstract Background—Balamuthia mandrillaris is a free-living ameba that causes rare, nearly always fatal disease in humans and animals worldwide. B. mandrillaris has been isolated from soil, dust, and water. Initial entry of Balamuthia into the body is likely via the skin or lungs. To date, only individual case reports and small case series have been published. Methods—The Centers for Disease Control and Prevention (CDC) maintains a free-living ameba (FLA) registry and laboratory. To be entered into the registry, a Balamuthia case must be laboratory-confirmed.
    [Show full text]
  • Epigallocathechin-O-3-Gallate Inhibits Trypanothione Reductase of Leishmania Infantum, Causing Alterations in Redox Balance And
    ORIGINAL RESEARCH published: 25 March 2021 doi: 10.3389/fcimb.2021.640561 Epigallocathechin-O-3-Gallate Inhibits Trypanothione Reductase of Leishmania infantum, Causing Alterations in Redox Balance and Edited by: Leading to Parasite Death Brice Rotureau, Institut Pasteur, France Job D. F. Inacio 1, Myslene S. Fonseca 1, Gabriel Limaverde-Sousa 2, Ana M. Tomas 3,4, Reviewed by: Helena Castro 3 and Elmo E. Almeida-Amaral 1* Wanderley De Souza, Federal University of Rio de Janeiro, 1 Laborato´ rio de Bioqu´ımica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundac¸ão Oswaldo Cruz – FIOCRUZ, Brazil Rio de Janeiro, Brazil, 2 Laborato´ rio de Esquistossomose Experimental, Instituto Osvaldo Cruz, Fundac¸ão Oswaldo Cruz – Andrea Ilari, FIOCRUZ, Rio de Janeiro, Brazil, 3 i3S—Instituto de Investigac¸ão e Inovac¸ão em Sau´ de, Universidade do Porto, Porto, Italian National Research Portugal, 4 ICBAS—Instituto de Cieˆ ncias Biome´ dicas Abel Salazar, Universidade do Porto, Porto, Portugal Council, Italy Marina Gramiccia, ISS, Italy Leishmania infantum is a protozoan parasite that causes a vector borne infectious disease *Correspondence: in humans known as visceral leishmaniasis (VL). This pathology, also caused by L. Elmo E. Almeida-Amaral donovani, presently impacts the health of 500,000 people worldwide, and is treated elmo@ioc.fiocruz.br with outdated anti-parasitic drugs that suffer from poor treatment regimens, severe side Specialty section: effects, high cost and/or emergence of resistant parasites. In previous works we have This article was submitted to disclosed the anti-Leishmania activity of (-)-Epigallocatechin 3-O-gallate (EGCG), a Parasite and Host, flavonoid compound present in green tea leaves.
    [Show full text]
  • Updates in Ocular Antifungal Pharmacotherapy: Formulation and Clinical Perspectives
    Current Fungal Infection Reports (2019) 13:45–58 https://doi.org/10.1007/s12281-019-00338-6 PHARMACOLOGY AND PHARMACODYNAMICS OF ANTIFUNGAL AGENTS (N BEYDA, SECTION EDITOR) Updates in Ocular Antifungal Pharmacotherapy: Formulation and Clinical Perspectives Ruchi Thakkar1,2 & Akash Patil1,2 & Tabish Mehraj1,2 & Narendar Dudhipala1,2 & Soumyajit Majumdar1,2 Published online: 2 May 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Purpose of Review In this review, a compilation on the current antifungal pharmacotherapy is discussed, with emphases on the updates in the formulation and clinical approaches of the routinely used antifungal drugs in ocular therapy. Recent Findings Natamycin (Natacyn® eye drops) remains the only approved medication in the management of ocular fungal infections. This monotherapy shows therapeutic outcomes in superficial ocular fungal infections, but in case of deep-seated mycoses or endophthalmitis, successful therapeutic outcomes are infrequent, as a result of which alternative therapies are sought. In such cases, amphotericin B, azoles, and echinocandins are used off-label, either in combination with natamycin or with each other (frequently) or as standalone monotherapies, and have provided effective therapeutic outcomes. Summary In recent times, amphotericin B, azoles, and echinocandins have come to occupy an important niche in ocular antifungal pharmacotherapy, along with natamycin (still the preferred choice in most clinical cases), in the management of ocular fungal infections.
    [Show full text]
  • Treatment of Visceral Leishmaniasis with Intravenous Pentamidine And
    International Journal of Infectious Diseases 14 (2010) e522–e525 Contents lists available at ScienceDirect International Journal of Infectious Diseases journal homepage: www.elsevier.com/locate/ijid Case Report Treatment of visceral leishmaniasis with intravenous pentamidine and oral fluconazole in an HIV-positive patient with chronic renal failure — a case report and brief review of the literature Jan Rybniker a, Valentin Goede a, Jessica Mertens b, Monika Ortmann c, Wolfgang Kulas d, Matthias Kochanek a, Thomas Benzing e, Jose´ R. Arribas f, Gerd Fa¨tkenheuer a,* a 1st Department of Internal Medicine, University of Cologne, 50924 Cologne, Germany b Department of Gastroenterology, University of Cologne, Cologne, Germany c Institute of Pathology, University of Cologne, Cologne, Germany d Nephrologisches Zentrum Mettmann, Mettmann, Germany e Department of Medicine and Centre for Molecular Medicine, University of Cologne, Cologne, Germany f Enfermedades Infecciosas, Hospital Universitario La Paz, Madrid, Spain ARTICLE INFO SUMMARY Article history: We report the case of an HIV-positive patient with visceral leishmaniasis and several relapses after Received 3 March 2009 treatment with the two first-line anti-leishmanial drugs, liposomal amphotericin B and miltefosine. End- Accepted 4 June 2009 stage renal failure occurred in 2007 when the patient was on long-term treatment with miltefosine. A Corresponding Editor: William Cameron, relapse of leishmaniasis in 2008 was successfully treated with a novel combination regimen of Ottawa, Canada intravenous pentamidine and oral fluconazole. Secondary prophylaxis with fluconazole monotherapy did not prevent parasitological relapse of leishmaniasis. Keywords: ß 2009 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved. Visceral leishmaniasis HIV Fluconazole Pentamidine Miltefosine Renal failure 1.
    [Show full text]
  • Enhanced Activity of Antifungal Drugs Using Natural Phenolics Against Yeast Strains of Candida and Cryptococcus N.C.G.Faria1, J.H
    Letters in Applied Microbiology ISSN 0266-8254 ORIGINAL ARTICLE Enhanced activity of antifungal drugs using natural phenolics against yeast strains of Candida and Cryptococcus N.C.G.Faria1, J.H. Kim3, L.A.P. Gonc¸alves2, M. de L. Martins1, K.L. Chan3 and B.C. Campbell3 1 Instituto de Higiene e Medicina Tropical ⁄ CREM, Universidade Nova de Lisboa, Portugal 2 Instituto de Higiene e Medicina Tropical ⁄ CEAUL, Universidade Nova de Lisboa, Portugal 3 Plant Mycotoxin Research Unit, Western Regional Research Center, ARS-USDA, Albany, CA, USA Keywords Abstract amphotericin B, phenolic, synergism, triazole. Aims: Determine whether certain, natural phenolic compounds enhance activ- Correspondence ity of commercial antifungal drugs against yeast strains of Candida and Crypto- Bruce C. Campbell, Plant Mycotoxin Research coccus neoformans. Unit, Western Regional Research Center, Methods and Results: Twelve natural phenolics were examined for fungicidal USDA-ARS, 800 Buchanan Street, Albany, CA activity against nine reference strains of Candida and one of C. neoformans. Six 94710, USA. compounds were selected for synergistic enhancement of antifungal drugs, E-mail: [email protected] amphotericin B (AMB), fluconazole (FLU) and itraconazole (ITR). Matrix assays 2010 ⁄ 1438: received 19 August 2010, revised of phenolic and drug combinations conducted against one reference strain, each, 14 February 2011 and accepted 15 February of Candida albicans and C. neoformans showed cinnamic and benzoic acids, thy- 2011 mol, and 2,3- and 2,5-dihydroxybenzaldehydes (-DBA) had synergistic interac- tions depending upon drug and yeast strain. 2,5-DBA was synergistic with doi:10.1111/j.1472-765X.2011.03032.x almost all drug and strain combinations.
    [Show full text]
  • Lopinavir, an HIV-1 Peptidase Inhibitor, Induces Alteration on the Lipid Metabolism of Cambridge.Org/Par Leishmania Amazonensis Promastigotes
    Parasitology Lopinavir, an HIV-1 peptidase inhibitor, induces alteration on the lipid metabolism of cambridge.org/par Leishmania amazonensis promastigotes 1 2 3 Special Issue Research Karina M. Rebello , Valter V. Andrade-Neto , Aline A. Zuma , 3 4 Article Maria Cristina M. Motta , Claudia Regina B. Gomes , Marcus Vinícius N. de Souza4, Geórgia C. Atella5, Marta H. Branquinha6, ‡Both authors share senior authorship. André L. S. Santos6, Eduardo Caio Torres-Santos2,‡ and Claudia M. d’Avila-Levy1,‡ Cite this article: Rebello KM et al (2018). Lopinavir, an HIV-1 peptidase inhibitor, 1Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz induces alteration on the lipid metabolism of (FIOCRUZ), Rio de Janeiro, Brazil; 2Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Leishmania amazonensis promastigotes. 3 145 – FIOCRUZ, Rio de Janeiro, Brazil; Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Parasitology , 1304 1310. https://doi.org/ 4 10.1017/S0031182018000823 Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Laboratório de Síntese de Fármacos, Farmanguinhos, FIOCRUZ, Rio de Janeiro, Brazil; 5Instituto de Bioquímica Médica, UFRJ, Rio de Received: 8 February 2018 Janeiro, Brazil and 6Laboratório de Investigação de Peptidases, Instituto de Microbiologia Paulo de Góes, UFRJ, Revised: 3 April 2018 Rio de Janeiro, Brazil Accepted: 5 April 2018 First published online: 28 May 2018 Key words: Abstract Aspartyl; chemotherapy; co-infection; The anti-leishmania effects of HIV peptidase inhibitors (PIs) have been widely reported; how- leishmaniasis; trypanosomatids ever, the biochemical target and mode of action are still a matter of controversy in Leishmania Author for correspondence: parasites.
    [Show full text]
  • Antifungal Drugs
    Antifungal Drugs Antifungal or antimycotic drugs are those agents used to treat diseases caused by fungus. Fungicides are drugs which destroy fungus and fungistatic drugs are those which prevent growth and multiplication of fungi. Collectively these drugs are often referred to as antimycotic or antifungal drugs. General characteristics of fungus: Fungi of medical significance are of two groups: Yeast Unicellular (Candida, Crytococcus) Molds Multicellular; filamentous consist of hyphae (Aspergillus, Microsporum, Trichophyton) They are eukaryotic i.e. they have well defined nucleus and other nuclear materials. They are made of thin threads called hyphae. The hyphae have a cell wall (like plant cells) made of a material called chitin. The hyphae are often multinucleate. They do not have chlorophyll, can’t make own food by photosynthesis, therefore derive nutrients by means of saprophytic or parasitic existence. Cell membrane is made up of ergosterol. Types of fungal infections: Fungal infections are termed as mycoses and in general can be divided into: Superficial infections: Affecting skin, nails, scalp or mucous membranes; e.g. Tinea versicolor Dermatophytosis: Fungi that affect keratin layer of skin, hair and nail; e.g. Tinea pedis, rign worm infection. Candidiasis: Yeast infections caused by (Malassezia pachydermatis), oral thrush (oral candidiasis), vulvo-vaginitis, nail infection. Systemic/Deep infections: Affecting deeper tissues and organ they usually affect lungs, heart and brain leading to pneumonia, endocarditis and meningitis. Systemic infections are associated with immunocompromised patients, these diseases are serious and often life threatening due to the organ involved. Some of the serious systemic fungal infections in man are candidiasis, cryptococcal meningitis, pulmonary aspergillosis.
    [Show full text]
  • The Role of Amphotericin B Alone and in Combination with Different Antibiotics and Antifungals on Biofilms Produced by Candida Species
    FABAD J. Pharm. Sci., 45, 2, 117-124, 2020 RESEARCH ARTICLE The Role of Amphotericin B Alone and in Combination with Different Antibiotics and Antifungals on Biofilms Produced by Candida Species Mayram HACIOGLU*° , Ozlem OYARDI** , Berna OZBEK-CELIK*** The Role of Amphotericin B Alone and in Combination with Amfoterisin B’nin Tek Başına ve Çeşitli Antibiyotik ve Different Antibiotics and Antifungals on Biofilms Produced Antifungallerle Birlikte Candida Biyofilmleri Üzerine Etkisi by Candida Species SUMMARY ÖZ Biofilm formation by Candida species is highly resistant to commonly Biyofilm oluşumu Candida türlerinde antifungallere daha dirençli used antifungal agents and is difficult to treat. Therefore, this study olmalarını sağladığından tedavisi güç enfeksiyonlara neden focused on effectiveness of combination therapy against Candida olmaktadır. Bu amaçla, bu çalışmada Candida biyofilmlerine biofilms. The antimicrobial activities of amphotericin B (1 µg/ karşı kombinasyon tedavisinin etkinliği araştırılmıştır. ml or 10 µg/ml) alone or in combination with various antibiotics Amfoterisin B’nin (1 µg / ml veya 10 µg / ml) tek başına veya (doxycycline (20 µg/ml), tigecycline (20 µg/ml), colistin (30 µg/ml), çeşitli antibiyotiklerle [(doksisiklin (20 µg / ml), tigesiklin (20 µg / rifampicin (120 µg/ml), ciprofloxacin (20 µg/ml)) or antifungals ml), kolistin (30 µg / ml), rifampisin (120 µg / ml), siprofloksasin (clotrimazole (2.5 µg/ml), anidulafungin (10 µg/ml), caspofungin (20 µg / ml)] veya çeşitli antifungaller [(klotrimazol (2.5 µg / ml), (10 µg/ml), itraconazole (2.5 µg/ml) and fluconazole (10 µg/ml)) anidulafungin (10 µg / ml), kaspofungin (10 µg / ml), itrakonazol were investigated against fungal biofilms produced by C. albicans (2.5 µg / ml), flukonazol (10 µg/ml)] ile kombinasyonlarının SC5314, C.
    [Show full text]