Ambisome® (Amphotericin B) Liposome for Injection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pharmacokinetics of Salicylic Acid Following Intravenous and Oral Administration of Sodium Salicylate in Sheep
animals Article Pharmacokinetics of Salicylic Acid Following Intravenous and Oral Administration of Sodium Salicylate in Sheep Shashwati Mathurkar 1,*, Preet Singh 2 ID , Kavitha Kongara 2 and Paul Chambers 2 1 1B, He Awa Crescent, Waikanae 5036, New Zealand 2 School of Veterinary Sciences, College of Sciences, Massey University, Palmerston North 4474, New Zealand; [email protected] (P.S.); [email protected] (K.K.); [email protected] (P.C.) * Correspondence: [email protected]; Tel.: +64-221-678-035 Received: 13 June 2018; Accepted: 16 July 2018; Published: 18 July 2018 Simple Summary: Scarcity of non-steroidal anti-inflammatory drugs (NSAID) to minimise the pain in sheep instigated the current study. The aim of this study was to know the pharmacokinetic parameters of salicylic acid in New Zealand sheep after administration of multiple intravenous and oral doses of sodium salicylate (sodium salt of salicylic acid). Results of the study suggest that the half-life of the drug was shorter and clearance was faster after intravenous administration as compared to that of the oral administration. The minimum effective concentration required to produce analgesia in humans (16.8 µL) was achieved in sheep for about 0.17 h in the current study after intravenous administration of 100 and 200 mg/kg body weight of sodium salicylate. However, oral administration of these doses failed to achieve the minimum effective concentration as mentioned above. This study is of significance as it adds valuable information on pharmacokinetics and its variation due to breed, species, age, gender and environmental conditions. -
Effect of Liposome Composition and Other Factors on the Targeting of Liposomes to Experimental Tumors: Biodistribution and Imaging Studies1
(CANCER RESEARCH SO.6371-6378. October I. 1990] Effect of Liposome Composition and Other Factors on the Targeting of Liposomes to Experimental Tumors: Biodistribution and Imaging Studies1 Alberto Gabizon,2 David C. Price, John Huberty, Robert S. Bresalier, and Demetrios Papahadjopoulos Cancer Research Institute ¡A.(j., I). P.] and Department of Radiology, [D. C. P., J. H.J, L'nirersity of California, San Francisco, California 9414}; (iastroinlestinal Research Laboratories, I eteram Administration Medical Center, and Department of Medicine, I 'nirersity of California, San Francisco, California 94121 [R. S. B.J; and Liposome Technology Inc., Mento Park, California 94025 ¡A.CiJ ABSTRACT temperature, cholesterol, and careful size control result in in hibition of RES uptake with concomitant enhancement of We have examined the distribution of radiolabeled liposomes in tumor- tumor uptake (5). bearing mice after i.v. injection. Two mouse tumors (B16 melanoma, In this report, we describe tissue distribution and imaging J6456 lymphoma) and a human tumor (LS174T colon carcinoma) inoc ulated i.m., S.C.,or in the hind footpad were used in these studies. When studies with transplantable mouse and human tumor models various liposome compositions with a mean vesicle diameter of ~ 100 nm using 3 different radiolabels of liposomes. The findings here were compared using a radiolabel of gallium-67-deferoxamine, optimal indicate that the concentration of liposome-encapsulated radio- tumor localization was obtained with liposomes containing a phosphati- labels in tumors is well above that of most other tissues and dylcholine of high phase-transition temperature and a small molar frac approximates the values obtained in the liver. -
204684Orig1s000
CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 204684Orig1s000 OFFICE DIRECTOR MEMO Deputy Office Director Decisional Memo Page 2 of 17 NDA 204,684 Miltefosine Capsules 1. Introduction Leishmania organisms are intracellular protozoan parasites that are transmitted to a mammalian host by the bite of the female phlebotomine sandfly. The main clinical syndromes are visceral leishmaniasis (VL), cutaneous leishmaniasis (CL), and mucosal leishmaniasis (ML). VL is the result of systemic infection and is progressive over months or years. Clinical manifestations include fever, hepatomegaly, splenomegaly, and bone marrow involvement with pancytopenia. VL is fatal if untreated. Liposomal amphotericin B (AmBisome®) was FDA approved in 1997 for the treatment of VL. CL usually presents as one or more skin ulcers at the site of the sandfly bite. In most cases, the ulcer spontaneously resolves within several months, leaving a scar. The goals of therapy are to accelerate healing, decrease morbidity and decrease the risk of relapse, local dissemination, or mucosal dissemination. There are no FDA approved drugs for the treatment of CL. Rarely, CL disseminates from the skin to the naso-oropharyngeal mucosa, resulting in ML. ML can also develop some time after CL spontaneous ulcer healing. The risk of ML is thought to be highest with CL caused by the subgenus Viannia. ML is characterized in the medical literature as progressive with destruction of nasal and pharyngeal structures, and death may occur due to complicating aspiration pneumonia. There are no FDA approved drugs for the treatment of ML. Paladin Therapeutics submitted NDA 204, 684 seeking approval of miltefosine for the treatment of VL caused by L. -
Liposome-Based Drug Delivery Systems in Cancer Immunotherapy
pharmaceutics Review Liposome-Based Drug Delivery Systems in Cancer Immunotherapy Zili Gu 1 , Candido G. Da Silva 1 , Koen van der Maaden 2,3, Ferry Ossendorp 2 and Luis J. Cruz 1,* 1 Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands 2 Tumor Immunology Group, Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands 3 TECOdevelopment GmbH, 53359 Rheinbach, Germany Received: 1 October 2020; Accepted: 2 November 2020; Published: 4 November 2020 Abstract: Cancer immunotherapy has shown remarkable progress in recent years. Nanocarriers, such as liposomes, have favorable advantages with the potential to further improve cancer immunotherapy and even stronger immune responses by improving cell type-specific delivery and enhancing drug efficacy. Liposomes can offer solutions to common problems faced by several cancer immunotherapies, including the following: (1) Vaccination: Liposomes can improve the delivery of antigens and other stimulatory molecules to antigen-presenting cells or T cells; (2) Tumor normalization: Liposomes can deliver drugs selectively to the tumor microenvironment to overcome the immune-suppressive state; (3) Rewiring of tumor signaling: Liposomes can be used for the delivery of specific drugs to specific cell types to correct or modulate pathways to facilitate better anti-tumor immune responses; (4) Combinational therapy: Liposomes are ideal vehicles for the simultaneous delivery of drugs to be combined with other therapies, including chemotherapy, radiotherapy, and phototherapy. In this review, different liposomal systems specifically developed for immunomodulation in cancer are summarized and discussed. Keywords: liposome; drug delivery; cancer immunotherapy; immunomodulation 1. The Potential of Immunotherapy for the Treatment of Cancer Cancer immunotherapy has been widely explored because of its durable and robust effects [1]. -
Systemic Antifungal Drug Use in Belgium—
Received: 7 October 2018 | Revised: 28 March 2019 | Accepted: 14 March 2019 DOI: 10.1111/myc.12912 ORIGINAL ARTICLE Systemic antifungal drug use in Belgium—One of the biggest antifungal consumers in Europe Berdieke Goemaere1 | Katrien Lagrou2,3* | Isabel Spriet4,5 | Marijke Hendrickx1 | Eline Vandael6 | Pierre Becker1 | Boudewijn Catry6,7 1BCCM/IHEM Fungal Collection, Service of Mycology and Aerobiology, Sciensano, Summary Brussels, Belgium Background: Reports on the consumption of systemic antifungal drugs on a national 2 Department of Microbiology and level are scarce although of high interest to compare trends and the associated epi- Immunology, KU Leuven, Leuven, Belgium 3Clinical Department of Laboratory demiology in other countries and to assess the need for antifungal stewardship Medicine, National Reference Centre for programmes. Mycosis, University Hospitals Leuven, Leuven, Belgium Objectives: To estimate patterns of Belgian inpatient and outpatient antifungal use 4Department of Pharmaceutical and and provide reference data for other countries. Pharmacological Sciences, KU Leuven, Methods: Consumption records of antifungals were collected in Belgian hospitals Leuven, Belgium between 2003 and 2016. Primary healthcare data were available for the azoles for 5Pharmacy Department, University Hospitals Leuven, Leuven, Belgium the period 2010-2016. 6 Healthcare‐Associated Infections and Results: The majority of the antifungal consumption resulted from prescriptions of Antimicrobial Resistance, Sciensano, Brussels, Belgium fluconazole and itraconazole in the ambulatory care while hospitals were responsible 7Faculty of Medicine, Université Libre de for only 6.4% of the total national consumption and echinocandin use was limited. Bruxelles (ULB), Brussels, Belgium The annual average antifungal consumption in hospitals decreased significantly by Correspondence nearly 25% between 2003 and 2016, due to a decrease solely in non-university hos- Berdieke Goemaere, Sciensano, Mycology pitals. -
Entrapment of Citrus Limon Var. Pompia Essential Oil Or Pure Citral in Liposomes Tailored As Mouthwash for the Treatment of Oral Cavity Diseases
pharmaceuticals Article Entrapment of Citrus limon var. pompia Essential Oil or Pure Citral in Liposomes Tailored as Mouthwash for the Treatment of Oral Cavity Diseases 1, 1, 2 3 Lucia Palmas y , Matteo Aroffu y, Giacomo L. Petretto , Elvira Escribano-Ferrer , Octavio Díez-Sales 4, Iris Usach 4, José-Esteban Peris 2, Francesca Marongiu 1, Mansureh Ghavam 5, Sara Fais 6, Germano Orrù 6, Rita Abi Rached 7, Maria Letizia Manca 1,* and Maria Manconi 1 1 Department of Scienze della Vita e dell’Ambiente, Drug Science Division, University of Cagliari, 09124 Cagliari, Italy; [email protected] (L.P.); matteo.aroff[email protected] (M.A.); [email protected] (F.M.); [email protected] (M.M.) 2 Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy; [email protected] (G.L.P.); [email protected] (J.-E.P.) 3 Biopharmaceutics and Pharmacokinetics Unit, Institute for Nanoscience and Nanotechnology, University of Barcelona, 08193 Barcelona, Spain; [email protected] 4 Department of Pharmacy, Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, 46100 Valencia, Spain; [email protected] (O.D.-S.); [email protected] (I.U.) 5 Department of Range and Watershed Management, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan 8731753153, Iran; [email protected] 6 Department of Surgical Science, University of Cagliari, Molecular Biology Service Lab (MBS), Via Ospedale 40, 09124 Cagliari, Italy; [email protected] (S.F.); [email protected] (G.O.) 7 Centre d’Analyses et de Recherche, Unité de Recherche TVA, Laboratoire CTA, Faculté des Sciences, Université Saint-Joseph, B.P. -
Updates in Ocular Antifungal Pharmacotherapy: Formulation and Clinical Perspectives
Current Fungal Infection Reports (2019) 13:45–58 https://doi.org/10.1007/s12281-019-00338-6 PHARMACOLOGY AND PHARMACODYNAMICS OF ANTIFUNGAL AGENTS (N BEYDA, SECTION EDITOR) Updates in Ocular Antifungal Pharmacotherapy: Formulation and Clinical Perspectives Ruchi Thakkar1,2 & Akash Patil1,2 & Tabish Mehraj1,2 & Narendar Dudhipala1,2 & Soumyajit Majumdar1,2 Published online: 2 May 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Purpose of Review In this review, a compilation on the current antifungal pharmacotherapy is discussed, with emphases on the updates in the formulation and clinical approaches of the routinely used antifungal drugs in ocular therapy. Recent Findings Natamycin (Natacyn® eye drops) remains the only approved medication in the management of ocular fungal infections. This monotherapy shows therapeutic outcomes in superficial ocular fungal infections, but in case of deep-seated mycoses or endophthalmitis, successful therapeutic outcomes are infrequent, as a result of which alternative therapies are sought. In such cases, amphotericin B, azoles, and echinocandins are used off-label, either in combination with natamycin or with each other (frequently) or as standalone monotherapies, and have provided effective therapeutic outcomes. Summary In recent times, amphotericin B, azoles, and echinocandins have come to occupy an important niche in ocular antifungal pharmacotherapy, along with natamycin (still the preferred choice in most clinical cases), in the management of ocular fungal infections. -
Enhanced Activity of Antifungal Drugs Using Natural Phenolics Against Yeast Strains of Candida and Cryptococcus N.C.G.Faria1, J.H
Letters in Applied Microbiology ISSN 0266-8254 ORIGINAL ARTICLE Enhanced activity of antifungal drugs using natural phenolics against yeast strains of Candida and Cryptococcus N.C.G.Faria1, J.H. Kim3, L.A.P. Gonc¸alves2, M. de L. Martins1, K.L. Chan3 and B.C. Campbell3 1 Instituto de Higiene e Medicina Tropical ⁄ CREM, Universidade Nova de Lisboa, Portugal 2 Instituto de Higiene e Medicina Tropical ⁄ CEAUL, Universidade Nova de Lisboa, Portugal 3 Plant Mycotoxin Research Unit, Western Regional Research Center, ARS-USDA, Albany, CA, USA Keywords Abstract amphotericin B, phenolic, synergism, triazole. Aims: Determine whether certain, natural phenolic compounds enhance activ- Correspondence ity of commercial antifungal drugs against yeast strains of Candida and Crypto- Bruce C. Campbell, Plant Mycotoxin Research coccus neoformans. Unit, Western Regional Research Center, Methods and Results: Twelve natural phenolics were examined for fungicidal USDA-ARS, 800 Buchanan Street, Albany, CA activity against nine reference strains of Candida and one of C. neoformans. Six 94710, USA. compounds were selected for synergistic enhancement of antifungal drugs, E-mail: [email protected] amphotericin B (AMB), fluconazole (FLU) and itraconazole (ITR). Matrix assays 2010 ⁄ 1438: received 19 August 2010, revised of phenolic and drug combinations conducted against one reference strain, each, 14 February 2011 and accepted 15 February of Candida albicans and C. neoformans showed cinnamic and benzoic acids, thy- 2011 mol, and 2,3- and 2,5-dihydroxybenzaldehydes (-DBA) had synergistic interac- tions depending upon drug and yeast strain. 2,5-DBA was synergistic with doi:10.1111/j.1472-765X.2011.03032.x almost all drug and strain combinations. -
Antifungal Drugs
Antifungal Drugs Antifungal or antimycotic drugs are those agents used to treat diseases caused by fungus. Fungicides are drugs which destroy fungus and fungistatic drugs are those which prevent growth and multiplication of fungi. Collectively these drugs are often referred to as antimycotic or antifungal drugs. General characteristics of fungus: Fungi of medical significance are of two groups: Yeast Unicellular (Candida, Crytococcus) Molds Multicellular; filamentous consist of hyphae (Aspergillus, Microsporum, Trichophyton) They are eukaryotic i.e. they have well defined nucleus and other nuclear materials. They are made of thin threads called hyphae. The hyphae have a cell wall (like plant cells) made of a material called chitin. The hyphae are often multinucleate. They do not have chlorophyll, can’t make own food by photosynthesis, therefore derive nutrients by means of saprophytic or parasitic existence. Cell membrane is made up of ergosterol. Types of fungal infections: Fungal infections are termed as mycoses and in general can be divided into: Superficial infections: Affecting skin, nails, scalp or mucous membranes; e.g. Tinea versicolor Dermatophytosis: Fungi that affect keratin layer of skin, hair and nail; e.g. Tinea pedis, rign worm infection. Candidiasis: Yeast infections caused by (Malassezia pachydermatis), oral thrush (oral candidiasis), vulvo-vaginitis, nail infection. Systemic/Deep infections: Affecting deeper tissues and organ they usually affect lungs, heart and brain leading to pneumonia, endocarditis and meningitis. Systemic infections are associated with immunocompromised patients, these diseases are serious and often life threatening due to the organ involved. Some of the serious systemic fungal infections in man are candidiasis, cryptococcal meningitis, pulmonary aspergillosis. -
In Vitro Release Test Methods for Drug Formulations for Parenteral Applications
dx.doi.org/10.14227/DT250418P8 Reprinted with permission. Copyright 2018. The United States Pharmacopeial Convention. All rights reserved. In Vitro Release Test Methods for Drug Formulations for Parenteral Applications Vivian Gray,a Susan Cady,b David Curran,c James DeMuth,d Okponanabofa Eradiri,e Munir Hussain,f Johannes Krämer,g John Shabushnig,h Erika Stippler,i,j a V. A. Gray Consulting, Inc, Hockessin, DE. b Boehringer Ingelheim Animal Health, North Brunswick, NJ. c GlaxoSmithKline R&D, King of Prussia, PA. d University of Wisconsin, Madison, WI. e Food and Drug Administration, Silver Spring, MD.—The views presented in this article do not necessarily reflect those of the FDA. No official support or endorsement by the Food and Drug Administration is intended or should be inferred. f Bristol-Myers Squibb Company, New Brunswick, NJ. (Retired). g PHAST, Homburg, Germany. h Insight Pharma Consulting, LLC, Marshall, MI. i United States Pharmacopeia, Rockville, MD. j Correspondence should be addressed to: Desmond G Hunt, Principal Scientific Liaison, US Pharmacopeial Convention, 12601 Twinbrook Parkway, Rockville, MD 20852-1790; tel: +1.301.816.8341; email: [email protected] ABSTRACT In vitro drug release testing for parenteral drug formulations could benefit from more regulatory guidance and compendial information as this testing is a part of current expectations for drug product approval. This Stimuli article discusses in vitro drug release methods for those parenteral drug formulations that are not solutions and explores the challenges involved in using these methods for each formulation type. INTRODUCTION particulate matter, sterility, bacterial endotoxins, water his Stimuli article is the work of some members of the content, aluminum content, and content uniformity. -
The Role of Amphotericin B Alone and in Combination with Different Antibiotics and Antifungals on Biofilms Produced by Candida Species
FABAD J. Pharm. Sci., 45, 2, 117-124, 2020 RESEARCH ARTICLE The Role of Amphotericin B Alone and in Combination with Different Antibiotics and Antifungals on Biofilms Produced by Candida Species Mayram HACIOGLU*° , Ozlem OYARDI** , Berna OZBEK-CELIK*** The Role of Amphotericin B Alone and in Combination with Amfoterisin B’nin Tek Başına ve Çeşitli Antibiyotik ve Different Antibiotics and Antifungals on Biofilms Produced Antifungallerle Birlikte Candida Biyofilmleri Üzerine Etkisi by Candida Species SUMMARY ÖZ Biofilm formation by Candida species is highly resistant to commonly Biyofilm oluşumu Candida türlerinde antifungallere daha dirençli used antifungal agents and is difficult to treat. Therefore, this study olmalarını sağladığından tedavisi güç enfeksiyonlara neden focused on effectiveness of combination therapy against Candida olmaktadır. Bu amaçla, bu çalışmada Candida biyofilmlerine biofilms. The antimicrobial activities of amphotericin B (1 µg/ karşı kombinasyon tedavisinin etkinliği araştırılmıştır. ml or 10 µg/ml) alone or in combination with various antibiotics Amfoterisin B’nin (1 µg / ml veya 10 µg / ml) tek başına veya (doxycycline (20 µg/ml), tigecycline (20 µg/ml), colistin (30 µg/ml), çeşitli antibiyotiklerle [(doksisiklin (20 µg / ml), tigesiklin (20 µg / rifampicin (120 µg/ml), ciprofloxacin (20 µg/ml)) or antifungals ml), kolistin (30 µg / ml), rifampisin (120 µg / ml), siprofloksasin (clotrimazole (2.5 µg/ml), anidulafungin (10 µg/ml), caspofungin (20 µg / ml)] veya çeşitli antifungaller [(klotrimazol (2.5 µg / ml), (10 µg/ml), itraconazole (2.5 µg/ml) and fluconazole (10 µg/ml)) anidulafungin (10 µg / ml), kaspofungin (10 µg / ml), itrakonazol were investigated against fungal biofilms produced by C. albicans (2.5 µg / ml), flukonazol (10 µg/ml)] ile kombinasyonlarının SC5314, C. -
Preparation and Evaluation of Liposome Containing Clove Oil
PREPARATION AND EVALUATION OF LIPOSOME CONTAINING CLOVE OIL By Pilaslak Akrachalanont A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree MASTER OF PHARMACY Program of Pharmaceutical Technology Graduate School SILPAKORN UNIVERSITY 2008 PREPARATION AND EVALUATION OF LIPOSOME CONTAINING CLOVE OIL By Pilaslak Akrachalanont A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree MASTER OF PHARMACY Program of Pharmaceutical Technology Graduate School SILPAKORN UNIVERSITY 2008 !"#$% &'(% !)%*+!,-.&"-#,//1(",$3 .!('1( $3! ,!" 4"-#2552 .)6.&$3! ,!" The graduate school, Silpakorn University has approved and accredited the thesis title of Preparation and Evaluation of Liposome Containing Clove Oil submitted by Miss Pilaslak Akarachalanon as a partial fulfillment of the requirements for the degree of master of pharmacy, program of pharmaceutical technology. (Associate Professor Sirichai Chinatangkul, Ph.D.) Dean of graduate school ./.../... The Thesis advisors 1. Associate Professor Somlak Kongmuang, Ph.D. 2. Assistant Professor Police Captain Malai Sathirapund 3. Associate Professor Uthai Sotanaphun, Ph.D. The Thesis Examination Committee Chairman (Parichat Chomto, Ph.D.) ../../.. .Member (Prof. Garnpimol Rittidej, Ph.D.) ../../.. .Member (Assoc.Prof. Somlak Kongmuang, Ph.D.) ../../.. .Member Member (Assist.Prof. Pol.Capt. Malai Sathirapund) (Assoc.Prof. Uthai Sotanaphun, Ph.D.) ../../.. ../../ 47353202 : MAJOR : PHARMACEUTICAL TECHNOLOGY KEY WORDS : LOPOSOME / CLOVE OIL / EUGENOL / THIN FILM METHOD PILASLAK AKRACHALANONT : PREPARATION AND EVALUATION OF LIPOSOME CONTAINING CLOVE OIL. THESIS ADVISORS : ASSOC.PROF.SOMLAK KONGMUANG, Ph.D., ASSIST.PROF POL.CAPT. MALAI SATHIRAPUND, AND ASSOC.PROF. UTHAI SOTANAPHUN, Ph.D. 117 pp. This research particularly focuses on preparation of liposomes which can efficiently maintain stability and quality of clove oil. The research method used in this study can be divided into five main steps.