Bionb 424 Neuroethology

Total Page:16

File Type:pdf, Size:1020Kb

Bionb 424 Neuroethology BioNB 4240 1. NEUROETHOLOGY: AN INTRODUCTION Carl D. Hopkins Dept. Neurobiology & Behavior Aug. 24, 2011 1 2 BioNB 4240 Carl D. Hopkins Name____________________________________________ 263 Mudd Hall NetID____________________________________________ Major ________________Concentration________________ CDH8 Class Schedule (place an X on existing classes) Wednesdays 2-4 PM or when door is Mon Wed Fri open. 9:05 10:10 11:15 12:20 1:25 3 4 L01. Introduction to Neuroethology 1. Course organization and policy 2. Standing on the shoulders of giants 3. Nervous systems Background courses in Neurobiology or related fields 4. Neuroethology example: behavior and neurobiology of the star-nose mole Career goals 5 6 1 Reading Assignments Writing Assignments Simmons, P. and Young, D. (2010) Nerve Cells and Animal Behaviour (3rd Instead of Weekly take home exams: edition). Cambridge University Press, New York. Due usually on Mondays when schedule permits. Problem sets over the previous week’s material. 25% of course grade. Late policy Original reprints on course website courses.cornell.edu/bionb4240 7 8 Discussion and Oral Website Presentation http://courses.cit.cornell.edu/bionb4240/index.htm Wednesdays 9 AM • Attendance. User____________ • Journal Club format: original papers from scientific literature. Password________ Student presentations: 13 Wednesdays x 2 students = 26 Discussions 4, 7, 11, 15, 26 (assigned paper) Discussions 19, 23, 30, 34, 38, 42, 46, 52 (student pick) • Written summary: respond to questions. • Participation 25% 9 10 The trail is not a trail DISCUSSIONS Gary Snyder SEE COURSE CALENDAR for open dates. I drove down the Freeway Contact C. Hopkins by email to reserve a date. And turned off at an exit Discussion leaders picks Reading Selection and Assignment for that day And went along a highway Emphasis on current research, important papers, original results (usually Til it came to a sideroad not review papers): a “Journal Club” Drove up the sideroad Student signup starts Monday, Aug 29. Til it turned to a dirt road Full of bumps, and stopped. Walked up a trail But the trail got rough And it faded away— Out in the open, Everywhere to go. 11 12 2 PROJECTS Final Exam No final exam for students who complete 9 of 12 written assignments. NEUROETHOLOGICAL CONCEPTS First Draft Due: November 18, 2011 FINAL DRAFT: December 5, 2011 13 14 WEBSITE http://courses.cit.cornell.edu/bionb424 Neuroethology A comparative and evolutionary approach to the study of the nervous system and its role in behavior. A biological approach to the study of behavior and its neural basis. “Levels of analysis” 15 16 Erich von Holst Hermann Nico Tinbergen Karl von Frisch von Konrad Lorenz “Each of us has cause to think with deep gratitude of Helmholtz those who have lighted the flame within us.” ---Albert Schweitzer Mark Konishi Fernando Robert Catherine Carr Peter Marler Nottebohm Capranica “If I have seen a little further it is by standing on the Walter Heiligenberg shoulders of Giants.” -- Isaac Newton Nobuo Suga Theodore H. Bullock 18 17 Donald Griffin Kenneth Roeder Darcy Kelly 3 N E U R O E T H O L O G Y BRAINARD http://neurotree.org/neurotree/index.php DOUPE CARR CAREW CARLSON KAWASAKI ROSE METZNER GILBERT ETHOLOGY VOLMAN HARRIS-WARRICK BASS RYAN FRIEDMAN CRAWFORD NARINS CLAYTON KNUDSEN MARDER BURROWS Konrad LORENZ SEELEY MENZEL WINE KELLY BARLOW An early interest in natural history, evolution & palentology LAND KRASNE COLLETT DEVOOGD ARNOLD HOY KRAVITZ Medical training: comparative anatomy & embryology. NEUWEILER SELVERSTON KANDEL Oskar Heinroth (comparative studies of behavior of ducks) KREBS HOPKINS KNIGHT EMLEN RATLIFF WILLIAMS SIMMONS BELL PEARSON NORTHCUTT KRISTAN PAYNE SUGA KEETON GOULD KUFFLER WILSON SCHNITZLER CAMHI SZABO Fixed action patterns: spontaneous, internally generated NOTTEBOHM KENNEDY HOWLAND KONISHI CAPRANICA behavior (not a reflex chain) MARLER BULLOCK HORRIDGE HUBEL/WIESEL HINDE MANNING HEILIGENBERG ROEDER HOYLE Theory of drives: psychohydraulic model REICHERT LETVIN EWERT GRIFFIN HARTLINE MITTLESTEADT ECCLES IMMELMAN LINDAUER Behavior as an inherited trait, used for taxonomy, phylogenetic ALCOCK FESSARD LISSMANN HUBER AUTRUM HUXLEY THORPE analysis. MAYR BAERENDS VON FRISCH HODGKIN Social imprinting in geese. VON HOLST TINBERGEN ASCHOFF LORENZ ETHOLOGY CAJAL SHERRINGTON EVOLUTION THORNDIKE WATSON CELLULAR PAVLOV LOEB DARWIN NEUROBIOLOGY 20 ETHOLOGY ETHOLOGY Niko TINBERGEN Karl von Frisch Fixed action pattern (with Lorenz) A study of Instinct (1951) Comparative physiology Herring Gull Behavior: ethogram of action patterns Dance language of honeybee Release mechanisms. Hearing in fish Four questions for research on behavior: • immediate causation Sensory biology • development • evolution • function 21 22 Where do nervous systems occur? Tree of Life image from www.tolweb.org tree of life web project 4 Nerve nets in hydra and jellyfish (Cnidaria) Single cells colony Nerve net in hydra Neurons in jellyfish polyp Centralization Mizunami, M. Yokohari, Takahata, (2004) bilateral Further exploration into the adaptive nerve cords significance of the arthropod “microbrain”. Zool. primitive brain nerve cords Sci. 21: 1141. Cephalization Ventral nerve tract Cephalization ganglia Mizunami, M. Yokohari, Takahata, (2004) Further exploration into the adaptive significance of the arthropod “microbrain”. Zool. Sci. 21: 1141. 5 Star Nose Mole Condylura cristata 34 Ken Catania 35 36 6.
Recommended publications
  • The Neurobehavioral Nature of Fishes and the Question of Awareness and Pain
    Reprinted with permission from CRC Press. 2000 NW Corporate Blvd. Boca Raton, FL 33431, USA Tel: 1(800)272-7737 http://www.crcpress.com 2.1. Reviews in Fisheries Science, 10(1): 1–38 (2002) The Neurobehavioral Nature of Fishes and the Question of Awareness and Pain James D. Rose Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071 * Send correspondence to: Dr. James D. Rose, Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071. e-mail: [email protected] 1064-1262 /02/$.50 ©2002 by CRC Press LLC ABSTRACT: This review examines the neurobehavioral nature of fishes and addresses the question of whether fishes are capable of experiencing pain and suffering. The detrimental effects of anthropomorphic thinking and the importance of an evolutionary perspective for understanding the neurobehavioral differences between fishes and humans are discussed. The differences in central nervous system structure that underlie basic neurobehavioral differences between fishes and humans are described. The literature on the neural basis of consciousness and of pain is reviewed, showing that: (1) behavioral responses to noxious stimuli are separate from the psychological experience of pain, (2) awareness of pain in humans depends on functions of specific regions of cerebral cortex, and (3) fishes lack these essential brain regions or any functional equivalent, making it untenable that they can experience pain. Because the experience of fear, similar to pain, depends on cerebral cortical structures that are absent from fish brains, it is concluded that awareness of fear is impossible for fishes. Although it is implausible that fishes can experience pain or emotions, they display robust, nonconscious, neuroendocrine, and physiological stress responses to noxious stimuli.
    [Show full text]
  • Observation of Behavior, Inference of Function, and the Study of Learning
    Psychonomic Bulletin & Review 1994, 1 (1), 73-88 Observation of behavior, inference of function, and the study of learning WILLIAM TIMBERLAKE and FRANCISCO J. SILVA Indiana University, Bloomington, Indiana Before the present century, the primary means of studying animals was observation of the form and effects of their behavior combined with presumption of their intent. In the present century, ethologists continued to emphasize observation of form and replaced presumption of intent with the study of proximate function and evolution. In contrast, most learning psychologists mini­ mized both observation of form and presumption of intent by defining behavior in terms of sim­ ple environmental effects and establishing intent by deprivation operations, We discuss advan­ tages of the use of observation in the study of learning, examine arguments that it is unnecessary, irrelevant, and unscientific, and consider some practical considerations in using observation. We conclude that observation of the form of behavior and concern with its ecological function should be an important part of the arsenal of techniques used to study learning. Observation has been the dominant method of study­ imals (Warden, 1927), anthropomorphically viewing the ing the behavior of animals since the beginning of re­ latter as partially disguised people enmeshed in a web of corded history (Warden, 1927). Observation provided the human goals, social relations, and rules (Aesop, approx­ underpinnings of the writings of systematists such as imately 620 B.C.; Selous, 1908). Other observers adhered Aristotle (384-322 B.C.) and Darwin (1859), story tellers to a more animal-centered description and inference of such as Seton (1913) and Kipling (1894), collectors of function (Craig, 1918; Huxley, 1914).
    [Show full text]
  • Masakazu Konishi
    Masakazu Konishi BORN: Kyoto, Japan February 17, 1933 EDUCATION: Hokkaido University, Sapporo, Japan, B.S. (1956) Hokkaido University, Sapporo, Japan, M.S. (1958) University of California, Berkeley, Ph.D. (1963) APPOINTMENTS: Postdoctoral Fellow, University of Tübingen, Germany (1963–1964) Postdoctoral Fellow, Division of Experimental Neurophysiology, Max-Planck Institut, Munich, Germany (1964–1965) Assistant Professor of Biology, University of Wisconsin, Madison (1965–1966) Assistant Professor of Biology, Princeton University (1966–1970) Associate Professor of Biology, Princeton University (1970–1975) Professor of Biology, California Institute of Technology (1975– 1980) Bing Professor of Behavioral Biology, California Institute of Technology (1980– ) HONORS AND AWARDS (SELECTED): Member, American Academy of Arts and Sciences (1979) Member, National Academy of Sciences (1985) President, International Society for Neuroethology (1986—1989) F. O. Schmitt Prize (1987) International Prize for Biology (1990) The Lewis S. Rosenstiel Award, Brandeis University (2004) Edward M. Scolnick Prize in Neuroscience, MIT (2004) Gerard Prize, the Society for Neuroscience (2004) Karl Spencer Lashley Award, The American Philosophical Society (2004) The Peter and Patricia Gruber Prize in Neuroscience, The Society for Neuroscience (2005) Masakazu (Mark) Konishi has been one of the leaders in avian neuroethology since the early 1960’s. He is known for his idea that young birds initially remember a tutor song and use the memory as a template to guide the development of their own song. He was the fi rst to show that estrogen prevents programmed cell death in female zebra fi nches. He also pioneered work on the brain mechanisms of sound localization by barn owls. He has trained many students and postdoctoral fellows who became leading neuroethologists.
    [Show full text]
  • Naturalizing Anthropomorphism: Behavioral Prompts to Our Humanizing of Animals
    WellBeing International WBI Studies Repository 2007 Naturalizing Anthropomorphism: Behavioral Prompts to Our Humanizing of Animals Alexandra C. Horowitz Barnard College Marc Bekoff University of Colorado Follow this and additional works at: https://www.wellbeingintlstudiesrepository.org/acwp_habr Part of the Animal Studies Commons, Comparative Psychology Commons, and the Other Anthropology Commons Recommended Citation Horowitz, A. C., & Bekoff, M. (2007). Naturalizing anthropomorphism: Behavioral prompts to our humanizing of animals. Anthrozoös, 20(1), 23-35. This material is brought to you for free and open access by WellBeing International. It has been accepted for inclusion by an authorized administrator of the WBI Studies Repository. For more information, please contact [email protected]. Naturalizing Anthropomorphism: Behavioral Prompts to Our Humanizing of Animals Alexandra C. Horowitz1 and Marc Bekoff2 1 Barnard College 2 University of Colorado – Boulder KEYWORDS anthropomorphism, attention, cognitive ethology, dogs, humanizing animals, social play ABSTRACT Anthropomorphism is the use of human characteristics to describe or explain nonhuman animals. In the present paper, we propose a model for a unified study of such anthropomorphizing. We bring together previously disparate accounts of why and how we anthropomorphize and suggest a means to analyze anthropomorphizing behavior itself. We introduce an analysis of bouts of dyadic play between humans and a heavily anthropomorphized animal, the domestic dog. Four distinct patterns of social interaction recur in successful dog–human play: directed responses by one player to the other, indications of intent, mutual behaviors, and contingent activity. These findings serve as a preliminary answer to the question, “What behaviors prompt anthropomorphisms?” An analysis of anthropomorphizing is potentially useful in establishing a scientific basis for this behavior, in explaining its endurance, in the design of “lifelike” robots, and in the analysis of human interaction.
    [Show full text]
  • The Cognitive Animal Empirical and Theoretical Perspectives on Animal Cognition
    This PDF includes a chapter from the following book: The Cognitive Animal Empirical and Theoretical Perspectives on Animal Cognition © 2002 Massachusetts Institute of Technology License Terms: Made available under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License https://creativecommons.org/licenses/by-nc-nd/4.0/ OA Funding Provided By: The open access edition of this book was made possible by generous funding from Arcadia—a charitable fund of Lisbet Rausing and Peter Baldwin. The title-level DOI for this work is: doi:10.7551/mitpress/1885.001.0001 Downloaded from http://direct.mit.edu/books/edited-volume/chapter-pdf/677472/9780262268028_f000000.pdf by guest on 29 September 2021 Introduction There are as many approaches to studying ani- and The Expression of the Emotions in Man and mal cognition as there are definitions of cogni- Animals (1872). Consequently, both disciplines tion itself. This diversity is reflected in the essays are almost inextricably linked to the concept of that follow, to a degree that we believe is un- instinct. Darwin viewed instinct primarily in be- paralleled in any other volume that has been havioral terms and considered his ability to ex- produced on this subject. This diversity is philo- plain instinct through natural selection to be one sophical and methodological, with contributors of the most critical tests of his theories. Thus he demonstrating various degrees of acceptance or compared closely related species of bees to ex- disdain for terms such as ‘‘consciousness’’ and plain the evolution of hive building and closely various degrees of concern for the rigors of lab- related species of ants to explain the origins of oratory experimentation versus the validity of slave making.
    [Show full text]
  • Donald Griffin Was Able to Affect a Major Revolution in What Scien- Tists Do and Think About the Cognition of Nonhuman Ani- Mals
    NATIONAL ACADEMY OF SCIENCES DONALD R. GRIFFIN 1915– 2003 A Biographical Memoir by CHARLES G. GROSS Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoirs, VOLUME 86 PUBLISHED 2005 BY THE NATIONAL ACADEMIES PRESS WASHINGTON, D.C. DONALD R. GRIFFIN August 3, 1915–November 7, 2003 BY CHARLES G. GROSS OST SCIENTISTS SEEK—but never attain—two goals. The M first is to discover something so new as to have been previously inconceivable. The second is to radically change the way the natural world is viewed. Don Griffin did both. He discovered (with Robert Galambos) a new and unique sensory world, echolocation, in which bats can perceive their surroundings by listening to echoes of ultrasonic sounds that they produce. In addition, he brought the study of animal consciousness back from the limbo of forbidden topics to make it a central subject in the contemporary study of brain and behavior. EARLY YEARS Donald R. (Redfield) Griffin was born in Southampton, New York, but spent his early childhood in an eighteenth- century farmhouse in a rural area near Scarsdale, New York. His father, Henry Farrand Griffin, was a serious amateur historian and novelist, who worked as a reporter and in advertising before retiring early to pursue his literary inter- ests. His mother, Mary Whitney Redfield, read to him so much that his father feared for his ability to learn to read. His favorite books were Ernest Thompson Seton’s animal 3 4 BIOGRAPHICAL MEMOIRS stories and the National Geographic Magazine’s Mammals of North America.
    [Show full text]
  • Chihirosukikarathesis.Pdf (391.3Kb)
    Szent István University Faculty of Veterinary Science Budapest Institute of Animal Breeding, Nutrition and Laboratory Animal Science HOW THE DIFFERENT NOISE TYPES MAY INFLUENCE THE OPEN-FIELD BEHAVIOUR OF RATS ? by Chihiro Sukikara Supervisor: Prof. Dr. Sándor György Fekete , DVM, DSc SZIU Faculty of Veterinary Science - 2013 – 1 Table of Content Page Introduction 3 Review of the Literature 5 Own Investigations 9 Material and Methods 9 Results 11 Discussion 23 Conclusion 27 References 33 Acknowledgement 32 Summary 30 Összefoglalás 31 Author’s Declaration 37 Supervisor’s Allowance 38 2 Introduction It is said that the different tools of environmental enrichment influence the animal behaviour and/or physiological status. In the frame of the 3rd „R” (Refinement), the laboratory animal science focuses on the feeding and on the physical environment of the animals, which are related to sensory stimuli, like visual, olphactory, auditory and tactile (BAUMAN et al. 2011). Noise is also one of the elements of the environment. It has been thought as a powerful stressor. Generally, the acoustic environment does has an influence on the behaviour and physiological state of the humans and animals. Amongst those the different noises have an important role. According to the general definition the noise is the ratio of the meaningful signals and those, of carrying no information. In the bioacoustics, noise is equals to the unpleasant sounds. The noise music is an avangard music and sound art, which is akin to the futurism and dadaism. It is employing the elements of cacophony, dissonance, atonality, noise, irregularity and repetition. The manifesto of Luigi Russolo: The art of noise (1913) is considered as the first step of this movement.
    [Show full text]
  • Sensory Biology of Aquatic Animals
    Jelle Atema Richard R. Fay Arthur N. Popper William N. Tavolga Editors Sensory Biology of Aquatic Animals Springer-Verlag New York Berlin Heidelberg London Paris Tokyo JELLE ATEMA, Boston University Marine Program, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA Richard R. Fay, Parmly Hearing Institute, Loyola University, Chicago, Illinois 60626, USA ARTHUR N. POPPER, Department of Zoology, University of Maryland, College Park, MD 20742, USA WILLIAM N. TAVOLGA, Mote Marine Laboratory, Sarasota, Florida 33577, USA The cover Illustration is a reproduction of Figure 13.3, p. 343 of this volume Library of Congress Cataloging-in-Publication Data Sensory biology of aquatic animals. Papers based on presentations given at an International Conference on the Sensory Biology of Aquatic Animals held, June 24-28, 1985, at the Mote Marine Laboratory in Sarasota, Fla. Bibliography: p. Includes indexes. 1. Aquatic animals—Physiology—Congresses. 2. Senses and Sensation—Congresses. I. Atema, Jelle. II. International Conference on the Sensory Biology - . of Aquatic Animals (1985 : Sarasota, Fla.) QL120.S46 1987 591.92 87-9632 © 1988 by Springer-Verlag New York Inc. x —• All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York 10010, U.S.A.), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of Information storage and retrieval, electronic adaptation, Computer Software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc.
    [Show full text]
  • The Dancing Bees: Karl Von Frisch, the Honeybee Dance Language
    The Dancing Bees: Karl von Frisch, the Honeybee Dance Language, and the Sciences of Communication By Tania Munz, Research Fellow MPIWG, [email protected] In January of 1946, while much of Europe lay buried under the rubble of World War Two, the bee researcher Karl von Frisch penned a breathless letter from his country home in lower Austria. He reported to a fellow animal behaviorist his “sensational findings about the language of the bees.”1 Over the previous summer, he had discovered that the bees communicate to their hive mates the distance and direction of food sources by means of the “dances” they run upon returning from foraging flights. The straight part of the figure-eight-shaped waggle dance makes the same angle with the vertical axis of the hive as the bee’s flight line from the hive made with the sun during her outgoing flight. Moreover, he found that the frequency of individual turns correlated closely with the distance of the food; the closer the supply, the more rapidly the bee dances. Von Frisch’s assessment in the letter to his colleague would prove correct – news of the discovery was received as a sensation and quickly spread throughout Europe and abroad. In 1973, von Frisch was awarded the Nobel Prize in Physiology or Medicine together with the fellow animal behaviorists Konrad Lorenz and Niko Tinbergen. The Prize bestowed public recognition that non-human animals possess a symbolic means of communication. Dancing Bees is a dual intellectual biography – about the life and work of the experimental physiologist Karl von Frisch on the one hand and the honeybees as cultural, experimental, and especially communicating animals on the other.
    [Show full text]
  • Human Ethology Bulletin
    Human Ethology Bulletin VOLUME 11, ISSUE 1 ISSN 0739-2036 MARCH 1996 © 1996 The International Society for Human Ethology Thomas Bouchard (University of Minnesota): SOCIETY NEWS "Twin studies and human behavior." Vienna Congress Update Sue Carter: (University of Maryland) "Influence of hormones on human behavior." The 13th biennial conference of the Siegfried Frey (Universitat Duisburg): "Non- International Society for Human Ethology is semantic approach to nonverbal behavior: scheduled for S-10 August 1996 at the Cartographic methods." Biological Sciences site of the University of Vienna, Austria. Glenn Weisfeld (Wayne State University): "Research on emotions and future developments The conference will be dedicated to in human ethology." direct observation of human behavior. Themes will be gender advertisement, mate selection, Delegates who wish to present research environment-behavior interactions, nonverbal must submit an abstract along with their communication, evolution and cognition, registration. Participants are limited to a behavior genetics, development, psychiatry, Single oral or poster paper; authors are and hormonal control of behavior. In addition, requested to indicate their preference, but workshops on epistemological issues in decisions rest with the Organizing Committee. ethology and sociobiology and on digital image Talks are limited to 15 minutes plus 5 minutes analysis will be held. for discussion. Posters must not exceed 120 em. x 90 em. TIley will be on display throughout the conference. Poster talks, Wednesday afternoon, Opening address: lrenaus Eibl-Eibesfeldt are limited to 2 minutes, with no more than one (Max-Planck-Gesellschaft): "Vienna: Cradle of slide or overhead. ethology." Abstract Instructions Keynote address: Robin R. Baker (University of Manchester): "Cupulation, masturbation, and Send your abstract on paper and infidelity: State of the art." diskette or e-mail.
    [Show full text]
  • Cognitive Ethology Ádám Miklósi Dept
    Introduction to Cognitive ethology Ádám Miklósi Dept. of Ethology Eötvös Loránd University, Budapest [email protected] 2018 Literature This lecture series is based on Shettleworth, S. J. 2010 Cognition, evolution and behaviour (2nd edition) Oxford University Press Pages where you find background information to these topics: •CH 1, 2: 1-53 Introduction •CH 4: 96-119 Learning •CH 8: 261-283; 296-310 Spatial Cognition •CH 12: 417-455 Social cognition •CH 13: 466-497 Social learning •CH 14: 508-546 Communication You DON NOT have to know/learn all of this, check by means of the ppt files which parts of the chapters are relevant Ethology is the biological study of animal and human behaviour in the natural environment (Tinbergen 1953) Why do we study animals? 1. Understanding the biology of animal behaviour (evolution, genetics, physiology, cognition) 2. Understanding human behaviour 3. Practical reasons (welfare, agriculture) Ethological research has significant effect on people’s perceptions of animals Movies, television, shows, books, magazines Concept 1: Darwinian Evolution Natural selection: Change in the characteristics of organisms over time („continuity”) 1. Large reproductive potential in populations 2. Fixed amount of resources 3. Individuals compete for resources (fitness = offspring) 4. There is an individual variation 5. Individual traits can be inherited (Darwin: Origin of the species) Levels (unit) of selection: gene, individual, kin Concept 1: Darwinian Evolution Sources of variation: Mutation and recombination Adaptation: Is it a circular argument? Just so stories? Can we detect and measure adaptation? Distinguishing „adaptation” from „adaptive” Gould and Vrba (1982): Adaptation: specific evolutionary change as a response to a specific environmental parameter Exaptation: earlier adaptation new function non-adaptation („by product”) new function Adaptation has a function Exaptation has an effect E.g.
    [Show full text]
  • The Scope of Neuroethology
    THE BEHAVIORAL AND BRAIN SCIENCES (1984) 7, 367-412 Printed in the United States of America The scope of neuroethology Graham Hoyle Institute of Neuroscience, University of Oregon, Eugene, Oreg. 97403 Abstract: Neuroethology, an interdisciplinary subdivision of neuroscience, has emerged in recent years. Since 1976 there has been a regular session under this heading at the annual meeting of the Society for Neuroscience. In 1980 two introductory texts in English were published on the subject (Ewert 1980; Guthrie 1980), and a third (Camhi 1984) was published recently. There is widespread interest in neural mechanisms underlying behavior, but they encompass such a vast array of often unrelated topics that proponents do not share common goals. This article describes the emergence of ethology as a discipline, pointing out that its practitioners were successful because they confined their research to stereotyped, complex, nonlearned, innate behavioral acts. A limited number of profoundly significant principles emerged. Each of these is redefined. The major concepts of earlier ethology were embodied in a simple hydraulic model used by Konrad Lorenz in 1949 (Lorenz 1950). It is pointed out that this model implies the existence of common neurophysiological mechanisms and neuronal circuitry. This model has now been made obsolete by neurophysiological progress, but with appropriate ~nodificationsan updated version may still be useful in focusing attention on possible principles. The initial aim of neuroethology should be to examine the neurophysiological events in a variety of behaviors, exhibited by diverse animals from different phyla, which meet the criteria of innate behavioral acts. The behaviors should be sufficiently complex to interest ethologists, yet they should be addressable with neurophysiological methods down to the cellular level.
    [Show full text]