NXP Semiconductors Document Number:IMXRT1160CEC Data Sheet: Technical Data Rev. 0, 04/2021

MIMXRT1166DVM6A MIMXRT1165DVM6A i.MX RT1160 Crossover Processors Data Sheet for Consumer Products

Package Information Plastic Package 289-pin MAPBGA, 14 x 14 mm, 0.8 mm pitch

Ordering Information

See Table 1 on page 6

1. i.MX RT1160 introduction ...... 1 1 i.MX RT1160 introduction 1.1. Features ...... 2 1.2. Ordering information ...... 6 The i.MX RT1160 is a new high-end processor of i.MX 1.3. Package marking information ...... 9 RT family, which features NXP’s advanced 2. Architectural overview ...... 10 2.1. Block diagram ...... 10 implementation of a high performance Arm 3. Modules list ...... 11 Cortex®-M7 core operating at speeds up to 600 MHz 3.1. Special signal considerations ...... 20 ® 3.2. Recommended connections for unused analog and a power efficient Cortex -M4 core up to 240 MHz. interfaces ...... 21 4. Electrical characteristics ...... 23 The i.MX RT1160 processor has 1 MB on-chip RAM in 4.1. Chip-level conditions ...... 23 total, including a 768 KB RAM which can be flexibly 4.2. System power and clocks ...... 32 configured as TCM (512 KB RAM shared with M7 TCM 4.3. I/O parameters ...... 42 4.4. System modules ...... 50 and 256 KB RAM shared with M4 TCM) or 4.5. External memory interface ...... 54 general-purpose on-chip RAM. The i.MX RT1160 4.6. Display and graphics ...... 64 4.7. Audio ...... 70 integrates advanced power management module with 4.8. Analog ...... 72 DCDC and LDO regulators that reduce complexity of 4.9. Communication interfaces ...... 81 external power supply and simplifies power sequencing. 4.10. Timers ...... 97 5. Boot mode configuration ...... 99 The i.MX RT1160 also provides various memory 5. Boot mode configuration ...... 99 interfaces, including SDRAM, RAW NAND FLASH, 5.1. Boot mode configuration pins ...... 99 5.2. Boot device interface allocation ...... 99 NOR FLASH, SD/eMMC, Quad/Octal SPI, Hyper 6. Package information and contact assignments ...... 105 RAM/Flash, and a wide range of other interfaces for 6.1. 14 x 14 mm package information ...... 105 connecting peripherals, such as WLAN, Bluetooth™, 7. Revision history ...... 120 GPS, displays, and camera sensors. The i.MX RT1160

NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products.

© 2021 NXP B.V. i.MX RT1160 introduction also has rich audio and video features, including MIPI CSI/DSI, LCD display, graphic accelerator, camera interface, SPDIF, and I2S audio interface. The i.MX RT1160 is specifically useful for applications such as: • Industrial Human Machine Interfaces (HMI) • Motor Control • Home Appliance • High-end Audio Appliance • Low-end Instrument Cluster • Point-of-Sale (PoS)

1.1 Features The i.MX RT1160 processors are based on Arm Cortex®-M7 Core™ Platform, which has the following features: • The Arm Cortex-M7 Core Platform: — 32 KB L1 Instruction Cache and 32 KB L1 Data Cache — Floating Point Unit (FPU) with single-precision and double-precision support of Armv7-M Architecture FPv5 — Support the Arm®v7-M Thumb instruction set, defined in the Armv7-M architecture — Integrated Memory Protection Unit (MPU), up to 16 individual protection regions — Up to 512 KB I-TCM and D-TCM in total — Frequency of 600 MHz — Frequency of the core, as per Table 11, "Operating ranges," on page 26. •The Arm Cortex®-M4 Core platform: — Cortex-M4 processor with single-precision FPU defined by Armv7-M architecture FPv4-SP — Integrated MPU with 8 individual protection regions — 16 KB Instruction Cache, 16 KB Data Cache, and 256 KB TCM — Frequency of 240 MHz The SoC-level memory system consists of the following additional components: — Boot ROM (256 KB) — On-chip RAM (1 MB in total) – Configurable 512 KB RAM shared with M7 TCM – 256 KB RAM shared with M4 TCM – Dedicated 256 KB OCRAM — Secure always-on RAM (4 KB) • External memory interfaces: — 8/16/32-bit SDRAM, up to SDRAM-133/SDRAM-166/SDRAM-200 — 8/16-bit SLC NAND FLASH

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 2 NXP Semiconductors i.MX RT1160 introduction

—SD/eMMC — SPI NOR/NAND FLASH — Parallel NOR FLASH with XIP support — Single/Dual channel Quad SPI FLASH with XIP support — Hyper RAM/FLASH —OCT FLASH — Synchronization mode for all devices • Timers and PWMs: — Six General Programmable Timer (GPT) modules – 4-channel generic 32-bit resolution timer for each – Each supports standard capture and compare operation — Two Periodical Interrupt Timer (PIT) modules – Four timers for each module – Generic 32-bit resolution timer – Periodical interrupt generation — Four Quad Timer (QTimer) modules – 4-channel generic 16-bit resolution timer for each – Each supports standard capture and compare operation – Quadrature decoder integrated — Four FlexPWMs – Up to 8 individual PWM channels for each – 16-bit resolution PWM suitable for Motor Control applications — Four Quadrature Decoders — Four Watch Dog (WDOG) modules Each i.MX RT1160 processor enables the following interfaces to external devices (some of them are muxed and not available simultaneously): • Display Interface: — Parallel RGB LCD interface (eLCDIF) – Support 8/16/24-bit interface – Support up to WXGA resolution @60fps – Support Index color with 256 entry x 24-bit color LUT — Parallel RGB LCD Interface Version 2 (LCDIFv2) – Enhanced based on LCDIF version – Support up to 8 layers of alpha blending — MIPI Display Serial Interface (MIPI DSI) – PHY integrated – 2 data lanes interface with up to 1.5 GHz bit rate clock

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 3 i.MX RT1160 introduction

— Smart LCD Display with 8080 interface through SEMC • Audio: — SPDIF input and output — Four Synchronous Audio Interface (SAI) modules supporting I2S, AC97, TDM, and codec/DSP interfaces — Medium Quality Sound (MQS) interface via GPIO pads — PDM microphone interface with 4 pairs of inputs — Asynchronous Sample Rate Converter (ASRC) • Graphics engine: — Generic 2D (PXP) – BitBlit – Flexible image composition options—alpha, chroma key – Porter-duff blending – Image rotation (90, 180, 270) – Image resize – Color space conversion – Multiple pixel format support (RGB, YUV444, YUV422, YUV420, YUV400) – Standard 2D-DMA operation — Vector Graphics Processing – Real-time hardware curve tessellation of lines, quadratic, and cubic Bezier curves – 16x Line Anti-aliasing – OpenVG 1.1 support – Vector Drawing • Camera Interface: — Parallel Camera Sensor Interface (CSI) – Support 24-bit, 16-bit, and 8-bit input – Barcode binarization and histogram statistics — MIPI Camera Serial Interface (MIPI CSI) – PHY integrated – 2 data lanes interface with up to 1.5 GHz bit rate clock • Connectivity: — Two USB 2.0 OTG controllers with integrated PHY interfaces — Two Ultra Secure Digital Host Controller (uSDHC) interfaces – eMMC 5.0 compliance with HS400 support up to 400 MB/sec – SD/SDIO 3.0 compliance with 200 MHz SDR signaling to support up to 100 MB/sec – Support for SDXC (extended capacity) — One 10M/100M Ethernet controller with support for IEEE1588

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 4 NXP Semiconductors i.MX RT1160 introduction

— One Gigabit Ethernet controller with support for AVB — Twelve universal asynchronous receiver/transmitter (UARTs) modules — Six I2C modules — Six SPI modules — Three FlexCAN (with Flexible Data-rate supported) modules — Two EMV SIM modules • Analog: — Two Analog-Digital-Converters (ADC), which supports both differential and single-end inputs — One Digital-Analog-Converter (DAC) — Four Analog Comparators (ACMP) • GPIO and Pin Multiplexing: — General-purpose input/output (GPIO) modules with interrupt capability — Input/output multiplexing controller (IOMUXC) to provide centralized pad control — Two FlexIO modules — 8 x 8 keypad The i.MX RT1160 processors integrate advanced power management unit and controllers: • Full PMIC integration, including on-chip DCDC and LDOs • Temperature sensor with programmable trim points • Hardware power management controller (GPC) The i.MX RT1160 processors support the following system debug: • Arm CoreSight debug and trace architecture • Trace Port Interface Unit (TPIU) to support off-chip real-time trace • Cross Triggering Interface (CTI) • Support for 5-pin (JTAG) and SWD debug interfaces Security functions are enabled and accelerated by the following hardware: • High Assurance Boot (HAB) • Cryptographic Acceleration and Assurance (CAAM) module: — Public Key Cryptography Engine (PKHA) — Symmetric Engines — Cryptographic Hash Engine — Random Number Generation (RNG4) — Four Job Rings for use by processors — Secure Hardware-Only Cryptographic Key Management — Encrypted Boot — Revision control check based on fuse values — DEK includes IV — Side channel attack countermeasures

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 5 i.MX RT1160 introduction

— 64 KB secure RAM • Inline Encryption Engine (IEE): — External memory encryption/decryption — I/O direct encrypted storage and retrieval (Stream Support) — FlexSPI decryption only • On-the-Fly AES Decryption (OTFAD): — AES-128 Counter Mode On-the-Fly Decryption — Hardware support for unwrapping “key blobs” — Functionally acts as a slave sub-module to the FlexSPI • Secure Non-Volatile Storage (SNVS): — Secure real-time clock (SRTC) — Zero Master Key (ZMK) • Secure always-on RAM (4 KB) • Secure key management and protection — Physical Unclonable Function (PUF) — UnDocumented Function (UDF) — Built-in Manufacturing Protection Hardware • Secure and trusted access control NOTE The actual feature set depends on the part numbers as described in Table 1. Functions such as display and camera interfaces, connectivity interfaces, and security features are not offered on all derivatives.

1.2 Ordering information Table 1 provide examples of orderable part numbers covered by this Data Sheet.

Table 1. Order information

MIMXRT1166DVM6A MIMXRT1165DVM6A

Qualification tier Consumer Consumer M7 core 600 MHz 600 MHz M4 core 240 MHz 240 MHz SRAM 1 MB 1 MB Parallel LCD and CSI Yes —

MIPI DSI and CSI Yes — GPU2D Yes — PXP Yes —

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 6 NXP Semiconductors i.MX RT1160 introduction

Table 1. Order information (continued)

MIMXRT1166DVM6A MIMXRT1165DVM6A

CAN-FD x3 x3 1 Gb ENET with AVB x1 x1

10/100 Mb ENET with 1588 x1 x1 USB OTG x2 x2 eMMC 5.0 / SD 3.0 x2 x2 EMV SIM x2 x2 SAI x4 x4 DMIC x8 x8 FlexSPI x2 x2 UART x12 x12 I2C x6 x6 SPI x6 x6 GPT x6 x6 PIT x2 x2 QTimer x4 x4 FlexPWM x4 x4 Security Yes Yes Package 289 MAPBGA, 14 mm x14 mm, 0.8 mm 289 MAPBGA, 14 mm x14 mm, 0.8 mm pitch pitch

Junction temperature Tj (C) 0 to 95 0 to 95

Figure 1 describes the part number nomenclature so that characteristics of a specific part number can be identified (for example, cores, frequency, temperature grade, fuse options, and silicon revision). The primary characteristic which describes which data sheet applies to a specific part is the temperature grade (junction) field. • The i.MX RT1160 Crossover Processors for Consumer Products Data Sheet (IMXRT1160CEC) covers parts listed with a “D (Consumer temp)” Ensure to have the proper data sheet for specific part by verifying the temperature grade (junction) field and matching it to the proper data sheet. If there are any questions, visit the web page nxp.com/IMXRT or contact an NXP representative for details.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 7 i.MX RT1160 introduction

M IMX X X @ ## % + VV $ A

Qualification Level M

Prototype Samples P Silicon Rev A

Mass Production M A0 A Special S

Main Core Frequency $ Part # series XX 2xx MHz 2 i.MX RT RT 500 MHz 5

Family @ 600 MHz 6

First Generation RT family 1 800 MHz 8 Reserved 2-8 1 GHz A

Sub-Family ## Package Type VV RT116x 16 Tie % RT117x 17 289MAPBGA, 14 x 14 mm, 0.8 mm pitch VM Single Core Standard Feature 1 144MAPBGA, 10 x 10 mm, 0.8 mm pitch VP Single Core Enhanced Feature 2 196MAPBGA, 10 x 10 mm, 0.65 mm pitch VL Dual Core Enhanced Security 3 Dual Core Standard Feature 5 Temperature (Tj) Dual Core Enhanced Feature 6 +

Dual Core Premium Feature 7 Consumer: 0 to + 95 °C D 8MB Flash SIP 8 Industrial: -40 to +105 °C C Dual Core Full Feature 9

Facial Recognition F Extended Industrial: -40 to +125 °C X Hybrid Solution with Vision & Voice H Automotive: -40 to + 125 eC A Local Voice Control (w/ Text2Model) S

Figure 1. Part number nomenclature—i.MX RT11XX family

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 8 NXP Semiconductors i.MX RT1160 introduction 1.3 Package marking information Figure 2 describes the package marking format about the i.MX RT1160 Crossover Processors.

Figure 2. MAPBGA289 14 x 14 mm package marking format

The 14 x 14 mm of i.MX RT1160 MAPBGA289 package has the following top-side marking: • First line: aaaaaaaaaaaaaaa • Second line: mmmmm • Third line: xxxyywwx Table 2 lists the identifier decoder. Table 2. Identifier decoder

Identifier Description

a Part number code, refer to Section 1.2, Ordering information m Mask set yYear w Work week x NXP internal use

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 9 Architectural overview 2 Architectural overview The following subsections provide an architectural overview of the i.MX RT1160 processor system.

2.1 Block diagram Figure 3 shows the functional modules in the i.MX RT1160 processor system1.

. Figure 3. i.MX RT1160 system block diagram

1. Some modules shown in this block diagram are not offered on all derivatives. See Table 1 for details.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 10 NXP Semiconductors Modules list 3 Modules list The i.MX RT1160 processors contain a variety of digital and analog modules. Table 3 describes these modules in alphabetical order. Table 3. i.MX RT1160 modules list

Block Mnemonic Block Name Subsystem Brief Description

ACMP1 Analog Comparator Analog The comparator (CMP) provides a circuit for comparing ACMP2 two analog input voltages. The comparator circuit is ACMP3 designed to operate across the full range of the supply ACMP4 voltage (rail-to-rail operation). ADC_ETC ADC External Trigger Analog ADC_ETC enables multiple users shares a ADC Control module in a Time-Division-Multiplexing (TDM). ADC1 Analog to Digital Analog The ADC is a 12-bit general purpose analog to digital ADC2 Converter converter. AOI And-Or-Inverter Cross Trigger The AOI provides a universal boolean function generator using a four-term sum of products expression with each product term containing true or complement values of the four selected inputs (A, B, C, D). Arm Arm Platform Arm The Arm Core Platform includes one Cortex-M7 core. It includes associated sub-blocks, such as Nested Vectored Interrupt Controller (NVIC), Floating-Point Unit (FPU), Memory Protection Unit (MPU), and CoreSight debug modules. The Cortex-M4 platform has following features: • Cortex-M4 processor with FPU • Local memory – 16 KB instruction cache and 16 KB data cache – 256 KB TCM ASRC Asynchronous Sample Multimedia The ASRC can process groups of audio channels with Rate Converter Peripherals an independent time-based simultaneously. CAAM Cryptographic Security CAAM supports a set of standard hardware Accelerator and accelerators, boot time acceleration of the hashing Assurance Module function, crypto key protection, HDCP 2.x authentication and protected video path support, manufacturing protection and public key cryptographic acceleration, and inter-operate with TrustZone, Resource Domain, and system virtualization access controls. CANFD1 Flexible Controller Area Connectivity The CAN with Flexible Data rate (CAN FD) module is a CANFD2 Network Peripherals communication controller implementing the CAN CANFD3 protocol according to the ISO11898-1 and CAN 2.0B protocol specification.

CCM Clock Control Module, Clocks, Resets, and These modules are responsible for clock and reset GPC General Power Controller, Power Control distribution in the system, and also for the system power PGMC Power Manage Unit, management. PMU Power Gating and SRC Memory Controller, System Reset Controller

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 11 Modules list

Table 3. i.MX RT1160 modules list (continued)

Block Mnemonic Block Name Subsystem Brief Description

CSI Parallel CSI Multimedia The CSI IP provides parallel CSI standard camera Peripherals interface port. The CSI parallel data ports are up to 24 bits. It is designed to support 24-bit RGB888/YUV444, CCIR656 video interface, 8-bit YCbCr, YUV or RGB, and 8-bit/10-bit/16-bit/24-bit Bayer data input. CWT Code Watchdog Timer Timer peripherals The CWT provides mechanisms for detecting side-channel attacks and the execution of unexpected instruction sequences. DAC Digital-Analog-Converter Analog The DAC is a 12-bit general purpose digital to analog converter. DAP Debug Access Port System Control The DAP provides real-time access for the debugger Peripherals without halting the core to: • System memory and peripheral registers • All debug configuration registers The DAP also provides debugger access to JTAG scan chains. The DAP module is internal to the Cortex-M7 Core Platform. DCDC DCDC Converter Analog The DCDC module is used for generating power supply for core logic. Main features are: • Adjustable high efficiency regulator • Two outputs: 1.0 V and 1.8 V • Over current and over voltage detection eDMA enhanced Direct Memory System Control There are two enhanced DMAs (eDMA). eDMA_LPSR Access Peripherals • The eDMA is a 32-channel DMA engine, which is capable of performing complex data transfers with minimal intervention from a host processor. • The DMA_MUX is capable of multiplexing up to 128 DMA request sources to the 32 DMA channels of eDMA. eLCDIF LCD interface Multimedia The enhanced LCD controller provides flexible display Peripherals options and to drive a wide range of display devices varying in size and capability. Major features are: • Up to WXGA 60 Hz • 8/16/18/24 bit LCD data bus support available depending on I/O mux options. • Programmable timing and parameters for LCD interfaces to support a wide variety of displays. • Index color with 256 entry x 24-bit color LUT EMV SIM1 Europay, Master and Visa Connectivity EMV SIM is designed to facilitate communication to EMV SIM2 Subscriber Identification Peripherals Smart Cards compatible to the EMV version 4.3 Module standard (Book 1) and Smart Cards compatible with ISO/IEC 7816-3 standard.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 12 NXP Semiconductors Modules list

Table 3. i.MX RT1160 modules list (continued)

Block Mnemonic Block Name Subsystem Brief Description

ENET Ethernet Controller Connectivity The Ethernet Media Access Controller (MAC) is Peripherals designed to support 10/100 Mbit/s Ethernet/IEEE 802.3 networks. An external transceiver interface and transceiver function are required to complete the interface to the media. The module has dedicated hardware to support the IEEE 1588 standard. See the ENET chapter of the reference manual for details. ENET 1G Ethernet Controller Connectivity One 1G Ethernet is also integrated, which has following Peripherals features: • RGMII/RMII/MII operation • Support IEEE1588 • Support AVB EWM External Watchdog Timer Peripherals The EWM modules is designed to monitor external Monitor circuits, as well as the software flow. This provides a back-up mechanism to the internal WDOG that can reset the system. The EWM differs from the internal WDOG in that it does not reset the system. The EWM, if allowed to time-out, provides an independent trigger pin that when asserted resets or places an external circuit into a safe mode. FlexIO1 Flexible Input/output Connectivity and The FlexIO is capable of supporting a wide range of FlexIO2 Communications protocols including, but not limited to: UART, I2C, SPI, I2S, camera interface, display interface, PWM waveform generation, etc. The module can remain functional when the chip is in a low power mode provided the clock it is using remain active.

FlexPWM1 Pulse Width Modulation Timer Peripherals The pulse-width modulator (PWM) contains four PWM FlexPWM2 sub-modules, each of which is set up to control a single FlexPWM3 half-bridge power stage. Fault channel support is FlexPWM4 provided. The PWM module can generate various switching patterns, including highly sophisticated waveforms. FlexRAM RAM Memories The i.MX RT1160 has 512 KB of on-chip RAM which could be flexible allocated to I-TCM, D-TCM, and on-chip RAM (OCRAM) in a 32 KB granularity. The FlexRAM is the manager of the 512 KB on-chip RAM array. Major functions of this blocks are: interfacing to I-TCM and D-TCM of CM7 and OCRAM controller; dynamic RAM arrays allocation for I-TCM, D-TCM, and OCRAM. FlexSPI1 Flexible Serial Peripheral Connectivity and FlexSPI acts as an interface to one or two external serial FlexSPI2 Interface Communications memory devices, FlexSPI2 has 8 bi-directional data lines.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 13 Modules list

Table 3. i.MX RT1160 modules list (continued)

Block Mnemonic Block Name Subsystem Brief Description

GPIO1 General Purpose I/O System Control Used for general purpose input/output to external ICs. GPIO2 Modules Peripherals Each GPIO module supports up to 32 bits of I/O. GPIO3 Note: GPIO13 register access takes a long time (about GPIO4 50s due to clocked by 32 KHz clock source). During the GPIO5 period of registers access, the LPSR domain bus would GPIO6 be on hold. GPIO7 GPIO8 GPIO9 GPIO10 GPIO11 GPIO12 GPIO13

GPT1 General Purpose Timer Timer Peripherals Each GPT is a 32-bit “free-running” or “set and forget” GPT2 mode timer with programmable prescaler and compare GPT3 and capture register. A timer counter value can be GPT4 captured using an external event and can be configured GPT5 to trigger a capture event on either the leading or trailing GPT6 edges of an input pulse. When the timer is configured to operate in “set and forget” mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock. GPU2D Graphics Processing Multimedia The vector graphics processing supports following Peripherals features: • Real-time hardware curve tessellation of lines, quadratic, and cubic Bezier curves • 16x line anti-aliasing • OpenVG 1.1 support • Vector drawing IOMUXC IOMUX Control Mux control This module enables flexible I/O multiplexing. Each IO pad has a default as well as several alternate functions. The alternate functions are software configurable.

JTAGC JTAG Controller System Control The JTAG interface complies with JTAG TAP standards Peripherals to internal logic. The i.MX RT1160 processors use JTAG port for production, testing, and system debugging. In addition, the JTAG provides BSR (Boundary Scan Register) standard support, which complies with IEEE 1149.1 and IEEE 1149.6 standards. The JTAG port must be accessible during platform initial laboratory bring-up, for manufacturing tests and troubleshooting, as well as for software debugging by authorized entities. The i.MX RT1160 JTAG incorporates two security modes for protecting against unauthorized accesses. Modes are selected through eFUSE configuration.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 14 NXP Semiconductors Modules list

Table 3. i.MX RT1160 modules list (continued)

Block Mnemonic Block Name Subsystem Brief Description

KPP Keypad Port Human Machine The KPP is a 16-bit peripheral that can be used as a Interfaces keypad matrix interface or as general purpose input/output (I/O). It supports 8 x 8 external key pad matrix. Main features are: • Multiple-key detection • Long key-press detection • Standby key-press detection • Supports a 2-point and 3-point contact key matrix LCDIFv2 Parallel RGB LCD Multimedia The LCDIFv2 is an enhanced version of LCDIF. interface version 2 Peripherals Main features are: • Eight layers of alpha blending • CRC check for configurable region on the final display output after alpha blending • Write-back channel to save the final output into memory

LPI2C1 Low Power Connectivity and The LPI2C is a low power Inter-Integrated Circuit (I2C) LPI2C2 Inter-integrated Circuit Communications module that supports an efficient interface to an I2C bus LPI2C3 as a master. LPI2C4 The I2C provides a method of communication between LPI2C5 a number of external devices. More detailed information, LPI2C6 see Section 4.9.2, LPI2C module timing parameters.

LPSPI1 Low Power Serial Connectivity and The LPSPI is a low power Serial Peripheral Interface LPSPI2 Peripheral Interface Communications (SPI) module that support an efficient interface to an SPI LPSPI3 bus as a master and/or a slave. LPSPI4 • It can continue operating while the chip is in stop LPSPI5 modes, if an appropriate clock is available LPSPI6 • Designed for low CPU overhead, with DMA off loading of FIFO register access

LPUART1 UART Interface Connectivity Each of the UART modules support the following serial LPUART2 Peripherals data transmit/receive protocols and configurations: LPUART3 • 7- or 8-bit data words, 1 or 2 stop bits, programmable LPUART4 parity (even, odd or none) LPUART5 • Programmable baud rates up to 20 Mbps. LPUART6 LPUART7 LPUART8 LPUART9 LPUART10 LPUART11 LPUART12

MECC64 Error Correcting Code Memories and MECC64 module supports Single Error Correction and Memory Controllers Double Error Detection (SECDED) ECC function to provide reliability for 4 banks On-Chip RAM (OCRAM) access. When ECC function is disabled, ECC OCRAM can be also used to store data.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 15 Modules list

Table 3. i.MX RT1160 modules list (continued)

Block Mnemonic Block Name Subsystem Brief Description

MIPI-CSI MIPI CSI Interface Multimedia Key features of MIPI CSI controller are listed as Peripherals following: • Implements all three MIPI CSI-2 layers • Supports CSI-2 Unidirectional Master operation • Virtual Channel support • Flexible pixel-based user interface MIPI-DSI MIPI DSI Interface Multimedia Key features of MIPI DSI controller are listed as Peripherals following: • Implements all three DSI layers • Supports Command and Video Modes • Virtual Channel support • Flexible packet based user interface MQS Medium Quality Sound Multimedia MQS is used to generate 2-channel medium quality Peripherals PWM-like audio via two standard digital GPIO pins. MU Messaging Unit System Control The Messaging Unit module enables two processors within the SoC to communicate and coordinate by passing messages (e.g. data, status, and control) through the MU interface. The MU also provides the ability for one processor to signal the other processor using interrupts. OCOTP_CTRL OTP Controller Security The On-Chip OTP controller (OCOTP_CTRL) provides an interface for reading, programming, and/or overriding identification and control information stored in on-chip fuse elements. The module supports electrically programmable poly fuses (eFUSEs). The OCOTP_CTRL also provides a set of volatile software-accessible signals that can be used for software control of hardware elements, not requiring non volatility. The OCOTP_CTRL provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode, boot characteristics, and various control signals requiring permanent non volatility. OCRAM On-Chip Memory Memories and The On-Chip Memory controller (OCRAM) module is controller Memory Controllers designed as an interface between the system’s AXI bus and the internal (on-chip) SRAM memory module. OSC Oscillator Clock Sources and Two crystal oscillators: Control • 48 MHz crystal oscillator: it is used as primary clock source for all the PLLs to generate the clock for CPU, BUS, and high-speed interfaces. • 32 kHz crystal oscillator: it is the primary clock source for RTC as well as low speed clock source for CCM/SRC/GPC. PDM Pulse Density Modulation Multimedia The PDM supports up to 8-channels (4 lanes) digital Peripherals MIC inputs.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 16 NXP Semiconductors Modules list

Table 3. i.MX RT1160 modules list (continued)

Block Mnemonic Block Name Subsystem Brief Description

PIT1 Periodical Interrupt Timer Timer Peripherals The PIT features 32-bit counter timer, programmable PIT2 count modules, clock division features, interrupt generation, and a slave mode to synchronize count enable for multiple PITs.

PXP Pixel Processing Pipeline Multimedia A high-performance pixel processor capable of 1 Peripherals pixel/clock performance for combined operations, such as color-space conversion, alpha blending, and rotation. The PXP is enhanced with features specifically for gray scale applications. In addition, the PXP supports traditional pixel/frame processing paths for still-image and video processing applications.

Quadrature DEC1 Quadrature Decoder Timer Peripherals The enhanced quadrature decoder module provides Quadrature DEC2 interfacing capability to position/speed sensors. There Quadrature DEC3 are five input signals: PHASEA, PHASEB, INDEX, Quadrature DEC4 TRIGGER, and HOME. This module is used to decode shaft position, revolution count, and speed.

QuadTimer1 QuadTimer Timer Peripherals The quad-timer provides four time channels with a QuadTimer2 variety of controls affecting both individual and QuadTimer3 multi-channel features.Specific features include QuadTimer4 up/down count, cascading of counters, programmable module, count once/repeated, counter preload, compare registers with preload, shared use of input signals, prescaler controls, independent capture/compare, fault input control, programmable input filters, and multi-channel synchronization. RDC Resource Domain Security The RDC provides robust support for the isolation of Controller processing domain to prevent one core from accessing another’s peripherals, to control access rights to common memory and provide hardware enforcement of semaphore based locking of shared peripherals. For single system use case, RDC can be disabled and AIPS-TZ/DEXSC can be bypassed. For dual system case, RDC can be configured and locked each core starts their own image. ROMCP ROM Controller with Memories and The ROMCP acts as an interface between the Arm Patch Memory Controllers advanced high-performance bus and the ROM. The on-chip ROM is only used by the Cortex-M7 core during boot up. Size of the ROM is 256 KB. RTC OSC Real Time Clock Clock Sources and The RTC OSC provides the clock source for the Oscillator Control Real-Time Clock module. The RTC OSC module, in conjunction with an external crystal, generates a 32.768 kHz reference clock for the RTC.

SAI1 Synchronous Audio Multimedia The SAI module provides a synchronous audio interface SAI2 Interface Peripherals (SAI) that supports full duplex serial interfaces with SAI3 frame synchronization, such as I2S, AC97, TDM, and SAI4 codec/DSP interfaces.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 17 Modules list

Table 3. i.MX RT1160 modules list (continued)

Block Mnemonic Block Name Subsystem Brief Description

SEMA4 Semaphores System Control The SEMA4 module implements hardware-enforced semaphores as an IPS-mapped slave peripheral device and provides 16 hardware-enforced gates in a dual-processor configuration.

SEMC Smart External Memory Memory and The SEMC is a multi-standard memory controller Controller Memory Controller optimized for both high-performance and low pin-count. It can support multiple external memories in the same application with shared address and data pins. The interface supported includes SDRAM, NOR Flash, SRAM, and NAND Flash, as well as 8080 display interface. SNVS Secure Non-Volatile Security Secure Non-Volatile Storage, including Secure Real Storage Time Clock, Security State Machine and Master Key Control. SPDIF Sony Philips Digital Multimedia A standard audio file transfer format, developed jointly Interconnect Format Peripherals by the Sony and Phillips corporations. Has Transmitter and Receiver functionality. SSARC State Save and Restore Memories and The SSARC saves the registers of functional modules in Controller Memory Controllers memory before power down, and restores registers from memory after the module is powered up. TEMP SENSE Temperature Sensor Analog The temperature sensor implements a temperature sensor/conversion function based on a temperature-dependent voltage to time conversion. USB1 Universal Serial Bus 2.0 Connectivity USB 2.0 OTG modules (USB OTG1 and USB OTG2) USB2 Peripherals contains: • Two high-speed OTG 2.0 modules with integrated HS USB PHYs • Support eight Transmit (TX) and eight Receive (Rx) endpoints, including endpoint 0

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 18 NXP Semiconductors Modules list

Table 3. i.MX RT1160 modules list (continued)

Block Mnemonic Block Name Subsystem Brief Description

uSDHC1 SD/MMC and SDXC Connectivity i.MX RT1160 specific SoC characteristics: uSDHC2 Enhanced Multi-Media Peripherals All four MMC/SD/SDIO controllers are identical and are Card / Secure Digital Host based on the uSDHC. They are: Controller • Fully compliant with MMC command/response sets and Physical Layer as defined in the Multimedia Card System Specification. • Fully compliant with SD command/response sets and Physical Layer as defined in the SD Memory Card Specifications, v3.0 including high-capacity SDXC cards up to 2 TB. • Fully compliant with SDIO command/response sets and interrupt/read-wait mode as defined in the SDIO Card Specification, Part E1, v3.0 Two ports support: • 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR104 mode (104 MB/s max) • 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR and DDR modes (104 MB/s max) • 4-bit or 8-bit transfer mode specifications for eMMC chips up to 200 MHz in HS200 mode (200 MB/s max) VIDMUX Video mux Mux control Video mux are mux control for Parallel CSI (IO PADs), MIPI CSI-2, MIPI DSI, Parallel LCDIF (IO PADs) and CSI, LCDIF-V2, eLCDIF control. It also includes the DCIC of MIPI DSI and Parallel DSI.

WDOG1 Watch Dog Timer Peripherals WDOG1 and WDOG2 Timer support two comparison WDOG2 points during each counting period. Each of the WDOG3 comparison points is configurable to evoke an interrupt WDOG4 to the Arm core, and a second point evokes an external event on the WDOG line. WDOG3 and WDOG4 modules are high reliability independent timers that are available for system to use. They provide a safety feature to ensure software is executing as planned and the CPU is not stuck in an infinite loop or executing unintended code. If the WDOG module is not serviced (refreshed) within a certain period, it resets the MCU. Windowed refresh mode is supported as well. XBARA Cross BAR Cross Trigger Each crossbar switch is an array of muxes with shared XBARB inputs. Each mux output provides one output of the crossbar. The number of inputs and the number of muxes/outputs are user configurable and registers are provided to select which of the shared inputs are routed to each output.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 19 Modules list

Table 3. i.MX RT1160 modules list (continued)

Block Mnemonic Block Name Subsystem Brief Description

XECC External ECC Controller Memories and XECC can be used as a gasket module on AXI bus to Memory Controllers support ECC function for external memory. XRDC Extended Resource Security The XRDC provides an integrated, scalable Domain Controller architectural framework for access control, system memory protection, and peripheral isolation. It allows software to assign chip resources including processor cores, non-core bus masters, memory regions, and slave peripherals to processing domains to support enforcement of robust operational environments.

3.1 Special signal considerations Table 4 lists special signal considerations for the i.MX RT1160 processors. The signal names are listed in alphabetical order. The package contact assignments can be found in Section 6, Package information and contact assignments.” Signal descriptions are provided in the i.MX RT1160 Reference Manual (IMXRT1160RM). Table 4. Special signal considerations

Signal Name Remarks

CLK1_P/ CLK1_N This differential output is reserved for NXP internal use. For users, this output must be a no connect. DCDC_PSWITCH PAD is in DCDC_IN domain and connected to ground to bypass DCDC. To enable DCDC function, assert DCDC_IN with at least 1ms delay for DCDC_IN rising edge. RTC_XTALI/RTC_XTALO To hit the exact oscillation frequency, the board capacitors must be reduced to account for the board and chip parasitics. The integrated oscillation amplifier is self-biasing, but relatively weak. Care must be taken to limit the parasitic leakage from RTC_XTALI and RTC_XTALO to either the power or the ground (> 100 M). This de-biases the amplifier and reduces the start-up margin. If you want to feed an external low-frequency clock into RTC_XTALI, the RTC_XTALO pin must remain unconnected or driven by a complementary signal. The logic level of this forcing clock must not exceed the VDD_SNVS_DIG level and the frequency shall be < 100 kHz under the typical conditions. It is recommended to tie RTC_XTALI to GND if external crystal is not used. When a high-accuracy real-time clock is not required, the system may use the on-chip 32 kHz oscillator. The tolerance is ±10%. The ring oscillator starts faster than the external crystal and is used until the external crystal reaches a stable oscillation. The ring oscillator also starts automatically if no clock is detected at RTC_XTALI. XTALI/XTALO The SDK software requires 24 MHz on XTALI/XTALO. The crystal can be eliminated if an external 24 MHz oscillator is available in the system. In this case, refer to section of Bypass Configuration (24 MHz) from the reference manual. There are three configurations that can be utilized, but configuration 2 is recommended. The logic level of this forcing clock must not exceed the VDD_LPSR_ANA level. If this clock is used as a reference for USB, then there are strict frequency tolerance and jitter requirements. See Section 4.2.6, On-chip oscillators and relevant interface specifications chapters for details.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 20 NXP Semiconductors Modules list

Table 4. Special signal considerations (continued)

Signal Name Remarks

JTAG_nnnn External resistors can be used with all JTAG signals except for JTAG_TDO, but they are not required. See Table 5 for a summary of the JTAG interface. JTAG_TDO is configured with an on-chip keeper circuit, such that the floating condition is actively eliminated if an external pull resistor is not present. An external pull resistor on JTAG_TDO is detrimental. See Table 5 for a summary of the JTAG interface. When JTAG_MOD is low, the JTAG interface is configured for a common software debug, adding all the system TAPs to the chain. When JTAG_MOD is high, the JTAG interface is configured to a mode compliant with the IEEE 1149.1 standard. NC These signals are No Connect (NC) and should not be connected by the user. POR_B See the System Boot chapter in the reference manual for the correct boot configuration. Note that an incorrect setting may result from an improper boot sequence. POR_B signal has internal 100 k pull up to SNVS domain, should pull up to VDD_SNVS_ANA if need to add external pull up resistor, otherwise it will cause additional leakage during SNVS mode. It is recommended to add the external reset IC to the circuit to guarantee POR_B is properly processed during power up/down, please refer to the EVK design for details. Note: • As the Low DCDC_IN detection threshold is 2.6 V, the reset IC’s reset threshold must be higher than 2.6 V, then the whole chip is reset before the internal DCDC module reset to guarantee the chip safety during power down. • For power on reset, on any conditions ones need to make sure the voltage on DCDC_PSWITCH pin is below 0.5 V before power up. ONOFF A brief connection to GND in the OFF mode causes the internal power management state machine to change the state to ON. In the ON mode, a brief connection to GND generates an interrupt (intended to be a software-controllable power-down). Approximately five seconds (or more) to GND causes a forced OFF. Both boot mode inputs can be disconnected. TEST_MODE This input is reserved for NXP manufacturing use. The user must tie this pin directly to GND. WAKEUP A GPIO powered by SNVS domain power supply which can be configured as wakeup source in SNVS mode.

Table 5. JTAG controller interface summary

JTAG I/O Type On-chip Termination

JTAG_TCK Input 20–50 kpull-down JTAG_TMS Input 20–50 kpull-up JTAG_TDI Input 20–50 kpull-up JTAG_TDO 3-state output High-impedance JTAG_TRSTB Input 20–50 kpull-up JTAG_MOD Input 20–50 kpull-down

3.2 Recommended connections for unused analog interfaces Table 6 shows the recommended connections for unused analog interfaces.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 21 Modules list

hi Table 6. Recommended connections for unused analog interfaces

Recommendations Module Pad Name if Unused

32 kHz RTC_XTALI, RTC_XTALO Not connected OSC It is recommended that RTC_XTALI ties to GND if external crystal is not connected.

ADC ADC_VREFH 10 K resistor to ground VDDA_ADC_1P8 10 K resistor to ground VDDA_ADC_3P3 10 K resistor to ground CCM CLK1_N, CLK1_P Not connected DAC DAC_OUT Not connected

MIPI VDD_MIPI_1P0 10 K resistor to ground VDD_MIPI_1P8 10 K resistor to ground MIPI_DSI_CKN, MIPI_DSI_CKP, MIPI_DSI_DN0, MIPI_DSI_DP0, Not connected MIPI_DSI_DN1, MIPI_DSI_DP1 MIPI_CSI_CKN, MIPI_CSI_CKP, MIPI_CSI_DN0, MIPI_CSI_DP0, Not connected MIPI_CSI_DN1, MIPI_CSI_DP1 DCDC DCDC_IN, DCDC_IN_Q, DCDC_DIG, DCDC_ANA Not connected DCDC_DIG_SENSE, DCDC_ANA_SENSE, DCDC_LP, DCDC_LN Not connected DCDC_PSWITCH, DCDC_MODE To ground USB USB1_DN, USB1_DP, USB1_VBUS, USB2_DN, USB2_DP, USB2_VBUS Not connected VDD_USB_1P8 Powered with 1.8 V VDD_USB_3P3 Powered with 3.3 V SYS OSC XTALI, XTALO Not connected

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 22 NXP Semiconductors Electrical characteristics 4 Electrical characteristics This section provides the device and module-level electrical characteristics for the i.MX RT1160 processors.

4.1 Chip-level conditions This section provides the device-level electrical characteristics for the IC. See Table 7 for a quick reference to the individual tables and sections. Table 7. i.MX RT1160 chip-Level conditions

For these characteristics Topic appears

Absolute maximum ratings on page 23 Thermal characteristics on page 25 Operating ranges on page 25 Maximum supply currents on page 28 Typical power mode supply currents on page 29 System power and clocks on page 32

4.1.1 Absolute maximum ratings CAUTION Stress beyond those listed under Table 8 may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Table 8 shows the absolute maximum operating ratings.

Table 8. Absolute maximum ratings

Parameter Description Symbol Min Max Unit

Core supplies input voltage VDD_SOC_IN -0.3 1.2 V Power for LPSR domain VDD_LPSR_IN -0.3 3.96 V Power for DCDC DCDC_IN -0.3 3.96 V Power for PLL, OSC, and LDOs VDDA_1P8_IN -0.3 1.98 V Supply input voltage to Secure Non-Volatile Storage VDD_SNVS_IN -0.3 3.96 V and Real Time Clock USB VBUS supply USB1_VBUS -0.3 5.6 V USB2_VBUS

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 23 Electrical characteristics

Table 8. Absolute maximum ratings (continued)

Power for USB OTG PHYs VDD_USB_1P8 -0.3 1.98 V VDD_USB_3P3 -0.3 3.96 V Power for ADC, DAC, and ACMP VDDA_ADC_1P8 -0.3 1.98 V VDDA_ADC_3P3 -0.3 3.96 V Power for MIPI CSI/DSI PHY VDD_MIPI_1P8 -0.3 1.98 V VDD_MIPI_1P0 -0.3 1.2 V IO supply for GPIO in SDIO1 bank (3.3 V mode) NVCC_SD1 -0.3 3.96 V IO supply for GPIO in SDIO1 bank (1.8 V mode) -0.3 1.98 V IO supply for GPIO in SDIO2 bank (3.3 V mode) NVCC_SD2 -0.3 3.96 V IO supply for GPIO in SDIO2 bank (1.8 V mode) -0.3 1.98 V IO supply for GPIO in EMC bank1 (3.3 V mode) NVCC_EMC1 -0.3 3.96 V IO supply for GPIO in EMC bank1 (1.8 V mode) -0.3 1.98 V IO supply for GPIO in EMC bank2 (3.3 V mode) NVCC_EMC2 -0.3 3.96 V IO supply for GPIO in EMC bank2 (1.8 V mode) -0.3 1.98 V IO power for GPIO in GPIO AD bank (3.3 V mode) NVCC_GPIO -0.3 3.96 V IO power for GPIO in GPIO AD bank (1.8 V mode) -0.3 1.98 V IO supply for GPIO in DISP1 bank (3.3 V mode) NVCC_DISP1 -0.3 3.96 V IO supply for GPIO in DISP1 bank1 (1.8 V mode) -0.3 1.98 V IO supply for GPIO in DISP2 bank (3.3 V mode) NVCC_DISP2 -0.3 3.96 V IO supply for GPIO in DISP2 bank1 (1.8 V mode) -0.3 1.98 V IO power for GPIO in LPSR bank (3.3 V mode) NVCC_LPSR -0.3 3.96 V IO power for GPIO in LPSR bank (1.8 V mode) -0.3 1.98 V IO power for GPIO in SNVS bank (1.8 V mode) NVCC_SNVS -0.3 1.98 V 1 Input/Output Voltage range Vin/Vout -0.5 NVCC + 0.3 V o Storage Temperature range TSTORAGE -40 150 C 1 NVCC is the I/O supply voltage.

Table 9. Electrostatic discharge and latch-up characteristics

Symbol Description Min Max Unit Notes

1 VHBM Electrostatic discharge voltage, human body model -2000 +2000 V

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 24 NXP Semiconductors Electrical characteristics

Table 9. Electrostatic discharge and latch-up characteristics (continued)

Symbol Description Min Max Unit Notes

VESD Electrostatic discharge voltage, charged-device model All pins except the corner pins -500 +500 V 2

Corner pins only -750 +750 V 3 ILAT Immunity level: 100 100 mA • Class II @95 oC ambient temperature 1 Determined according to JEDEC Standard JS001, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2 Determined according to JEDEC Standard JS002, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 3 Determined according to JEDEC Standard JESD78, IC Latch-up Test.

4.1.2 Thermal characteristics Table 10 displays the 14 x 14 mm package thermal characteristics. Table 10. 14 x 14 mm thermal characteristics

Rating Board Type1 Symbol Value Unit

2 3 o Junction to Ambient Thermal Resistance JESD51-9, 2s2p RJA 31.6 C/W 4 o Junction to Top of Package JESD51-9, 2s2p JT 1.4 C/W Thermal Characterization Parameter2 5 6 o Junction to Case Thermal Resistance JESD51-9, 1s RJC 10 C/W 1 Thermal test board meets JEDEC specification for this package (JESD51-9). 2 Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not meant to predict the performance of a package in an application-specific environment. 3 o RJA = (Tj - Ta)/P [unit: C/W], where Tj = junction temperature, Ta = ambient temperature, P = device power. 4 o JT = (Tj - Tt)/P [unit: C/W], where Tj = junction temperature, Tt = temperature at top of package, P = device power. 5 Junction-to-Case thermal resistance determined using an isothermal cold plate. Case temperature is taken at the package top side centre surface temperature. 6 o RJC = (Tj - Tc)/P [unit: C/W], where Tj = junction temperature, Tc = case temperature, P = device power.

4.1.3 Operating ranges Table 11 provides the operating ranges of the i.MX RT1160 processors. For details on the chip's power structure, see the “Power Management Unit (PMU)” chapter of the i.MX RT1160 Reference Manual (IMXRT1160RM).

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 25 Electrical characteristics

Table 11. Operating ranges

Parameter Operating Symbol Min Max1 Unit Comment Description Conditions

Run Mode VDD_SOC_IN M7 core at 600 1.0 1.15 V — MHz

M7 core at 240 0.9 1.15 V — MHz VDD_LPSR_DIG M4 core at 240 1.0 1.15 V — MHz

M4 core at 120 0.9 1.15 V — MHz STANDBY Mode VDD_SOC_IN M7 core 0.8 1.15 V — VDD_LPSR_DIG M4 core 0.8 1.15 V — Power for DCDC DCDC_IN — 3.0 3.6 V — Power for PLL, VDDA_1P8_IN — 1.71 1.89 V — OSC, and LDOs Power for LPSR VDD_LPSR_IN — 3.0 3.6 V — domain

Power for SNVS VDD_SNVS_IN — 2.4 3.6 V — and RTC Power for USB VDD_USB_1P8 — 1.65 1.95 V — OTG PHYs VDD_USB_3P3 — 3.0 3.6 V — Power for ADC, VDDA_ADC_1P8 — 1.65 1.95 V — DAC, and ACMP VDDA_ADC_3P3 — 3.0 3.6 V — ADC_VREFH — 1.0 1.89 V — Power for MIPI VDD_MIPI_1P8 — 1.65 1.95 V — CSI/DSI PHY VDD_MIPI_1P0 — 0.9 1.1 V —

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 26 NXP Semiconductors Electrical characteristics

Table 11. Operating ranges (continued)

GPIO supplies NVCC_SD1 — 3.0 3.6 V IO power for GPIO in SDIO1 bank (3.3 V mode) — 1.65 1.95 V IO power for GPIO in SDIO1 bank (1.8 V mode)

NVCC_SD2 — 3.0 3.6 V IO power for GPIO in SDIO2 bank (3.3 V mode) — 1.65 1.95 V IO power for GPIO in SDIO2 bank (1.8 V mode) NVCC_EMC1 — 3.0 3.6 V IO power for GPIO in EMC bank1 (3.3 V mode) — 1.65 1.95 V IO power for GPIO in EMC bank1 (1.8 V mode) NVCC_EMC2 — 3.0 3.6 V IO power for GPIO in EMC bank2 (3.3 V mode) — 1.65 1.95 V IO power for GPIO in EMC bank2 (1.8 V mode) NVCC_GPIO — 3.0 3.6 V IO power for GPIO in GPIO AD bank (3.3 V mode) — 1.65 1.95 V IO power for GPIO in GPIO AD bank (1.8 V mode) NVCC_DISP1 — 3.0 3.6 V IO power for GPIO in DISP1 bank (3.3 V mode) — 1.65 1.95 V IO power for GPIO in DISP1 bank (1.8 V mode) NVCC_DISP2 — 3.0 3.6 V IO power for GPIO in DISP2 bank (3.3 V mode) — 1.65 1.95 V IO power for GPIO in DISP2 bank (1.8 V mode) NVCC_LPSR — 3.0 3.6 V IO power for GPIO in LPSR bank (3.3 V mode) — 1.65 1.95 V IO power for GPIO in LPSR bank (1.8 V mode) NVCC_SNVS — 1.65 1.95 V IO power for GPIO in SNVS bank (1.8 V mode) Temperature Operating Ranges Junction Tj Standard 095oC See the application note, i.MX temperature Commercial RT1160 Product Lifetime Usage Estimates for information on product lifetime (power-on years) for this processor. 1 Applying the maximum voltage results in maximum power consumption and heat generation. NXP recommends a voltage set point = (Vmin + the supply tolerance). This results in an optimized power/speed ratio.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 27 Electrical characteristics 4.1.4 Maximum supply currents The data shown in Table 12 represent a use case designed specifically to show the maximum current consumption possible. All cores are running at the defined maximum frequency and are limited to L1 cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a very limited practical use case, if at all, and be limited to an extremely low duty cycle unless the intention were to specifically show the worst case power consumption.

Table 12. Maximum supply currents

Power Rail Comments Max Current Unit

DCDC_IN Max power for chip at 95 oC 500 mA VDDA_1P8_IN 1.8 V power supply for PLL, OSC, and 100 mA LDOs VDD_SOC_IN Power supply for digital logic 850 mA VDD_LPSR_IN 3.3 V power supply for LPSR domain 75 mA VDD_SNVS_IN Power supply for SNVS domain 1 mA VDD_USB_1P8 1.8 V power supply for USB OTG PHYs 50 mA VDD_USB_3P3 3.3 V power supply for USB OTG PHYs 60 mA VDDA_ADC_1P8 1.8 V power supply for ADC, DAC, and 10 mA ACMP

VDDA_ADC_3P3 3.3 V power supply for ADC, DAC, and 2mA ADC_VREFH ACMP VDD_MIPI_1P8 1.8 V power supply for MIPI CSI/DSI PHY 100 mA VDD_MIPI_1P0 1.0 V power supply for MIPI CSI/DSI PHY 30 mA

NVCC_SD1 Imax = N x C x V x (0.5 x F) NVCC_SD2 Where: NVCC_EMC1 N—Number of IO pins supplied by the power line NVCC_EMC2 C—Equivalent external capacitive load NVCC_GPIO V—IO voltage NVCC_DISP1 (0.5 x F)—Data change rate. Up to 0.5 of the clock rate (F) NVCC_DISP2 In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz. NVCC_LPSR NVCC_SNVS

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 28 NXP Semiconductors Electrical characteristics 4.1.5 Typical power mode supply currents Table 13 shows the current and power consumption (not including I/O) of i.MX RT1160 processors in selected power modes. Table 13. Typical power modes current and power consumption (Dual core)

Power supplies at 3.3 V (Typical)1 Modes Test conditions Units 25 oC Tj 95 oC Tj

Set Point #0 • CM7 runs at 600 MHz, drive voltage to 1.0 V; CM4 DCDC_IN 87.8 135.6 mA Active runs at 240 MHz, drive voltage to 1.0 V • CM7 domain bus frequency at 200 MHz; CM4 VDD_LPSR_IN 28.2 29.5 A domain bus frequency at 120 MHz VDD_SNVS_IN 3.9 9.6 A • LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed Total 289.846 447.609 mW • 16 MHz, 400 MHz, external 24 MHz crystal, and external 32 kHz crystal are enabled • All PLLs are enabled • All peripherals are enabled and run at their maximum clock root frequency under normal drive mode

Set Point #5 • CM7 runs at 240 MHz, lower voltage to 0.9 V; DCDC_IN 43.7 69.1 mA Active CM4 runs at 120 MHz, lower voltage to 0.9 V • CM7 domain bus frequency at 100 MHz; CM4 VDD_LPSR_IN 28.1 29.4 A domain bus frequency at 60 MHz VDD_SNVS_IN 3.9 9 A • LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed Total 144.316 228.157 mW • 16 MHz, 400 MHz, external 24 MHz crystal, and external 32 kHz crystal are enabled • All PLLs are enabled • All peripherals are enabled and run at their maximum clock root frequency under underdrive mode

Set Point #7 • CM7 runs at 200 MHz, lower voltage to 0.9 V; DCDC_IN 25.4 47.8 mA Active CM4 is clock gated, lower voltage to 0.9 V • CM7 domain bus frequency at 100 MHz VDD_LPSR_IN 27.9 29.3 A • LDO_LPSR_ANA and LDO_LPSR_DIG are VDD_SNVS_IN 3.9 8.8 A bypassed • 16 MHz, 400 MHz, and external 32 kHz crystal are Total 83.925 157.866 mW enabled • All PLLs are power gated • All peripherals controlled by CM4 core are clock gated, but remain powered

Set Point #9 • CM7 is clock gated, lower voltage to 0.9 V; CM4 DCDC_IN 14.7 34.6 mA Active runs at 100 MHz, lower voltage to 0.9 V • CM4 domain bus frequency at 50 MHz VDD_LPSR_IN 27.8 29.1 A • LDO_LPSR_ANA and LDO_LPSR_DIG are VDD_SNVS_IN 3.8 8.7 A bypassed • 16 MHz, 400 MHz, and external 32 kHz crystal are Total 48.614 114.305 mW enabled • All PLLs are power gated • All peripherals controlled by CM7 core are clock gated, but remain powered

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 29 Electrical characteristics

Table 13. Typical power modes current and power consumption (Dual core) (continued)

Set Point #11 • CM7 is power off; CM4 runs at 200 MHz, drive DCDC_IN 26.5 38 A Active voltage to 1.0 V • CM4 domain bus frequency at 100 MHz VDD_LPSR_IN 37.2 43.2 mA • DCDC is off, LDO_LPSR_ANA and VDD_SNVS_IN 3.9 8.9 A LDO_LPSR_DIG are active • 16 MHz, 400 MHz, and external 32 kHz crystal are Total 122.860 142.715 mW enabled • All PLLs are power gated • The WAKEUPMIX domain, MEGAMIX domain, and DISPLAYMIX domain are power gated • All peripherals in LPSRMIX domain are clocked

Set Point #12 • CM7 is power off; CM4 runs at 100 MHz, lower DCDC_IN 26.5 37.8 A Active voltage to 0.9 V • CM4 domain bus frequency at 50 MHz VDD_LPSR_IN 22.5 26.5 mA • DCDC is off, LDO_LPSR_ANA and VDD_SNVS_IN 3.8 8.7 A LDO_LPSR_DIG are active • 16 MHz, 400 MHz, and external 32 kHz crystal are Total 74.350 87.603 mW enabled • All PLLs are power gated • The WAKEUPMIX domain, MEGAMIX domain, and DISPLAYMIX domain are power gated • All peripherals in LPSRMIX domain are clocked

Set Point #0 • System is on STANDBY mode DCDC_IN 3.1 15.4 mA Standby • Both CM7 and CM4 are on SUSPEND mode Suspend • TCM is on retention VDD_LPSR_IN 32.3 40.9 A • LDO_LPSR_ANA and LDO_LPSR_DIG are VDD_SNVS_IN 3.8 8.5 A bypassed • All clock sources are turned off except for 32 kHz Total 10.349 50.983 mW RTC • All PLLs are power gated • All peripherals clock gated, but remain powered

Set Point #5 • System is on STANDBY mode DCDC_IN 2.3 11.7 mA Standby • Both CM7 and CM4 are on SUSPEND mode Suspend • TCM is on retention VDD_LPSR_IN 32.4 41.1 A • LDO_LPSR_ANA and LDO_LPSR_DIG are VDD_SNVS_IN 3.8 8.5 A bypassed • All clock sources are turned off except for 32 kHz Total 7.709 38.774 mW RTC • All PLLs are power gated • All peripherals are clock gated, but remain powered

Set Point #7 • System is on STANDBY mode DCDC_IN 2.3 11.7 mA Standby • Both CM7 and CM4 are on SUSPEND mode Suspend • TCM is on retention VDD_LPSR_IN 32.4 41.1 A • LDO_LPSR_ANA and LDO_LPSR_DIG are VDD_SNVS_IN 3.8 8.5 A bypassed • All clock sources are turned off except for 32 kHz Total 7.709 38.774 mW RTC • All PLLs are power gated • All peripherals are clock gated, but remain powered

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 30 NXP Semiconductors Electrical characteristics

Table 13. Typical power modes current and power consumption (Dual core) (continued)

Set Point #10 • Lower voltage to 0.8 V with RBB mode for both DCDC_IN 1.9 8.8 mA Standby SOC and LPSR domains Suspend • System is on STANDBY mode VDD_LPSR_IN 32.3 40.9 A • Both CM7 and CM4 are on SUSPEND mode VDD_SNVS_IN 3.8 8.5 A • TCM is on retention • LDO_LPSR_ANA and LDO_LPSR_DIG are Total 6.389 29.203 mW bypassed • All clock sources are turned off except for 32 kHz RTC • All PLLs are power gated • All peripherals are clock gated, but remain powered

Set Point #11 • System is on STANDBY mode DCDC_IN 26.3 37.6 A Standby • CM7 is power off, CM4 is on SUSPEND mode Suspend • CM4 TCM is on retention VDD_LPSR_IN 0.847 5.1 mA • DCDC is off, LDO_LPSR_ANA and VDD_SNVS_IN 3.8 8.4 A LDO_LPSR_DIG are active • All clock sources are turned off except for 32 kHz Total 2.894 16.982 mW RTC • All PLLs are power gated • The WAKEUPMIX domain, MEGAMIX domain, and DISPLAYMIX domain are power gated • All peripherals in LPSRMIX domain are clock gated, but remain powered

Set Point #15 • Lower voltage to 0.8 V with RBB mode for LPSR DCDC_IN 26.2 37.6 A Standby domain Suspend • System is on STANDBY mode VDD_LPSR_IN 0.482 3.2 mA • CM7 is power off, CM4 is on SUSPEND mode VDD_SNVS_IN 3.8 8.4 A • CM4 TCM is on retention • DCDC is off, LDO_LPSR_ANA and Total 1.690 10.712 mW LDO_LPSR_DIG are active • All clock sources are turned off except for 32 kHz RTC • All PLLs are power gated • The WAKEUPMIX domain, MEGAMIX domain, and DISPLAYMIX domain are power gated • All peripherals in LPSRMIX domain are clock gated, but remain powered

SNVS • Only SNVS domain is powered DCDC_IN 0 0 A • 32 kHz RTC is alive • DCDC_IN and VDD_LPSR_IN are power gated VDD_LPSR_IN 0 0 A VDD_SNVS_IN 3.8 8.5 A Total 12.54 28.05 W 1 Code runs in the ITCM; typical values are the average values on typical process wafers.

Table 14 shows the typical wakeup time.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 31 Electrical characteristics

Table 14. Typical wakeup time1

Description Typical wakeup time Unit

From Set Point #0 Standby Suspend to Set Point #0 normal drive RUN 4.13 ms From Set Point #5 Standby Suspend to Set Point #0 normal drive RUN 4.79 ms

From Set Point #10 Standby Suspend to Set Point #0 normal drive RUN 5.47 ms From Set Point #15 Standby Stop to Set Point #0 normal drive RUN 7.6 ms From SNVS mode to ROM exit 8.54 ms 1 Please refer to Table 13 for Set Point modes definition, and the only difference between Set Point #15 Standby Suspend mode and Set Point #15 Standby Stop mode is the Suspend mode versus Stop mode on CM4 core.

4.2 System power and clocks This section provides the information about the system power and clocks.

4.2.1 Power supplies requirements and restrictions The system design must comply with power-up sequence, power-down sequence, and steady state guidelines as described in this section to guarantee the reliable operation of the device. Any deviation from these sequences may result in the following situations: • Excessive current during power-up phase • Prevention of the device from booting • Irreversible damage to the processor (worst-case scenario) Figure 4 shows the power sequence.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 32 NXP Semiconductors Electrical characteristics

VDD_SNVS_IN

VDD_SNVS_ANA

VDD_SNVS_DIG

VDD_LPSR_IN

VDD_LPSR_ANA

VDD_LPSR_DIG

DCDC_IN 1ms

DCDC_PSWITCH

VDDA_1P8

VDD_SOC_IN

ONOFF

POR_B

Figure 4. Power sequence

4.2.1.1 Power-up sequence The below restrictions must be followed: • VDD_SNVS_IN supply must be turned on before any other power supply or be connected (shorted) with VDD_LPSR_IN and DCDC_IN supply. • If a coin cell is used to power VDD_SNVS_IN, then ensure that it is connected before any other supply is switched on. • When internal DCDC is enabled, external delay circuit is required to delay the “DCDC_PSWITCH” signal at least 1 ms after DCDC_IN is stable. • Need to ensure DCDC_IN ramps to 3.0 V within 0.2 x RC, RC is from external delay circuit used for DCDC_PSWITCH and must be longer than 1 ms. • POR_B (if used) must be held low during the entire power up sequence. NOTE The POR_B input (if used) must be immediately asserted at power-up and remain asserted until after the last power rail reaches its working voltage. In the absence of an external reset feeding the POR_B input, the internal POR module takes control. See the i.MX RT1160 Reference Manual (IMXRT1160RM) for further details and to ensure that all necessary requirements are being met. NOTE The voltage on DCDC_PSWITCH pin should be below 0.5 V before ramping up the voltage on DCDC_PSWITCH.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 33 Electrical characteristics

NOTE The power rail VDD_SNVS_DIG is controlled by software. NOTE Need to ensure that there is no back voltage (leakage) from any supply on the board towards the 3.3 V supply (for example, from the external components that use both the 1.8 V and 3.3 V supplies). NOTE USB1_VBUS, USB2_VBUS, and VDDA_ADC_3P3 are not part of the power supply sequence and may be powered at any time.

4.2.1.2 Power-down sequence The following restrictions must be followed: • VDD_SNVS_IN supply must be turned off after any other power supply or be connected (shorted) with VDD_LPSR_IN and DCDC_IN supply. • If a coin cell is used to power VDD_SNVS_IN, then ensure that it is removed after any other supply is switched off.

4.2.1.3 Power supplies usage I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_XXXX) is OFF. This can cause internal latch-up and malfunctions due to reverse current flows. For information about I/O power supply of each pin, see “Power Rail” columns in pin list tables of Section 6, Package information and contact assignments.”

4.2.2 Internal POR and power detect Internal detector monitors VDD_SOC_IN and VDD_LPSR_DIG. Internal POR will be asserted whenever VDD_SOC_IN or VDD_LPSR_DIG are lower than the valid voltage values shown in the Table 15. Table 15. Internal POR and power detect

Symbol Description Value Unit

Vdetlpsr1p0_H 1.0 V supply valid 0.75 V

Vdetsoc1p0_H 1.0 V supply valid 0.75 V

Hystdet1p0 The detector hysteresis 100 mV

4.2.3 Integrated LDO voltage regulator parameters Various internal supplies can be powered ON from internal LDO voltage regulators. The on-chip LDOs are intended for internal use only and should not be used to power any external circuitry. See the i.MX RT1160 Reference Manual (IMXRT1160RM) for details on the power tree scheme.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 34 NXP Semiconductors Electrical characteristics

4.2.3.1 LDO_SNVS_ANA Table 16 shows the parameters of LDO_SNVS_ANA. Table 16. LDO_SNVS_ANA specification

Specification Min Typ Max Unit

VDD_SNVS_IN 2.4 3 3.6 V VDD_SNVS_ANA 1.65 1.75 1.95 V I_out — — 1 mA

External decoupling capacitor — 2.2 — F

4.2.3.2 LDO_SNVS_DIG Table 17 shows the parameters of LDO_SNVS_DIG. Table 17. LDO_SNVS_DIG specification

Specification Min Typ Max Unit

VDD_SNVS_ANA 1.65 1.75 1.95 V VDD_SNVS_DIG 0.65 0.85 0.95 V I_out — — 1 mA

External decoupling capacitor — 0.22 — F

4.2.3.3 LDO_PLL Table 18 shows the parameters of LDO_PLL. Table 18. LDO_PLL specification

Specification Min Typ Max Unit

VDDA_1P8_IN 1.71 1.8 1.89 V VDDA_1P0 0.9 1 1.2 V I_out — — 70 mA

External decoupling capacitor — 2.2 — F

4.2.3.4 LPSR_LDO_DIG LPSR_LDO_DIG provides 1.0 V power source (VDD_LPSR_DIG) from 1.8V power domain (VDD_LPSR_ANA). The trim voltage range of LDO output is from 0.7 V to 1.15 V. There are two work modes: Low Power mode and High Power mode. In typical PVT case, the static current consumption is less than 3 A in Low Power mode. The maximum drive strength of this LDO regulator is 50 mA in High Power mode.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 35 Electrical characteristics

Table 19. LPSR_LDO_DIG specification

Specification Min Typ Max Unit

VDD_LPSR_ANA 1.71 1.8 1.89 V VDD_LPSR_DIG 0.7 1 1.15 V

I_out — — 50 mA

External decoupling capacitor — 2.2 — F

4.2.3.5 LPSR_LDO_ANA LPSR_LDO_ANA provides 1.8 V power source (VDD_LPSR_ANA) from 3.3 V power domain (VDD_LPSR_IN). Its default output value is 1.8 V. Two work modes are supported by this LDO: Low Power mode and High Power mode. In Low Power mode, the LDO provides 2 mA (maximum value) by consuming only 4 A current. In High Power mode, the LDO provides 75 mA current capacity with 40 A static power dissipation. Table 20. LPSR_LDO_ANA specification

Specification Min Typ Max Unit

VDD_LPSR_IN 3 3.3 3.6 V VDD_LPSR_ANA — 1.8 — V I_out — — 75 mA

External decoupling capacitor — 4.7 — F

4.2.4 DCDC DCDC can be configured to operate on power-save mode when the load current is less than 50 mA. During the power-save mode, the converter operates with reduced switching frequency in PFM mode and with a minimum quiescent current to maintain high efficiency. DCDC can detect the peak current in the P-channel switch. When the peak current exceeds the threshold, DCDC will give an alert signal, and the threshold can be configured. By this way, DCDC can roughly detect the current loading. DCDC also includes the following protection functions: • Over current protection. In run mode, DCDC shuts down when detecting abnormal large current in the P-type power switch. • Over voltage protection. DCDC shuts down when detecting the output voltage is too high. • Low voltage detection. DCDC shuts down when detecting the input voltage is too low. Table 21 shows DCDC characteristics.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 36 NXP Semiconductors Electrical characteristics

Table 21. DCDC characteristics

Description Min Typ Max Unit Comments

Input voltage 3 3.3 3.6 V — Output voltage • 1.0 V output 0.6 1 1.375 V 25 mV per step • 1.8 V output 1.5 1.8 2.275 V 25 mV per step Loading • 1.0 V output — 150 850 mA — • 1.8 V output — 80 150 mA — Efficiency • DCDC run mode — 80% — — 150 mA@vdd1p0 80 mA@vdd1p8

• DCDC low power mode — 80% — — 300 A@vdd1p0 300 A@vdd1p8 Output voltage accuracy • DCDC Run mode -2.5% — 2.5% — Maximum 50 mV Vp-p@vdd1p0 • DCDC Low power mode -6% — 6% — — Over current detection — 1.5 — A The typical value can be configured as 1.5 A and 2 A by register. Over voltage detection • Output 1.8 V — 2.5 2.75 V — • Output 1.0 V — 1.5 1.65 V — • Low DCDC_IN detection — 2.6 2.8 V —

Leakage current — 3 — A DCDC off Quiescent current

• DCDC Run mode — 150 — A— • DCDC Low power mode — 5 — A—

Capacitor value — 33 — F High frequency (DCDC_ANA) capacitor are also 66 required. (DCDC_DIG)

Inductor value — 4.7 — H— • Saturation current — 1 — A —

For additional information, see the i.MX RT1160 Reference Manual (IMXRT1160RM).

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 37 Electrical characteristics 4.2.5 PLL’s electrical characteristics This section provides PLL electrical characteristics.

4.2.5.1 Audio/Video PLL’s electrical parameters

Table 22. Audio/Video PLL’s electrical parameters

Parameter Min Typ Max Unit

Clock output range 650 — 1300 MHz Reference clock — 24 — MHz Lock time — — 11250 reference cycles Period jitter (p2p) — 50 — ps Duty cycle 48.5 — 51.5 %

4.2.5.2 528 MHz PLL

Table 23. 528 MHz PLL’s electrical parameters

Parameter Min Typ Max Unit

Clock output range — — 528 MHz Reference clock — 24 — MHz Lock time — — 11250 reference cycles Period jitter (p2p) — 50 — ps PFD period jitter (p2p) — 100 — ps Duty cycle 45 — 55 %

4.2.5.3 Ethernet PLL

Table 24. Ethernet PLL’s electrical parameters

Parameter Min Typ Max Unit

Clock output range — — 1000 MHz Reference clock — 24 — MHz Lock time — — 11250 reference cycles Period jitter (p2p) — 50 — ps Duty cycle 47.5 — 52.5 %

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 38 NXP Semiconductors Electrical characteristics

4.2.5.4 480 MHz PLL

Table 25. 480 MHz PLL’s electrical parameters

Parameter Min Typ Max Unit

Clock output range — — 480 MHz

Reference clock — 24 — MHz Lock time — — 383 reference cycles Period jitter (p2p) — 40 — ps PFD period jitter (p2p) — 125 — ps Duty cycle 45 — 55 %

4.2.5.5 Arm PLL

Table 26. Arm PLL’s electrical parameters

Parameter Min Typ Max Unit

Clock output range 648 — 1296 MHz Reference clock — 24 — MHz Lock time — — 2250 reference cycles Period jitter (p2p) — 15 — ps Duty cycle 45 — 55 %

4.2.6 On-chip oscillators The system oscillator (SYS OSC) is a crystal oscillator. The SYS OSC, in conjunction with an external crystal or resonator, generates a reference clock for this chip. It also provides the option for an external input clock to XTALI signal directly.

Table 27. System oscillator frequency specifications

Symbol Parameter Conditions Min Typ Max Unit

IVDDA (Low power mode) Analog supply current 24 MHz — 0.5 — mA

IVDDA (High gain mode) Analog supply current 24 MHz — 1.3 — mA

RF Feedback resistor Low-power mode No need High-gain mode — 1 — M 1 RS Series resistor ——0—k

CXCY XTALI/XTALO load capacitance See crystal or resonator manufacture’s recommendation

Cpara Parasitically capacitance of — — 1.5 2.0 pF XTALI and XTALO

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 39 Electrical characteristics

Table 27. System oscillator frequency specifications (continued)

Symbol Parameter Conditions Min Typ Max Unit

Clock output

FOSC Oscillator crystal or resonator ——24—MHz frequency

tdcy Duty-cycle of the output clock — 40 50 60 % Dynamic parameters

VPP Peak-peak amplitude of Low-power mode — 0.8 — V oscillation High gain mode 0.75x 0.8 x —V VDDA_ VDDA_ 1P8_IN 1P8_IN

tstart Start-up time 24 MHz low-power —250— s mode

24 MHz high-gain —250— s mode 1 Depends on the drive level of external crystal device

Each i.MX RT1160 processor has two external input system clocks: a low frequency (RTC_XTALI) and a high frequency (XTALI). The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit, power-down real time clock operation, and slow system and watch-dog counters. The clock input can be connected to either external oscillator or a crystal using internal oscillator amplifier. Additionally, there is an internal ring oscillator, which can be used instead of the RTC_XTALI if accuracy is not important. The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other peripherals. The system clock input can be connected to either external oscillator or a crystal using internal oscillator amplifier.

Table 28. 32 kHz oscillator DC electrical specifications

Symbol Description Min Typ Max Unit Note

Cpara Parasitically capacitance of RTC_XTALI —1.52.0pF— and RTC_XTALO 1 Vpp Peak-to-peak amplitude of oscillator — 0.6 — V

fosc_lo Oscillator crystal — 32.768 — kHz — 1 tstart Crystal startup time — 500 — ms 2,3 Vec_extal32 Externally provided input clock amplitude 0.7 — VDD_SNVS V _ANA 1 Proper PCB layout procedures must be followed to achieve specifications. 2 This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected. 3 The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied clock must be within the range of VSS to VDD_SNVS_ANA.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 40 NXP Semiconductors Electrical characteristics

The RTC OSC module provides the clock source for the Real-Time Clock module. The RTC OSC module, in conjunction with an external crystal, generates a 32.768 kHz reference clock for the RTC.

Table 29. RC oscillator with 16 MHz internal reference frequency

Symbol Parameter Condition Min Typ Max Unit

Clock output

Fclkout_16M Clock frequency — 15.1 16 16.9 MHz Dynamic parameters

Tstart_16M Start-up time — — 50 — s Power-down mode

IVDDA Supply current in power-down — 1 2 95 nA

Table 30. RC oscillator with 48 MHz internal reference frequency

Symbol Parameter Condition Min Typ Max Unit

General

IVDDA Analog supply current — — 350 500 A Clock output

Fclkout Clock frequency — — 48 — MHz Dynamic parameters

Tstart Start-up time — — 2.5 — s Accuracy

Ttarget Trimmed — -2 — 2 %

Table 31. RC oscillator with 400 MHz internal reference frequency

Symbol Parameter Condition Min Typ Max Unit

General

IVDD_1P8V_ON Analog supply current — — 60 — A

IVDD_ON Digital supply current — — 80 — A Clock output F_tuned Tuned clock frequency — — 400 — MHz ΔF/F Frequency error after tuning — — 0.1 — % Dynamic parameters

JPP-CC Peak-peak, period jitter — — 50 — ns

tstart Start-up time — — 1 — s

ttune Tuning time — 1 — 256 s

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 41 Electrical characteristics

Table 32. RC oscillator with 32 kHz internal reference frequency

Symbol Description Min Typ Max Unit Note

firc32k Internal reference frequency — 32 — kHz —

Δfirc32k Deviation of IRC32K frequency -25% — 25% %firc32k —

4.3 I/O parameters This section provides parameters on I/O interfaces.

4.3.1 I/O DC parameters This section includes the DC parameters of the following I/O types: • XTALI and RTC_XTALI (Clock Inputs) DC Parameters • General Purpose I/O (GPIO) NOTE The term ‘NVCC_XXXX’ in this section refers to the associated supply rail of an input or output. NOTE When enable the open drain for I/O pad, the external pull-up voltage cannot exceed the associated supply rail.

Figure 5. Circuit for parameters Voh and Vol for I/O cells

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 42 NXP Semiconductors Electrical characteristics

4.3.1.1 XTALI and RTC_XTALI (clock inputs) DC parameters Table 33 shows the DC parameters for the clock inputs. Table 33. XTALI and RTC_XTALI DC parameters1

Parameter Symbol Test Conditions Min Max Unit

XTALI high-level DC input voltage Vih — VDDA_1P8_IN - 0.5 VDDA_1P8_IN V XTALI low-level DC input voltage Vil — 0 0.5 V RTC_XTALI high-level DC input voltage Vih — VDD_SNVS_ANA - 0.5 VDD_SNVS_ANA V RTC_XTALI low-level DC input voltage Vil — 0 0.5 V 1 The DC parameters are for external clock input only.

4.3.1.2 General purpose I/O (GPIO) DC parameters Following section introduces the GPIO DC parameters, respectively, for GPIO pads. These parameters are guaranteed per the operating ranges in Table 11 unless otherwise noted. Table 34. DC specification for GPIO_EMC_B1/GPIO_EMC_B2/GPIO_SD_B1/GPIO_SD_B2/GPIO_DISP_B1 bank

Value Parameter Symbol Unit Condition Min Typ Max

Receiver 3.3 V

High level input voltage VIH 0.625 x NVCC — NVCC + 0.3 V —

Low level input voltage VIL -0.3 — 0.25 x NVCC V — Receiver 1.8 V

High level input voltage VIH 0.65 x NVCC — NVCC + 0.3 V —

Low level input voltage VIL -0.3 — 0.35 x NVCC V — Driver 3.3 V and driver 1.8 V for PDRV = L and PDRV = H

Output high current IOH -6 — — mA VOH = 0.8 x NVCC

Output low current IOL 6——mAVOL = 0.2 x NVCC

Output low/high current total IOCT ——100mA— for each IO bank

Weak pull-up and pull-down

Pull-up / pull-down resistance RHigh 10 — 100 k High voltage range (2.7 V - 3.6 V)

Pull-up / pull-down resistance RLow 20 — 50 k Low voltage range (1.65 V - 1.95 V)

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 43 Electrical characteristics

Table 35. DC specification for GPIO_SNVS bank

Parameter Symbol Min Typ Max Unit Condition

High level input voltage VIH 0.7 x — NVCC_SNVS + V— NVCC_SNVS 0.1

Low level input voltage VIL -0.3 — 0.3 x V— NVCC_SNVS

Output high current IOH 170 — — AVOH = NVCC_SNVS - 0.3

Output low current IOL 270 — — AVOL = 0.3

Output low/high current total for IOCT — — 100 mA — each IO bank Weak pull-up and pull-down

Pull-up resistance RHigh — 1000 3500  —

Pull-down resistance RLow — 850 3500  —

Table 36. DC specification for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank

NO. Characteristics Test Conditions Min Max Units

1 Input high voltage (VIH) Normal voltage range 0.7 x NVCC NVCC + 0.1 V Derated voltage range 0.75 x NVCC NVCC + 0.1 V Derated2 voltage range 0.75 x NVCC NVCC + 0.1 V Low voltage range 0.7 x NVCC NVCC + 0.1 V High voltage range 0.7 x NVCC NVCC + 0.1 V

2 Input low voltage (VIL) Normal voltage range - 0.3 0.3 x NVCC V Derated voltage range - 0.3 0.25 x NVCC V Derated2 voltage range - 0.3 0.25 x NVCC V Low voltage range - 0.3 0.3 x NVCC V High voltage range - 0.3 0.3 x NVCC V 3 Input Hysteresis (VHYSN) All voltage range 0.06 x NVCC — V

4 Output high voltage (VOH) Normal voltage range NVCC - 0.5 — V DSE = 1 IOH = -10 mA Derated voltage range NVCC - 0.5 — V IOH = -6 mA Derated2 voltage range NVCC - 0.5 — V IOH = -5 mA Low voltage range NVCC - 0.5 — V IOH = -10 mA High voltage range NVCC - 0.5 — V IOH = -10 mA

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 44 NXP Semiconductors Electrical characteristics

Table 36. DC specification for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank (continued)

NO. Characteristics Test Conditions Min Max Units

5 Output high voltage (VOH) Normal voltage range NVCC - 0.5 — V DSE = 0 IOH = -5 mA Derated voltage range NVCC - 0.5 — V IOH = -3 mA Derated2 voltage range NVCC - 0.5 — V IOH = -2.5 mA Low voltage range NVCC - 0.5 — V IOH = -5 mA High voltage range NVCC - 0.5 — V IOH = -5 mA

6 Output low voltage (VOL) Normal voltage range —0.5V DSE = 1 IOL = 10 mA Derated voltage range —0.5V IOL = 6 mA Derated2 voltage range —0.5V IOL = 5 mA Low voltage range —0.5V IOL = 10 mA High voltage range —0.5V IOL = 10 mA

7 Output low voltage (VOL) Normal voltage range —0.5V DSE = 0 IOL = 5 mA Derated voltage range —0.5V IOL = 3 mA Derated2 voltage range —0.5V IOL = 2.5 mA Low voltage range —0.5V IOL = 5 mA High voltage range —0.5V IOL = 5 mA 8 NVCC Normal voltage range 2.7 3.6 V Derated voltage range 1.98 2.7 V Derated2 voltage range 1.71 1.98 V Low voltage range 1.71 1.98 V High voltage range 3 3.6 V

11 Pull-up resistor range (RPU) All voltage range 25 50 k Measure @VDD 12 Pull-down resistor range All voltage range 25 50 k (RPD) Measure @VSS

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 45 Electrical characteristics

Table 36. DC specification for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank (continued)

NO. Characteristics Test Conditions Min Max Units

13 Input leakage current All voltage range — 400 nA 14 Output capacitance (CL) All voltage range — 15 pF

15 Input capacitance (Cin) All voltage range — 5 pF 16 Output low/high current All voltage range — 100 mA total for each IO bank (IOCT)

4.3.2 I/O AC parameters The GPIO and DDR I/O load circuit and output transition time waveform are shown in Figure 6 and Figure 7.

From Output Test Point Under Test CL

CL includes package, probe and fixture capacitance

Figure 6. Load circuit for output

OVDD 80% 80%

20% 20% Output (at pad) 0V tr tf

Figure 7. Output transition time waveform

4.3.2.1 General purpose I/O (GPIO) AC parameters The I/O AC parameters for GPIO are presented in the Table 37 and Table 38, respectively. Table 37. AC specification for GPIO_EMC_B1/GPIO_EMC_B2/GPIO_SD_B1/GPIO_SD_B2/GPIO_DISP_B1 bank

Symbol Parameter Test Condition Min Typ Max Unit

Driver 1.8 V application

fmax Maximum frequency Load = 21 pF (PDRV = L, high drive, 208 MHz 33  —— Load = 15 pF (PDRV = H, low drive, 50 

tr Rise time Measured between VOL and VOH 0.4 — 1.32 ns

tf Fall time Measured between VOH and VOL 0.4 — 1.32 ns Driver 3.3 V application

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 46 NXP Semiconductors Electrical characteristics

Table 37. AC specification for GPIO_EMC_B1/GPIO_EMC_B2/GPIO_SD_B1/GPIO_SD_B2/GPIO_DISP_B1 bank (continued)

Symbol Parameter Test Condition Min Typ Max Unit

fmax Maximum frequency Load = 20 pF — — 200 MHz

tr Rise time Measured between VOL and VOH —— 3 ns

tf Fall time Measured between VOH and VOL —— 3 ns

Table 38. Dynamic input characteristics for GPIO_EMC_B1/GPIO_EMC_B2/GPIO_SD_B1/GPIO_SD_B2/GPIO_DISP_B1 bank

Symbol Parameter Test Condition1, 2 Min Max Unit

Dynamic Input Characteristics for 3.3 V Application

fop Input frequency of operation — — 200 MHz INPSL Slope of input signal at I/O Measured between 10% to 90% of the I/O swing — 3.5 ns Dynamic Input Characteristics for 1.8 V Application

fop Input frequency of operation — — 208 MHz INPSL Slope of input signal at I/O Measured between 10% to 90% of the I/O swing — 1.5 ns 1 For all supply ranges of operation. 2 The dynamic input characteristic specifications are applicable for the digital bidirectional cells.

Table 39. AC specifications for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank

NO. Characteristic Condition Max Unit

1 Pad rise/fall time (DSE = 0, SRE = 0) Normal voltage range —3ns (Cload = 15 pF) Derated voltage range —5ns (Cload = 15 pF) Derated2 voltage range —6ns (Cload = 15 pF)

Low voltage range —3ns (Cload = 15 pF) High voltage range —3ns (Cload = 15 pF)

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 47 Electrical characteristics

Table 39. AC specifications for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank (continued)

NO. Characteristic Condition Max Unit

2 Pad rise/fall time (DSE = 0, SRE = 1) Normal voltage range —6ns (Cload = 15 pF)

Derated voltage range —10ns (Cload = 15 pF) Derated2 voltage range —12ns (Cload = 15 pF)

Low voltage range —6ns (Cload = 15 pF) High voltage range —6ns (Cload = 15 pF) 3 Pad rise/fall time (DSE = 1, SRE = 0) Normal voltage range —2.5ns (Cload = 15 pF)

Derated voltage range —4.5ns (Cload = 15 pF) Derated2 voltage range —5ns (Cload = 15 pF) Low voltage range —2.5ns (Cload = 15 pF)

High voltage range —2.5ns (Cload = 15 pF) 4 Pad rise/fall time (DSE = 1, SRE = 1) Normal voltage range —5ns (Cload = 15 pF) Derated voltage range —9ns (Cload = 15 pF)

Derated2 voltage range —10ns (Cload = 15 pF) Low voltage range —5ns (Cload = 15 pF) High voltage range —5ns (Cload = 15 pF)

5 IPP_DO to pad propagation delay: Normal voltage range —2.5ns (DSE = 0, SRE = 0) (Cload = 15 pF) Derated voltage range —4.5ns (Cload = 15 pF) Derated2 voltage range —5ns (Cload = 15 pF)

Low voltage range —2.5ns (Cload = 15 pF) High voltage range —4ns (Cload = 15 pF)

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 48 NXP Semiconductors Electrical characteristics

Table 39. AC specifications for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank (continued)

NO. Characteristic Condition Max Unit

6 IPP_DO to pad propagation delay: Normal voltage range —7ns (DSE = 0, SRE = 1) (Cload = 15 pF)

Derated voltage range —12ns (Cload = 15 pF) Derated2 voltage range —14ns (Cload = 15 pF)

Low voltage range —7ns (Cload = 15 pF) High voltage range —8.5ns (Cload = 15 pF) 7 IPP_DO to pad propagation delay: Normal voltage range —2ns (DSE = 1, SRE = 0) (Cload = 15 pF)

Derated voltage range —3.6ns (Cload = 15 pF) Derated2 voltage range —4ns (Cload = 15 pF) Low voltage range —2ns (Cload = 15 pF)

High voltage range —4ns (Cload = 15 pF) 8 IPP_DO to pad propagation delay: Normal voltage range —6ns (DSE = 1, SRE = 1) (Cload = 15 pF) Derated voltage range —11ns (Cload = 15 pF)

Derated2 voltage range —12ns (Cload = 15 pF) Low voltage range —6ns (Cload = 15 pF) High voltage range —7.5ns (Cload = 15 pF)

9 Pad to IPP_IND propagation delay Normal voltage range —2ns (100 F load on IPP_IND) Derated voltage range —3.5ns (100 F load on IPP_IND) Derated2 voltage range —4ns (100 F load on IPP_IND)

Low voltage range —4ns (100 F load on IPP_IND) High voltage range —2ns (100 F load on IPP_IND)

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 49 Electrical characteristics

Table 39. AC specifications for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank (continued)

NO. Characteristic Condition Max Unit

10 IPP_IND rise/fall time Normal voltage range —0.3ns (100 F load on IPP_IND)

Derated voltage range —0.4ns (100 F load on IPP_IND) Derated2 voltage range —0.5ns (100 F load on IPP_IND)

Low voltage range —0.3ns (100 F load on IPP_IND) High voltage range —0.3ns (100 F load on IPP_IND)

Figure 8 is the GPIO block diagram.

IPP_OBE

IPP_DSE OUTPUT DRIVER

IPP_DO Pad

IPP_SRE

IPP_PUE

IPP_PUS

IOMUX/IOMUXC PU/PD logic

PU/PD device

IPP_IBE

IPP_IND

IPP_HYS INPUT RECEIVER

Figure 8. GPIO block diagram

4.4 System modules This section contains the timing and electrical parameters for the modules in the i.MX RT1160 processor.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 50 NXP Semiconductors Electrical characteristics 4.4.1 Reset timing parameters Figure 9 shows the POR reset timing and Table 40 lists the timing parameters.

POR_B (Input)

CC1

Figure 9. POR reset timing diagram

Table 40. POR reset timing parameters

ID Parameter Min Max Unit

CC1 Duration of POR_B to be qualified as valid. 1 — RTC_XTALI cycle

4.4.2 WDOG reset timing parameters Figure 10 shows the WDOG reset timing and Table 41 lists the timing parameters.

WDOGn_B (Output)

CC3 Figure 10. WDOGn_B timing diagram

Table 41. WDOGn_B timing parameters

ID Parameter Min Max Unit

CC3 Duration of WDOGn_B Assertion 1 — RTC_XTALI cycle

NOTE RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or approximately 30 s. NOTE WDOGn_B output signals (for each one of the Watchdog modules) do not have dedicated pins, but are muxed out through the IOMUX. See the IOMUX manual for detailed information.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 51 Electrical characteristics 4.4.3 JTAG Controller timing parameters Figure 11 depicts the JTAG controller timing. Figure 12 depicts the JTAG TRST_B timing.

J1

J2

TCK (input) J2 J3 J4

TDI / TMS (input)

J5

TDO (output)

J6

TDO (output)

Figure 11. JTAG controller timing

TCK (input)

J7 J8

TRST_B (input)

J8

TRST_B (input)

Figure 12. JTAG_TRST_B timing

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 52 NXP Semiconductors Electrical characteristics

Table 42. JTAG timing parameters

Value ID Parameter Unit Min Max

J0 TCK frequency — 25 MHz

J1 TCK cycle time 40 — ns J2 TCK pulse width 20 — ns J3 Input data setup time 5 — ns J4 Input data hold time 5 — ns J5 Output data valid time — 15.2 ns J6 Output high impedance time — 15.2 ns J7 TRST_B assert time 100 — ns J8 TRST_B setup time to TCK edge 18 — ns

4.4.4 SWD timing parameters Figure 13 depicts the SWD timing.

S1

S2 S2 SWD_CLK (input) S3 S4

SWD_DIO

S5

SWD_DIO

S6

SWD_DIO

Figure 13. SWD timing

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 53 Electrical characteristics

Table 43. SWD timing parameters

Symbol Description Min Max Unit

S0 SWD_CLK frequency — 50 MHz S1 SWD_CLK cycle time 20 — ns S2 SWD_CLK pulse width 10 — ns S3 Input data setup time 5 — ns S4 Input data hold time 1 — ns S5 Output data valid time — 14.4 ns S6 Output high impedance time — 14.4 ns

4.4.5 Trace timing parameters Figure 14 depicts the trace timing.

T1

T2 T2 TRACE_CLK (output)

T3 T4 T3 T4

TRACE0-3 (output)

Figure 14. Trace timing

Table 44. Trace timing parameters

Symbol Description Min Max Unit

T0 TRACE_CLK frequency — 70 MHz T1 TRACE_CLK cycle time 1/T0 — ns

T2 TRACE_CLK pulse width 6 — ns T3 TRACE data setup time 2 — ns T4 TRACE data hold time 0.7 — ns

4.5 External memory interface The following sections provide information about external memory interfaces.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 54 NXP Semiconductors Electrical characteristics 4.5.1 SEMC specifications The following sections provide information on SEMC interface. Measurements are with a load of 15 pf and an input slew rate of 1 V/ns.

4.5.1.1 SEMC output timing There are ASYNC and SYNC modes for SEMC output timing.

4.5.1.1.1 SEMC output timing in ASYNC mode Table 45 shows SEMC output timing in ASYNC mode. Table 45. SEMC output timing in ASYNC mode

Symbol Parameter Min. Max. Unit Comment

Frequency of operation — 200 MHz

TCK Internal clock period 5 — ns

TAVO Address output valid time — 2 ns These timing parameters 1 apply to Address and ADV# TAHO Address output hold time (TCK - 2) —nsfor NOR/PSRAM in ASYNC 2 mode. TADVL Active low time (TCK - 1)

TDVO Data output valid time — 2 ns These timing parameters 3 apply to Data/CLE/ALE and TDHO Data output hold time (TCK - 2) —nsWE# for NAND, apply to 4 Data/DM/CRE for TWEL WE# low time (TCK - 1) ns NOR/PSRAM, apply to Data/DCX and WRX for DBI interface. 1 Address output hold time is configurable by SEMC_*CR0.AH. AH field setting value is 0x0 in above table. When AH is set with value N, TAHO min time should be ((N + 1) x TCK). See the i.MX RT1160 Reference Manual (IMXRT1160RM) for more detail about SEMC_*CR0.AH register field. 2 ADV# low time is configurable by SEMC_*CR0.AS. AS field setting value is 0x0 in above table. When AS is set with value N, TADL min time should be ((N + 1) x TCK - 1). See the i.MX RT1160 Reference Manual (IMXRT1160RM) for more detail about SEMC_*CR0.AS register field. 3 Data output hold time is configurable by SEMC_*CR0.WEH. WEH field setting value is 0x0 in above table. When WEH is set with value N, TDHO min time should be ((N + 1) x TCK). See the i.MX RT1160 Reference Manual (IMXRT1160RM) for more detail about SEMC_*CR0.WEH register field. 4 WE# low time is configurable by SEMC_*CR0.WEL. WEL field setting value is 0x0 in above table. When WEL is set with value N, TWEL min time should be ((N + 1) x TCK - 1). See the i.MX RT1160 Reference Manual (IMXRT1160RM) for more detail about SEMC_*CR0.WEL register field.

Figure 15 shows the output timing in ASYNC mode.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 55 Electrical characteristics

4#+

)NTERNALCLOCK !$$2 !

4!(/ !$6 4!6/

$!4! $

4$(/ 7% 4$6/

Figure 15. SEMC output timing in ASYNC mode

4.5.1.1.2 SEMC output timing in SYNC mode Table 46 shows SEMC output timing in SYNC mode. Table 46. SEMC output timing in SYNC mode

Symbol Parameter Min. Max. Unit Comment

Frequency of operation — 200 MHz —

TCK Internal clock period 5 — ns —

TDVO Data output valid time — 0.6 ns These timing parameters apply to Address/Data/DM/CKE/control TDHO Data output hold time -0.7 — ns signals with SEMC_CLK for SDRAM.

Figure 16 shows the output timing in SYNC mode.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 56 NXP Semiconductors Electrical characteristics

3%-#?#,+

4$6/ 4$(/

$!4! $

Figure 16. SEMC output timing in SYNC mode

4.5.1.2 SEMC input timing There are ASYNC and SYNC modes for SEMC input timing.

4.5.1.2.1 SEMC input timing in ASYNC mode Table 47 shows SEMC input timing in ASYNC mode. Table 47. SEMC input timing in ASYNC mode

Symbol Parameter Min. Max. Unit Comment

TIS Data input setup 7.1 — ns For NAND/NOR/PSRAM/DBI, these timing parameters apply TIH Data input hold 0 — ns to RE# and Read Data.

Figure 17 shows the input timing in ASYNC mode.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 57 Electrical characteristics

.!.$NON %$/MODEAND./2032!-TIMING

/%

$!4! $ $

4)3 4)(

.!.$%$/MODETIMING

/%

$!4! $ $

4)3 4)(

Figure 17. SEMC input timing in ASYNC mode

4.5.1.2.2 SEMC input timing in SYNC mode Table 48 and Table 49 show SEMC input timing in SYNC mode. Table 48. SEMC input timing in SYNC mode (SEMC_MCR.DQSMD = 0x0)

Symbol Parameter Min. Max. Unit Comment

TIS Data input setup 8.67 — ns —

TIH Data input hold 0 — ns

Table 49. SEMC input timing in SYNC mode (SEMC_MCR.DQSMD = 0x1)

Symbol Parameter Min. Max. Unit Comment

TIS Data input setup 2 — ns —

TIH Data input hold 1 — ns

Figure 18 shows the input timing in SYNC mode.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 58 NXP Semiconductors Electrical characteristics

3%-#?#,+

$!4! $

3%-#?$13 4)3 4)(

Figure 18. SEMC input timing in SYNC mode

4.5.2 FlexSPI parameters Measurements are with a load 15 pf and input slew rate of 1 V/ns.

4.5.2.1 FlexSPI input/read timing There are three sources for the internal sample clock for FlexSPI read data: • Dummy read strobe generated by FlexSPI controller and looped back internally (FlexSPIn_MCR0[RXCLKSRC] = 0x0) • Dummy read strobe generated by FlexSPI controller and looped back through the DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x1) • Read strobe provided by memory device and input from DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x3) The following sections describe input signal timing for each of these three internal sample clock sources.

4.5.2.1.1 SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1

Table 50. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X0

Symbol Parameter Min Max Unit

Frequency of operation — 60 MHz

TIS Setup time for incoming data 8.67 — ns

TIH Hold time for incoming data 0 — ns

Table 51. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X1

Symbol Parameter Min Max Unit

Frequency of operation — 133 MHz

TIS Setup time for incoming data 2 — ns

TIH Hold time for incoming data 1 — ns

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 59 Electrical characteristics

SCK

TIS TIH TIS TIH

SIO[0:7]

Internal Sample Clock

Figure 19. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X0, 0X1 NOTE Timing shown is based on the memory generating read data on the SCK falling edge, and FlexSPI controller sampling read data on the falling edge.

4.5.2.1.2 SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3 There are two cases when the memory provides both read data and the read strobe in SDR mode: • A1—Memory generates both read data and read strobe on SCK rising edge (or falling edge) • A2—Memory generates read data on SCK falling edge and generates read strobe on SCK rising edge

Table 52. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case A1)

Value Symbol Parameter Unit Min Max

Frequency of operation — 166 MHz

TSCKD - TSCKDQS Time delta between TSCKD and TSCKDQS -2 2 ns

SCK

TSCKD TSCKD SIO[0:7]

TSCKDQS TSCKDQS

DQS

Figure 20. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X3 (case A1)

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 60 NXP Semiconductors Electrical characteristics

NOTE Timing shown is based on the memory generating read data and read strobe on the SCK rising edge. The FlexSPI controller samples read data on the DQS falling edge.

Table 53. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case A2)

Value Symbol Parameter Unit Min Max

Frequency of operation — 166 MHz

TSCKD - TSCKDQS Time delta between TSCKD and TSCKDQS -2 2 ns

SCK

TSCKD TSCKD TSCKD SIO[0:7]

TSCKDQS TSCKDQS TSCKDQS

DQS

Internal Sample Clock

Figure 21. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X3 (case A2) NOTE Timing shown is based on the memory generating read data on the SCK falling edge and read strobe on the SCK rising edge. The FlexSPI controller samples read data on a half cycle delayed DQS falling edge.

4.5.2.1.3 DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1

Table 54. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0

Symbol Parameter Min Max Unit

Frequency of operation — 30 MHz

TIS Setup time for incoming data 8.67 — ns

TIH Hold time for incoming data 0 — ns

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 61 Electrical characteristics

Table 55. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x1

Symbol Parameter Min Max Unit

Frequency of operation — 66 MHz

TIS Setup time for incoming data 2 — ns

TIH Hold time for incoming data 1 — ns

SCLK

TIS TIH TIS TIH

SIO[0:7]

Internal Sample Clock

Figure 22. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1

4.5.2.1.4 DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3 There are two cases when the memory provides both read data and the read strobe in DDR mode: • B1—Memory generates both read data and read strobe on SCK edges • B2—Memory generates read data on SCK edges and generates read strobe on SCK2 edges

Table 56. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B1)

Symbol Parameter Min Max Unit

Frequency of operation — 166 MHz

TSCKD - TSCKDQS Time delta between TSCKD and TSCKDQS -1 1 ns

SCK

TSCKD SIO[0:7]

TSCKDQS

DQS

Figure 23. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B1)

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 62 NXP Semiconductors Electrical characteristics

Table 57. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B2)

Symbol Parameter Min Max Unit

Frequency of operation — 166 MHz

TSCKD - TSCKDQS Time delta between TSCKD and TSCKDQS -1 1 ns

SCK

TSCKD SIO[0:7]

SCK2

TSCK2DQS

DQS

Figure 24. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B2)

4.5.2.2 FlexSPI output/write timing The following sections describe output signal timing for the FlexSPI controller including control signals and data outputs.

4.5.2.2.1 SDR mode

Table 58. FlexSPI output timing in SDR mode

Symbol Parameter Min Max Unit

Frequency of operation — 1661 MHz

Tck SCK clock period 6.0 — ns

TDVO Output data valid time — 1 ns

TDHO Output data hold time 1 — ns

TCSS Chip select output setup time 3 x TCK - 1 — ns

TCSH Chip select output hold time 3 x TCK + 2 — ns 1 The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. Please refer to the FlexSPI SDR input timing specifications.

NOTE

TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1 register, the default values are shown above. Please refer to the i.MXRT1160 Reference Manual (IMXRT1160RM) for more details.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 63 Electrical characteristics

SCK

TCSH T CSS T CK

CS

TDVO TDVO

SIO[0:7]

TDHO TDHO Figure 25. FlexSPI output timing in SDR mode

4.5.2.2.2 DDR mode

Table 59. FlexSPI output timing in DDR mode

Symbol Parameter Min Max Unit

Frequency of operation1 — 166 MHz

Tck SCK clock period (FlexSPIn_MCR0[RXCLKSRC] = 0x0) 6.0 — ns

TDVO Output data valid time — 2.2 ns

TDHO Output data hold time 0.8 — ns

TCSS Chip select output setup time 3 x TCK / 2 - 0.7 — ns

TCSH Chip select output hold time 3 x TCK / 2 + 0.8 — ns 1 The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. Please refer to the FlexSPI SDR input timing specifications.

NOTE

TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1 register, the default values are shown above. Please refer to the i.MXRT1160 Reference Manual (IMXRT1160RM) for more details.

SCK

T CSS T CK TCSH CS

TDVO TDVO

SIO[0:7]

TDHO TDHO

Figure 26. FlexSPI output timing in DDR mode

4.6 Display and graphics The following sections provide information about display and graphic interfaces.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 64 NXP Semiconductors Electrical characteristics 4.6.1 MIPI D-PHY electrical characteristics The i.MX RT1160 conforms to the MIPI CSI-2 and D-PHY standards for protocol and electrical specifications. Compliant with standards: • MIPI Alliance Specification for Display Serial Interface Version 1.1 (MIPI DSI controller) • MIPI Standard 1.1 for D-PHY (MIPI DSI D-PHY) • Compatible with MIPI Alliance Standard for Camera Serial Interface 2 (CSI-2) Version 1.1

4.6.1.1 MIPI HS-TX specifications

Table 60. MIPI high-speed transmitter DC specifications

Symbol Parameter Min Typ Max Unit

1 VCMTX High Speed Transmit Static Common Mode Voltage 150 200 250 mV

|VCMTX|(1,0) VCMTX mismatch when Output is Differential-1 or Differential-0 — — 5 mV 1 |VOD| High Speed Transmit Differential Voltage 140 200 270 mV

|VOD|VOD mismatch when Output is Differential-1 or Differential-0 — — 14 mV 1 VOHHS High Speed Output High Voltage — — 360 mV

ZOS Single Ended Output Impedance 40 50 62.5 

ZOS Single Ended Output Impedance Mismatch — — 10 % 1 Value when driving into load impedance anywhere in the ZID (Differential input impedance) range.

Table 61. MIPI high-speed transmitter AC specifications

Symbol Parameter Min Typ Max Unit

VCMTX(HF) Common-level variations above 450 MHz — — 15 mVRMS

VCMTX(LF) Common-level variation between 50-450 MHz — — 25 mVPEAK 1 tR and tF Rise Time and Fall Time (20% to 80%) 150 — 0.3 x UI ps 1 UI is the long-term average unit interval.

4.6.1.2 MIPI LP-TX specifications

Table 62. MIPI low-power transmitter DC specifications

Symbol Parameter Min Typ Max Unit

1 VOH Thevenin Output High Level 1.1 1.2 1.3 V

VOL Thevenin Output Low Level -50 — 50 mV 2 ZOLP Output Impedance of Low Power Transmitter 110 — —  1 This specification can only be met when limiting the core supply variation from 1.1 V to 1.3 V.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 65 Electrical characteristics

2 Though there is no specified maximum for ZOLP, the LP transmitter output impedance ensures the TRLP/TFLP specification is met.

Table 63. MIPI low-power transmitter AC specifications

Symbol Parameter Min Typ Max Unit

1 TRLP /TFLP 15% to 85% Rise Time and Fall Time — — 25 ns 1,2,3 TREOT 30% to 85% Rise Time and Fall Time — — 35 ns 4 TLP-PULSE-TX Pulse width of the LP exclusive-OR clock: First LP exclusive-OR 40 — — ns clock pulse after Stop state or last pulse before Stop state Pulse width of the LP exclusive-OR clock: All other pulses 20 — — ns

TLP-PER-TX Period of the LP exclusive-OR clock 90 — — ns 1,5,6,7 V/tSR Slew Rate @ CLOAD = 0 pF 30 — 500 mV/ns

Slew Rate @ CLOAD = 5 pF 30 — 200 mV/ns

Slew Rate @ CLOAD = 20 pF 30 — 150 mV/ns

Slew Rate @ CLOAD = 70 pF 30 — 100 mV/ns 1 CLOAD Load Capacitance 0 — 70 pF 1 CLOAD includes the low equivalent transmission line capacitance. The capacitance of TX and RX are assumed to always be < 10 pF. The distributed line capacitance can be up to 50 pF for a transmission line with 2 ns delay. 2 The rise-time of TREOT starts from the HS common-level at the moment of the differential amplitude drops below 70 mV, due to stopping of the differential drive. 3 With an additional load capacitance CCM between 0 to 60 pF on the termination center tap at RX side of the lane. 4 This parameter value can be lower than TLPX (MIPI D-PHY low power states), due to differences in rise vs. fall signal slopes, trip levels, and mismatches between Dp and Dn LP transmitters. Any LP exclusive-OR pulse observed during HS EoT (transition from HS level to LP-11) is glitch behavior as described in Low-Power Receiver section. 5 When the output voltage is between 15% and 85% of the fully settled LP signal levels. 6 Measured as average across any 50 mV segment of the output signal transition. 7 This value represents a corner point in a piecewise linear curve.

4.6.1.3 MIPI LP-RX specifications

Table 64. MIPI low power receiver DC specifications

Symbol Parameter Min Typ Max Unit

VIH Logic 1 input voltage 880 — 1300 mV

VIL Logic 0 input voltage, not in ULP state — — 550 mV

VIL-ULPS Logic 0 input voltage, ULP state — — 300 mV

VHYST Input hysteresis 25 — — mV

Table 65. MIPI low power receiver AC specifications

Symbol Parameter Min Typ Max Unit

1,2 eSPIKE Input pulse rejection — — 300 V.ps

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 66 NXP Semiconductors Electrical characteristics

Table 65. MIPI low power receiver AC specifications (continued)

3 TMIN-RX Minimum pulse width response 20 — — ns

VINT Peak Interference amplitude — — 200 mV

fINT Interference frequency 450 — — MHz 1 Time-voltage integration of a spike above VIL when being in LP-0 state or below VIH when being in LP-1 state. 2 An impulse below this value will not change the receiver state. 3 An input pulse greater than this value will toggle the output.

4.6.1.4 MIPI LP-CD specifications

Table 66. MIPI contention detector DC specifications

Symbol Parameter Min Typ Max Unit

VIHCD Logic 1 contention threshold 450 — — mV

VILCD Logic 0 contention threshold — — 200 mV

4.6.1.5 MIPI DC specifications

Table 67. MIPI input characteristics DC specifications

Symbol Parameter Min Typ Max Unit

VPIN Pad signal voltage range -50 — 1350 mV 1 ILEAK Pin leakage current -10 — 10 A

VGNDSH Ground shift -50 — 50 mV 2 VPIN(absmax) Maximum pin voltage level -0.15 — 1.45 V 3 TVPIN(absmax) Maximum transient time above VPIN(max) or below VPIN(min) — — 20 ns 1 When the pad voltage is within the signal voltage range between VGNDSH(min) to VOH + VGNDSH(max) and the Lane Module is in LP receive mode. 2 This value includes ground shift. 3 The voltage overshoot and undershoot beyond the VPIN is only allowed during a single 20 ns window after any LP-0 to LP-1 transition or vice versa. For all other situations it must stay within the VPIN range.

4.6.2 CMOS Sensor Interface (CSI) timing parameters The following sections describe the CSI timing in gated and ungated clock modes.

4.6.2.1 Gated clock mode timing Figure 27 and Figure 28 shows the gated clock mode timings for CSI, and Table 68 describes the timing parameters (P1–P7) shown in the figures. A frame starts with a rising/falling edge on CSI_VSYNC

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 67 Electrical characteristics

(VSYNC), then CSI_HSYNC (HSYNC) is asserted and holds for the entire line. The pixel clock, CSI_PIXCLK (PIXCLK), is valid as long as HSYNC is asserted.

CSI_VSYNC

P1

CSI_HSYNC P7 P2 P5 P6

CSI_PIXCLK

P3 P4

CSI_DATA[23:00]

Figure 27. CSI Gated clock mode—sensor data at falling edge, latch data at rising edge

CSI_VSYNC

P1

CSI_HSYNC

P7 P2 P6 P5

CSI_PIXCLK

P3 P4

CSI_DATA[23:00]

Figure 28. CSI Gated clock mode—sensor data at rising edge, latch data at falling edge

Table 68. CSI gated clock mode timing parameters

ID Parameter Symbol Min. Max. Units

P1 CSI_VSYNC to CSI_HSYNC time tV2H 33.5 — ns P2 CSI_HSYNC setup time tHsu 2.6 — ns P3 CSI DATA setup time tDsu 2.6 — ns

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 68 NXP Semiconductors Electrical characteristics

Table 68. CSI gated clock mode timing parameters (continued)

ID Parameter Symbol Min. Max. Units

P4 CSI DATA hold time tDh 0 — ns P5 CSI pixel clock high time tCLKh 3.75 — ns P6 CSI pixel clock low time tCLKl 3.75 — ns P7 CSI pixel clock frequency fCLK — 80 MHz

4.6.2.2 Ungated clock mode timing Figure 29 shows the ungated clock mode timings of CSI, and Table 69 describes the timing parameters (P1–P6) that are shown in the figure. In ungated mode the CSI_VSYNC and CSI_PIXCLK signals are used, and the CSI_HSYNC signal is ignored.

CSI_VSYNC P1 P6 P4 P5

CSI_PIXCLK

P2 P3

CSI_DATA[23:00]

Figure 29. CSI ungated clock mode—sensor data at falling edge, latch data at rising edge

Table 69. CSI ungated clock mode timing parameters

ID Parameter Symbol Min. Max. Units

P1 CSI_VSYNC to pixel clock time tVSYNC 33.5 — ns P2 CSI DATA setup time tDsu 2.6 — ns P3 CSI DATA hold time tDh 0 — ns P4 CSI pixel clock high time tCLKh 3.75 — ns P5 CSI pixel clock low time tCLKl 3.75 — ns P6 CSI pixel clock frequency fCLK — 80 MHz

The CSI enables the chip to connect directly to external CMOS image sensors, which are classified as dumb or smart as follows: • Dumb sensors only support traditional sensor timing (vertical sync (VSYNC) and horizontal sync (HSYNC)) and output-only Bayer and statistics data. • Smart sensors support CCIR656 video decoder formats and perform additional processing of the image (for example, image compression, image pre-filtering, and various data output formats).

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 69 Electrical characteristics 4.6.3 LCD Controller timing parameters Figure 30 shows the LCD timing and Table 70 lists the timing parameters.

L1 L2 L3

LCDn_CLK (falling edge capture)

LCDn_CLK (rising edge capture)

LCDn_DATA[23:00] LCDn Control Signals L4 L5 L6 L7

Figure 30. LCD timing

Table 70. LCD timing parameters

ID Parameter Symbol Min Max Unit

L1 LCD pixel clock frequency tCLK(LCD) — 75/1501 MHz L2 LCD pixel clock high (falling edge capture) tCLKH(LCD) 3 — ns L3 LCD pixel clock low (rising edge capture) tCLKL(LCD) 3 — ns L4 LCD pixel clock high to data valid (falling edge capture) td(CLKH-DV) -1 1 ns L5 LCD pixel clock low to data valid (rising edge capture) td(CLKL-DV) -1 1 ns L6 LCD pixel clock high to control signal valid (falling edge capture) td(CLKH-CTRLV) -1 1 ns L7 LCD pixel clock low to control signal valid (rising edge capture) td(CLKL-CTRLV) -1 1 ns 1 For eLCDIF or LCDIFv2, the maximum pixel clock frequency of parallel IO interface is 75 MHz, while it is 150 MHz for MIPI DSI interface.

4.7 Audio This section provides information about SAI/I2S.

4.7.1 SAI/I2S switching specifications This section provides the AC timings for the SAI in master (clocks driven) and slave (clocks input) modes. All timings are given for non-inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP] = 0) and non-inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 70 NXP Semiconductors Electrical characteristics

Table 71. Master mode SAI timing

Num Characteristic Min Max Unit

S1 SAI_MCLK cycle time 15 — ns S2 SAI_MCLK pulse width high/low 40% 60% MCLK period S3 SAI_BCLK cycle time 40 — ns S4 SAI_BCLK pulse width high/low 40% 60% BCLK period S5 SAI_BCLK to SAI_FS output valid — 8.4 ns S6 SAI_BCLK to SAI_FS output invalid 0 — ns S7 SAI_BCLK to SAI_TXD valid — 10 ns S8 SAI_BCLK to SAI_TXD invalid 1 — ns S9 SAI_RXD/SAI_FS input setup before SAI_BCLK 14 — ns S10 SAI_RXD/SAI_FS input hold after SAI_BCLK 0 — ns

Figure 31. SAI timing—Master modes

Table 72. Slave mode SAI timing

Num Characteristic Min Max Unit

S11 SAI_BCLK cycle time (input) 40 — ns S12 SAI_BCLK pulse width high/low (input) 40% 60% BCLK period S13 SAI_FS input setup before SAI_BCLK 6 — ns S14 SAI_FA input hold after SAI_BCLK 2 — ns S15 SAI_BCLK to SAI_TXD/SAI_FS output valid — 20 ns S16 SAI_BCLK to SAI_TXD/SAI_FS output invalid -1.5 — ns

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 71 Electrical characteristics

Table 72. Slave mode SAI timing

Num Characteristic Min Max Unit

S17 SAI_RXD setup before SAI_BCLK 6 — ns S18 SAI_RXD hold after SAI_BCLK 2 — ns

Figure 32. SAI timing—Slave mode

4.8 Analog The following sections provide information about analog interfaces.

4.8.1 12-bit ADC electrical specifications All ADC channels meet the 12-bit single-ended accuracy specifications. 1 Table 73. ADC electrical specifications (VREFH = VDD_ANA_18 and VADINmax ≤ VREFH)

Symbol Description Min Typ Max Unit Notes

VADIN Input voltage VREFL —VREFH V —

VREFH ADC high reference supply 1.0 1.8 1.89 V — input

CADIN Input capacitance — 4.5 — pF —

RADIN Input resistance — 500 —  — 2 RAS Analog source resistance — — 5 K

fADCK ADC conversion clock 8 — 88 MHz — frequency 3 Csample Sample cycles 3.5 — 131.5 Cycles

Ccompare Fixed compare cycles — 17.5 — Cycles —

Cconversion Conversion cycles Cconversion = Csample + Ccompare Cycles —

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 72 NXP Semiconductors Electrical characteristics

1 Table 73. ADC electrical specifications (VREFH = VDD_ANA_18 and VADINmax ≤ VREFH) (continued)

Symbol Description Min Typ Max Unit Notes

TUE Total unadjusted Error — -14 to -2 — LSB 4 DNL Differential nonlinearity — ±1.2 — LSB 4,5

INL Integral nonlinearity — ±1.2 — LSB 4,5 ENOB Effective number of bits 6 Single-ended mode Avg = 1 — 10.3 — — Avg = 2 — 10.6 — — Avg = 16 — 11.3 — — Differential mode Avg = 1 — 11.2 — — Avg = 2———— Avg = 16———— SINAD Signal to noise plus distortion SINAD = 6.02 x ENOB + 1.76 dB — EFS Full-scale error — -4 — LSB 4 EZS Zero-scale error — 0.05 — LSB 4 lin_ext_leak External channel leakage — 30 500 nA — current

EIL Input leakage error RAS * lin_ext_leak mV —

tADCSETUP Setup time — 5 — s — 1 The range is from 1.71 V to 1.89 V. 2 This resistance is external to the SoC. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 15 Ω analog source resistance. The RAS and CAS time constant should be kept to < 1 ns. 3 See Figure 33, "Sample time VS. RAS". 4 1 LSB = (VREFH - VREFL) / 2^N, N = 12 5 ADC conversion clock at max frequency and using linear histogram. 6 Input data used for test is 1 kHz sine wave.

Table 74. ADC electrical specifications (VREFFH = 1.68 V and VADINmax ≤ NVCC_GPIOmax)

Symbol Description Min Typ1 Max Unit Notes

VADIN Input voltage VREFL — NVCC_GPIOmax V —

VREFH ADC high reference supply 1.0 1.8 1.89 V — input

CADIN Input capacitance — 4.5 — pF —

RADIN Input resistance — 1 — K — 2 RAS Analog source resistance — — 5 K

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 73 Electrical characteristics

Table 74. ADC electrical specifications (VREFFH = 1.68 V and VADINmax ≤ NVCC_GPIOmax) (continued)

Symbol Description Min Typ1 Max Unit Notes

fADCK ADC conversion clock 8 — 88 MHz — frequency 3 Csample Sample cycles 3.5 — 131.5 Cycles

Ccompare Fixed compare cycles — 17.5 — Cycles —

Cconversion Conversion cycles Cconversion = Csample + Ccompare Cycles — TUE Total unadjusted Error — -14 to -2 — LSB 4 DNL Differential nonlinearity — ±1.2 — LSB 4,5 INL Integral nonlinearity — ±1.2 — LSB 4,5 ENOB Effective number of bits 6 Single-ended mode Avg = 1 — 10.3 — — Avg = 2 — 10.6 — — Avg = 16 — 11.3 — — Differential mode Avg = 1 — 11.2 — — Avg = 2 — — — — Avg = 16 — — — — SINAD Signal to noise plus distortion SINAD = 6.02 x ENOB + 1.76 dB — EFS Full-scale error — -4 — LSB 4 EZS Zero-scale error — 0.05 — LSB 4 lin_ext_leak External channel leakage —30500nA— current

EIL Input leakage error RAS * lin_ext_leak mV —

tADCSETUP Setup time — 5 — s — 1 Typical values assume Temp = 25 °C and fACLK = Max, unless otherwise stated. Typical values are for reference only, and are not tested in production. 2 This resistance is external to the SoC. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 15 Ω analog source resistance. The RAS and CAS time constant should be kept to < 1 ns. 3 See Figure 33, "Sample time VS. RAS". 4 1 LSB = (VREFH - VREFL) / 2^N, N = 12 5 ADC conversion clock at max frequency and using linear histogram. 6 Input data used for test is 1 kHz sine wave.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 74 NXP Semiconductors Electrical characteristics

1 2 Table 75. ADC electrical specifications (1 V ≤ VREFFH < VDD_ANA_18min and VADINmax ≤ VREFH)

Symbol Description Min Typ3 Max Unit Notes

VADIN Input voltage VREFL —VREFH V —

VREFH ADC high reference supply 1.0 1.8 1.89 V — input

CADIN Input capacitance — 4.5 — pF —

RADIN Input resistance — 500 —  — 4 RAS Analog source resistance — — 5 K

fADCK ADC conversion clock 8 — 88 MHz — frequency 5 Csample Sample cycles 3.5 — 131.5 Cycles

Ccompare Fixed compare cycles — 17.5 — Cycles —

Cconversion Conversion cycles Cconversion = Csample + Ccompare Cycles — TUE Total unadjusted Error — -14 to -2 — LSB 6 DNL Differential nonlinearity — ±1.2 — LSB 6,7 INL Integral nonlinearity — ±1.2 — LSB 6,7 ENOB Effective number of bits 8 Single-ended mode Avg = 1 — 10.3 — — Avg = 2 — 10.6 — — Avg = 16 — 11.3 — — Differential mode Avg = 1 — 11.2 — — Avg = 2———— Avg = 16———— SINAD Signal to noise plus distortion SINAD = 6.02 x ENOB + 1.76 dB — EFS Full-scale error — -4 — LSB 6 EZS Zero-scale error — 0.05 — LSB 6 lin_ext_leak External channel leakage — 30 500 nA — current

EIL Input leakage error RAS * lin_ext_leak mV —

tADCSETUP Setup time — 5 — s — 1 VDD_ANA_18min = 1.71 V 2 Values in this table are based on design simulations. 3 Typical values assume Temp = 25 °C and fACLK = Max, unless otherwise stated. Typical values are for reference only, and are not tested in production.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 75 Electrical characteristics

4 This resistance is external to the SoC. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 15 Ω analog source resistance. The RAS and CAS time constant should be kept to < 1 ns. 5 See Figure 33, "Sample time VS. RAS". 6 1 LSB = (VREFH - VREFL) / 2^N, N = 12 7 ADC conversion clock at max frequency and using linear histogram. 8 Input data used for test is 1 kHz sine wave.

The following figure shows a plot of the ADC sample time versus RAS.

Figure 33. Sample time VS. RAS

4.8.1.1 12-bit ADC input impedance equivalent circuit diagram The following figure shows 12-bit ADC input impedance equivalent circuit diagram.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 76 NXP Semiconductors Electrical characteristics

SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT ZADIN SIMPLIFIED Pad ZAS leakage CHANNEL SELECT CIRCUIT ADC SAR RAS RADIN ENGINE

VADIN

CAS VAS

RADIN

INPUT PIN RADIN

INPUT PIN RADIN

INPUT PIN CADIN

Figure 34. ADC input impedance equivalent circuit diagram

4.8.2 12-bit DAC electrical characteristics

4.8.2.1 12-bit DAC operating requirements

Table 76. 12-bit DAC operating conditions

Symbol Description Min Typ Max Unit Notes

1 CL Output load capacitance — 50 100 pF 2 IL Output load current — — 1 mA 1 The DAC output can drive R and C loading. The user should consider both DC and dynamic application requirements. 50 pF CL provides the best dynamic performance, while 100 pF provides the best DC performance. 2 Sink or source current ability.

Table 77. DAC characteristics

Symbol Description Test Conditions Min Typ Max Unit Notes

VDACOUTL DAC low level output ADC_VREFH selected, VSS — 0.15 V 1 voltage Rload = 18 k, Cload = 50 pF VDACOUTH DAC high level output VDDA_AD — VDDA_AD V voltage C_1P8 - C_1P8 0.15 DNL Differential nonlinearity Code 100h — F00h best fit —±0.5±1LSB— error curve

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 77 Electrical characteristics

Table 77. DAC characteristics (continued)

Symbol Description Test Conditions Min Typ Max Unit Notes

INL Integral nonlinearity error Code 100h — F00h best fit —±1— LSB2 curve —±2— LSB3

EO Offset error Code 100h — ±0.6 — %FSR — (Full-sc ale range)

TEO Offset error temperature Code 100h — ±30 — V/oC— coefficient EG Gain error Code F00h — ±0.4 — %FSR — TEG Gain error temperature Code F00h — ±10 — ppm of — coefficient FSR/oC

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 78 NXP Semiconductors Electrical characteristics

Table 77. DAC characteristics (continued)

Symbol Description Test Conditions Min Typ Max Unit Notes

TFS_LS Full scale setting time in Code 100h — F00h or —5 — s 4 Low Speed mode F00h — 100h @ZTC current Code 100h — F00h or —5 — F00h —100h @PTAT current TFS_MS Full scale setting time in Code 100h — F00h or —1 — Middle Speed mode F00h — 100h @ZTC current Code 100h — F00h or —1 — F00h — 100h @PTAT current TFS_HS Full scale setting time in Code 100h — F00h or —0.5— High Speed mode F00h — 100h @ZTC current Code 100h — F00h or —0.5— F00h — 100h @PTAT current TCC_LS Code to code setting Code 7F7h — 807h or —1 — time in Low Speed mode 807h — 7F7h @ZTC current Code 7F7h — 807h or —1 — 807h — 7F7h @PTAT current TCC_MS Code to code setting Code 7F7h — 807h or —0.5— time in Middle Speed 807h — 7F7h @ZTC mode current Code 7F7h — 807h or —0.5— 807h — 7F7h @PTAT current TCC_HS Code to code setting Code 7F7h — 807h or —0.3— time in Middle Speed 807h — 7F7h @ZTC mode current Code 7F7h — 807h or —0.3— 807h — 7F7h @PTAT current

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 79 Electrical characteristics

Table 77. DAC characteristics (continued)

Symbol Description Test Conditions Min Typ Max Unit Notes

SR_LS Slew rate in Low Speed Code 100h — F00h or —0.24—V/s 5 mode F00h — 100h @ZTC current Code 100h — F00h or —0.24— F00h —100h @PTAT current SR_MS Slew rate in Middle Code 100h — F00h or —1.2— Speed mode F00h — 100h @ZTC current Code 100h — F00h or —1.2— F00h —100h @PTAT current SR_HS Slew rate in High Speed Code 100h — F00h or —2.4— mode F00h — 100h @ZTC current Code 100h — F00h or —2.4— F00h —100h @PTAT current PSRR Power supply rejection Code 800h, —70— dB6 ratio ΔVDD_ANA18 = 100 mV, VREFH_ANA12 selected Glitch Glitch energy Code 100h — F00h — —30— nV-s— 100h

Code 7FFh — 800h — —30— 7FFh CT Channel to channel — — — -80 dB 7 crosstalk

ROP Output resistance Code 100h — F00h and —200—  8 Rload = 18 k 1 It is recommended to operate the DAC in the output voltage range between 0.15 V and (VDDA_ADC_1P8 - 0.15 V) for best accuracy. Linearity of the output voltage outside this range will be affected as current load increases. 2 When ADC_VREFH is selected as the reference (DAC_CR[DACRFS] = 0b). 3 When the internal 1.2 V source is selected as the reference (DAC_CR[DACRFS] = 1b). 4 The DAC output remains within ±0.5 LSB of the final measured value for digital input code change. Noise on the power supply can cause this performance to degrade to ±1 LSB. This parameter represents both rising edge and falling edge settling time. 5 Time for the DAC output to transition from 10% to 90% signal amplitude (rising edge or falling edge). 6 PSRR = 20 x log{ΔVDD_ANA18 /ΔVDAC_OUT} 7 If two DACs are used and sharing the same VREFH. 8 Based on design simulation.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 80 NXP Semiconductors Electrical characteristics 4.8.3 ACMP electrical specifications

Table 78. ACMP operating conditions

Symbol Description Min Typ Max Unit

VREFH_EXT External reference voltage 1 — 1.98 V

VREFH_INT1 Internal reference voltage — 1.3 — V 1 This is an internal reference voltage generated by PMC0.

Table 79. ACMP characteristics

Symbol Description Condition Min Typ Max Unit

VAIN Analog input voltage — 0 — NVCC_GPIO1 V VAIO Analog input offset ———20mV voltage

VH Analog comparator Hystrl[1:0] = 00 — 5 — mV hysteresis Hystrl[1:0] = 01 — 10 — mV Hystrl[1:0] = 10 — 20 — mV Hystrl[1:0] = 11 — 30 — mV TDHS Propagation delay, Normal supply — — 50 ns high-speed mode

TDHS Propagation delay, ———5s low-speed mode

— Analog comparator ———20s initialization delay

INL 8-bit DAC integral —-1—1LSB non-linearity DNL 8-bit DAC differential —-1—1LSB non-linearity 1 The maximum input voltage for CMP analog inputs associated with GPIO_AD bank is NVCC_GPIO.

4.8.4 Temperature sensor Table 80 lists the parameters of temperature sensor. Table 80. Temperature sensor parameters

Parameter Min Max Unit

Temperature range1 -40 125 C 1 Accuracy of measurement: ± 5C for 25C and above, while ± 10C for below 25C.

4.9 Communication interfaces The following sections provide the information about communication interfaces.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 81 Electrical characteristics 4.9.1 LPSPI timing parameters The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic LPSPI timing modes.

All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all LPSPI pins. Table 81. LPSPI Master mode timing

Number Symbol Description Min. Max. Units Note

1 1fSCK Frequency of operation — fperiph / 2 MHz 2 2tSCK SCK period 2 x tperiph —ns

3tLead Enable lead time 1 — tperiph —

4tLag Enable lag time 1 — tperiph —

5tWSCK Clock (SCK) high or low time tSCK / 2 - 3 — ns —

6tSU Data setup time (inputs) 10 — ns —

7tHI Data hold time (inputs) 2 — ns —

8tV Data valid (after SCK edge) — 8 ns —

9tHO Data hold time (outputs) 0 — ns — 1 Absolute maximum frequency of operation (fop) is 30 MHz. The clock driver in the LPSPI module for fperiph must guaranteed this limit is not exceeded. 2 tperiph = 1000 / fperiph

1 PCS (OUTPUT)

3 2 4 SCK 5 (CPOL=0) (OUTPUT) 5

SCK (CPOL=1) (OUTPUT)

6 7

SIN 2 MSB IN BIT 6 . . . 1 LSB IN (INPUT)

8 9

SOUT 2 (OUTPUT) MSB OUT BIT 6 . . . 1 LSB OUT

1. If configured as an output. 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 35. LPSPI Master mode timing (CPHA = 0)

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 82 NXP Semiconductors Electrical characteristics

1 PCS (OUTPUT)

3 2 4

SCK (CPOL=0) (OUTPUT) 5 5 SCK (CPOL=1) (OUTPUT) 6 7

SIN 2 (INPUT) MSB IN BIT 6 . . . 1 LSB IN

8 9 SOUT (OUTPUT) PORT DATA MASTER MSB OUT BIT 6 . . . 1 MASTER LSB OUT PORT DATA

1.If configured as output 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 36. LPSPI Master mode timing (CPHA = 1)

s Table 82. LPSPI Slave mode timing

Number Symbol Description Min. Max. Units Note

1 1fSCK Frequency of operation 0 fperiph / 2 MHz 2 2tSCK SCK period 2 x tperiph —ns

3tLead Enable lead time 1 — tperiph —

4tLag Enable lag time 1 — tperiph —

5tWSCK Clock (SCK) high or low time tSCK / 2 - 5 — ns —

6tSU Data setup time (inputs) 2.7 — ns —

7tHI Data hold time (inputs) 3.8 — ns — 3 8ta Slave access time — tperiph ns 4 9tdis Slave MISO disable time — tperiph ns

10 tV Data valid (after SCK edge) — 14.5 ns —

11 tHO Data hold time (outputs) 0 — ns — 1 Absolute maximum frequency of operation (fop) is 30 MHz. The clock driver in the LPSPI module for fperiph must be guaranteed this limit is not exceeded. 2 tperiph = 1000 / fperiph 3 Time to data active from high-impedance state 4 Hold time to high-impedance state

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 83 Electrical characteristics

PCS (INPUT)

2 4 SCK (CPOL=0) (INPUT) 5 5 SCK 3 (CPOL=1) (INPUT) 9 8 10 11 11

SIN see SEE SLAVE MSB BIT 6 . . . 1 SLAVE LSB OUT (OUTPUT) note NOTE

6 7 SOUT MSB IN BIT 6 . . . 1 LSB IN (INPUT) NOTE: Not defined Figure 37. LPSPI Slave mode timing (CPHA = 0)

PCS (INPUT)

2 4

3 SCK (CPOL=0) (INPUT) 5 5 SCK (CPOL=1) (INPUT) 10 11 9 SIN see SLAVE MSB OUT BIT 6 . . . 1 SLAVE LSB OUT (OUTPUT) note

8 6 7 SOUT (INPUT) MSB IN BIT 6 . . . 1 LSB IN NOTE: Not defined Figure 38. LPSPI Slave mode timing (CPHA = 1)

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 84 NXP Semiconductors Electrical characteristics 4.9.2 LPI2C module timing parameters This section describes the timing parameters of the LPI2C module. Table 83. LPI2C module timing parameters

Symbol Description Min Max Unit Notes

1 fSCL SCL clock frequency Standard mode (Sm) 0 100 kHz Fast mode (Fm) 0 400 Fast mode Plus (Fm+) 0 1000 High speed mode (Hs-mode) 0 3400 Ultra Fast mode (UFm) 0 5000 1 Hs-mode and Ultra Fast mode are supported in slave mode.

4.9.3 Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC timing This section describes the electrical information of the uSDHC, which includes SD3.0 (Single Data Rate) timing and eMMC5.0 (up to 200 MHz) timing.

4.9.3.1 SD3.0/eMMC4.3 (Single Data Rate) specifications

Figure 39 depicts the timing of SD3.0/eMMC4.3, and Table 84 lists the SD/eMMC4.3 timing characteristics.

SD4

SD2 SD1 SD5

SDx_CLK SD3 SD6

Output from uSDHC to card SDx_DATA[7:0] SD7 SD8

Input from card to uSDHC SDx_DATA[7:0]

Figure 39. SD/eMMC4.3 timing

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 85 Electrical characteristics

Table 84. SD/eMMC4.3 interface timing specification

ID Parameter Symbols Min Max Unit

Card Input Clock

1 SD1 Clock Frequency (Low Speed) fPP 0 400 kHz 2 Clock Frequency (SD/SDIO Full Speed/High Speed) fPP 0 25/50 MHz 3 Clock Frequency (MMC Full Speed/High Speed) fPP 0 20/52 MHz

Clock Frequency (Identification Mode) fOD 100 400 kHz

SD2 Clock Low Time tWL 7—ns

SD3 Clock High Time tWH 7—ns

SD4 Clock Rise Time tTLH —3ns

SD5 Clock Fall Time tTHL —3ns

uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)

SD6 uSDHC Output Delay tOD -6.6 3.6 ns

uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)

SD7 uSDHC Input Setup Time tISU 2.5 — ns 4 SD8 uSDHC Input Hold Time tIH 1.5 — ns 1 In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V. 2 In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 0–25 MHz. In high-speed mode, clock frequency can be any value between 0–50 MHz. 3 In normal (full) speed mode for MMC card, clock frequency can be any value between 0–20 MHz. In high-speed mode, clock frequency can be any value between 0–52 MHz. 4 To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.

4.9.3.2 eMMC4.4/4.41/SD3.0 (Dual Data Rate) AC timing) Figure 40 depicts the timing of eMMC4.4/4.41/SD3.0. Table 85 lists the eMMC4.4/4.41/SD3.0 timing characteristics. Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD).

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 86 NXP Semiconductors Electrical characteristics

SD1

SDx_CLK

SD2 SD2

Output from eSDHCv3 to card ...... SDx_DATA[7:0] SD3 SD4

Input from card to eSDHCv3 SDx_DATA[7:0] ......

Figure 40. eMMC4.4/4.41/SD3.0 timing

Table 85. eMMC4.4/4.41/SD3.0 interface timing specification

ID Parameter Symbols Min Max Unit

Card Input Clock

SD1 Clock Frequency (eMMC4.4/4.41 DDR) fPP 052MHz

SD1 Clock Frequency (SD3.0 DDR) fPP 050MHz

uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)

SD2 uSDHC Output Delay tOD 2.8 6.8 ns

uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)

SD3 uSDHC Input Setup Time tISU 2.4 — ns

SD4 uSDHC Input Hold Time tIH 1.2 — ns

4.9.3.3 SDR50/SDR104 AC timing Figure 41 depicts the timing of SDR50/SDR104, and Table 86 lists the SDR50/SDR104 timing characteristics.

SD1

SD2 SD3

SCK SD4/SD5

4-bit output from uSDHC to card SD6 SD7

4-bit input from card to uSDHC SD8

Figure 41. SDR50/SDR104 timing

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 87 Electrical characteristics

Table 86. SDR50/SDR104 interface timing specification

ID Parameter Symbols Min Max Unit

Card Input Clock

SD1 Clock Frequency Period tCLK 5.0 — ns

SD2 Clock Low Time tCL 0.46 x tCLK 0.54 x tCLK ns

SD3 Clock High Time tCH 0.46 x tCLK 0.54 x tCLK ns

uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)

SD4 uSDHC Output Delay tOD –3 1 ns

uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)

SD5 uSDHC Output Delay tOD –1.6 1 ns

uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)

SD6 uSDHC Input Setup Time tISU 2.5 — ns

SD7 uSDHC Input Hold Time tIH 1.5 — ns

uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)1

SD8 Card Output Data Window tODW 0.5 x tCLK —ns

1Data window in SDR104 mode is variable.

4.9.3.4 HS200 mode timing Figure 42 depicts the timing of HS200 mode, and Table 87 lists the HS200 timing characteristics.

SD1

SD2 SD3 SCK SD5

8-bit output from uSDHC to eMMC

8-bit input from eMMC to uSDHC SD8

Figure 42. HS200 mode timing

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 88 NXP Semiconductors Electrical characteristics

Table 87. HS200 interface timing specification

ID Parameter Symbols Min Max Unit

Card Input Clock

SD1 Clock Frequency Period tCLK 5.0 — ns

SD2 Clock Low Time tCL 0.46 x tCLK 0.54 x tCLK ns

SD3 Clock High Time tCH 0.46 x tCLK 0.54 x tCLK ns

uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)

SD5 uSDHC Output Delay tOD –1.6 0.74 ns

uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1

SD8 Card Output Data Window tODW 0.5 x tCLK —ns

1HS200 is for 8 bits while SDR104 is for 4 bits.

4.9.3.5 HS400 specifications - eMMC 5.0 only Be aware that only data are sampled on both edges of the clock (not applicable to CMD). The CMD input/output timing for HS400 mode is the same as CMD input/output timing for HS200 mode. Check SD5 and SD8 parameters in the HS200 interface timing specifications table for CMD input/output timing of HS400 mode. Table 87 lists the HS400 timing characteristics. Table 88. HS400 interface timing specification

Symbol Description Min Max Unit

Operating voltage 1.71 1.95 V

Card input clock

Clock frequency 0 200 MHz SD1 Clock period 5.0 — ns SD2 Clock Low time 0.46 x SD1 0.54 x SD1 ns SD3 Clock High time 0.46 x SD1 0.54 x SD1 ns

SDHC output / card Inputs SDHC_CMD, SDHC_Dn (reference to SDHC_CLK)

SD4 Output skew from data to edge of SCK 0.45 — ns

SD5 Output skew from edge of SCK to data 0.45 — ns

SDHC input / card outputs (reference to strobe)

SD6 SDHC input skew — 0.45 ns

SD7 SDHC hold skew — 0.45 ns

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 89 Electrical characteristics

Figure 42 depicts the timing of HS400.

SD1 SD2 SD3 SCK

SD4 SD5SD4 SD5 DAT0 Output from DAT1... uSDHC to eMMC DAT7 Strobe SD6 SD7 DAT0 Input from DAT1 eMMC to uSDHC ... DAT7

Figure 43. HS400 timing

4.9.3.6 Bus operation condition for 3.3 V and 1.8 V signaling Signaling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signaling level of SDR104/SDR50/HS200/HS400 mode is 1.8 V.

4.9.4 Ethernet controller (ENET) AC electrical specifications

4.9.4.1 ENET MII mode timing This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal timings.

4.9.4.1.1 MII receive signal timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER, and ENET_RX_CLK) The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_RX_CLK frequency.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 90 NXP Semiconductors Electrical characteristics

Figure 44 shows MII receive signal timings. Table 89 describes the timing parameters (M1–M4) shown in the figure.

M3

ENET_RX_CLK (input)

M4 ENET_RX_DATA3,2,1,0 (inputs) ENET_RX_EN ENET_RX_ER M1 M2

Figure 44. MII receive signal timing diagram

Table 89. MII receive signal timing

ID Characteristic1 Min. Max. Unit

M1 ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to 5— ns ENET_RX_CLK setup M2 ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN, 5— ns ENET_RX_ER hold M3 ENET_RX_CLK pulse width high 35% 65% ENET_RX_CLK period M4 ENET_RX_CLK pulse width low 35% 65% ENET_RX_CLK period

1 ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode.

4.9.4.1.2 MII transmit signal timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER, and ENET_TX_CLK) The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_TX_CLK frequency.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 91 Electrical characteristics

Figure 45 shows MII transmit signal timings. Table 90 describes the timing parameters (M5–M8) shown in the figure.

M7

ENET_TX_CLK (input)

M5 M8 ENET_TX_DATA3,2,1,0 (outputs) ENET_TX_EN ENET_TX_ER M6

Figure 45. MII transmit signal timing diagram

Table 90. MII transmit signal timing

ID Characteristic1 Min. Max. Unit

M5 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN, 5— ns ENET_TX_ER invalid M6 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN, —20ns ENET_TX_ER valid M7 ENET_TX_CLK pulse width high 35% 65% ENET_TX_CLK period M8 ENET_TX_CLK pulse width low 35% 65% ENET_TX_CLK period

1 ENET_TX_EN, ENET_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode.

4.9.4.1.3 MII asynchronous inputs signal timing (ENET_CRS and ENET_COL) Figure 46 shows MII asynchronous input timings. Table 91 describes the timing parameter (M9) shown in the figure.

ENET_CRS, ENET_COL

M9

Figure 46. MII asynchronous inputs timing diagram

Table 91. MII asynchronous inputs signal timing

ID Characteristic Min. Max. Unit

M91 ENET_CRS to ENET_COL minimum pulse width 1.5 — ENET_TX_CLK period

1 ENET_COL has the same timing in 10-Mbit 7-wire interface mode.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 92 NXP Semiconductors Electrical characteristics

4.9.4.1.4 MII serial management channel timing (ENET_MDIO and ENET_MDC) The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3 MII specification. However the ENET can function correctly with a maximum MDC frequency of 15 MHz. Figure 47 shows MII asynchronous input timings. Table 92 describes the timing parameters (M10–M15) shown in the figure.

M14

M15 ENET_MDC (output)

M10

ENET_MDIO (output)

M11

ENET_MDIO (input)

M12 M13

Figure 47. MII serial management channel timing diagram

Table 92. MII serial management channel timing

ID Characteristic Min. Max. Unit

M10 ENET_MDC falling edge to ENET_MDIO output invalid (min. 0— ns propagation delay) M11 ENET_MDC falling edge to ENET_MDIO output valid (max. —5 ns propagation delay) M12 ENET_MDIO (input) to ENET_MDC rising edge setup 18 — ns M13 ENET_MDIO (input) to ENET_MDC rising edge hold 0 — ns M14 ENET_MDC pulse width high 40% 60% ENET_MDC period M15 ENET_MDC pulse width low 40% 60% ENET_MDC period

4.9.4.2 RMII mode timing In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference clock. Figure 48 shows RMII mode timings. Table 93 describes the timing parameters (M16–M21) shown in the figure.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 93 Electrical characteristics

M16

M17 ENET_CLK (input)

M18

ENET_TX_DATA (output) ENET_TX_EN

M19

ENET_RX_EN (input) ENET_RX_DATA[1:0] ENET_RX_ER

M20 M21

Figure 48. RMII mode signal timing diagram

Table 93. RMII signal timing

ID Characteristic Min. Max. Unit

M16 ENET_CLK pulse width high 35% 65% ENET_CLK period M17 ENET_CLK pulse width low 35% 65% ENET_CLK period M18 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid 4 — ns M19 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid — 13 ns M20 ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER 2— ns to ENET_CLK setup M21 ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER 2— ns hold

4.9.4.3 RGMII signal switching specifications The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver devices.

Table 94. RGMII signal switching specifications1

Symbol Description Min. Max. Unit

2 Tcyc Clock cycle duration 7.2 8.8 ns 3 TskewT Data to clock output skew at transmitter -500 500 ps

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 94 NXP Semiconductors Electrical characteristics

Table 94. RGMII signal switching specifications1 (continued)

Symbol Description Min. Max. Unit

3 TskewR Data to clock input skew at receiver 1 2.6 ns Duty_G4 Duty cycle for Gigabit 45 85 % Duty_T4 Duty cycle for 10/100T 40 90 % Tr/Tf Rise/fall time (20–80%) — 0.98 ns 1 The timings assume the following configuration: DDR_SEL = (11)b DSE (drive-strength) = (111)b 2 For 10 Mbps and 100 Mbps, Tcyc will scale to 400 ns ±40 ns and 40 ns ±4 ns respectively. 3 For all versions of RGMII prior to 2.0; this implies that PC board design will require clocks to be routed such that an additional trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100, the Max value is unspecified. 4 Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned between.

2'-))?48#ATTRANSMITTER 4SKEW4

2'-))?48$NNTO

2'-))?48?#4, 48%. 48%22 4SKEW2

2'-))?48#ATRECEIVER

Figure 49. RGMII transmit signal timing diagram

2'-))?28#ATTRANSMITTER 4SKEW4

2'-))?28$NNTO

2'-))?28?#4, 28$6 28%22 4SKEW2

2'-))?28#ATRECEIVER

Figure 50. RGMII receive signal timing diagram

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 95 Electrical characteristics

)NTERNALDELAY 2'-))?28#SOURCEOFDATA

4SETUP4 4HOLD4

2'-))?28$NNTO

2'-))?28?#4, 28$6 28%22

4SETUP2 4HOLD2

2'-))?28#ATRECEIVER

Figure 51. RGMII receive signal timing diagram with internal delay

4.9.5 Controller Area Network (CAN) AC electrical specifications The Controller Area Network (CAN) module is a communication controller implementing the CAN protocol according to the CAN with Flexible Data rate (CAN FD) protocol and the CAN 2.0B protocol specification. The processor has three CAN modules available. Tx and Rx ports are multiplexed with other I/O pins. See the IOMUXC chapter of the device reference manual to see which pins expose Tx and Rx pins; these ports are named CAN_TX and CAN_RX, respectively. Please refer to Section 4.3.2.1, General purpose I/O (GPIO) AC parameters.

4.9.6 LPUART electrical specifications Please refer to Section 4.3.2.1, General purpose I/O (GPIO) AC parameters.

4.9.7 USB PHY parameters This section describes the USB-OTG PHY parameters. The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 OTG with the following amendments. • USB ENGINEERING CHANGE NOTICE — Title: 5V Short Circuit Withstand Requirement Change — Applies to: Universal Serial Bus Specification, Revision 2.0 • Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000 • USB ENGINEERING CHANGE NOTICE — Title: Pull-up/Pull-down resistors — Applies to: Universal Serial Bus Specification, Revision 2.0 • USB ENGINEERING CHANGE NOTICE — Title: Suspend Current Limit Changes — Applies to: Universal Serial Bus Specification, Revision 2.0 • USB ENGINEERING CHANGE NOTICE

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 96 NXP Semiconductors Electrical characteristics

— Title: USB 2.0 Phase Locked SOFs — Applies to: Universal Serial Bus Specification, Revision 2.0 • On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification — Revision 2.0 plus errata and ecn June 4, 2010 • Battery Charging Specification (available from USB-IF) — Revision 1.2, December 7, 2010 — Portable device only

4.10 Timers This section provides information on timers.

4.10.1 Pulse Width Modulator (PWM) characteristics This section describes the electrical information of the PWM. Table 95. PWM timing parameters

Parameter Symbol Typ Max Unit

PWM Clock Frequency — — 240 MHz Output skew — — 2 ns

4.10.2 Quad timer timing Table 96 lists the quad timer parameters.

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 97 Electrical characteristics

Table 96. Quad timer timing

Characteristic Symbo Min1 Max Unit See Figure

Timer input period TIN 2T + 6 — ns

Timer input high/low period TINHL 1T + 3 — ns

Timer output period TOUT 33 — ns

Timer output high/low period TOUTHL 16.7 — ns 1 T = clock cycle. For 60 MHz operation, T = 16.7 ns.

4IMER)NPUTS

4).(, 4).(, 4).

4IMER/UTPUTS

4 4 4/54 /54(, /54(,

Figure 52. Quad timer timing

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 98 NXP Semiconductors Boot mode configuration 5 Boot mode configuration This section provides information on boot mode configuration pins allocation and boot devices interfaces allocation.

5.1 Boot mode configuration pins Table 97 provides boot options, functionality, fuse values, and associated pins. Several input pins are also sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse. The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an unblown fuse). For detailed boot mode options configured by the boot mode pins, see the i.MX RT1160 Fuse Map and the System Boot chapter in i.MX RT1160 Reference Manual (IMXRT1160RM). Table 97. Fuses and associated pins used for boot

Pad Default setting on reset eFuse name Details

GPIO_LPSR_02 35 K pull-down BOOT_MODE[0] GPIO_LPSR_03 35 K pull-down BOOT_MODE[1] GPIO_DISP_B1_06 HighZ BT_CFG[0] Boot Options, Pin value overrides fuse settings for BT_FUSE_SEL = ‘0’. GPIO_DISP_B1_07 HighZ BT_CFG[1] Signal Configuration as Fuse GPIO_DISP_B1_08 HighZ BT_CFG[2] Override Input at Power Up. These are special I/O lines that GPIO_DISP_B1_09 HighZ BT_CFG[3] control the boot up configuration during product development. In GPIO_DISP_B1_10 HighZ BT_CFG[4] production, the boot configuration can GPIO_DISP_B1_11 HighZ BT_CFG[5] be controlled by fuses. GPIO_DISP_B2_00 HighZ BT_CFG[6] GPIO_DISP_B2_01 HighZ BT_CFG[7] GPIO_DISP_B2_02 HighZ BT_CFG[8] GPIO_DISP_B2_03 HighZ BT_CFG[9] GPIO_DISP_B2_04 HighZ BT_CFG[10] GPIO_DISP_B2_05 HighZ BT_CFG[11]

5.2 Boot device interface allocation The following tables list the interfaces that can be used by the boot process in accordance with the specific boot mode configuration. The tables also describe the interface’s specific modes and IOMUXC allocation, which are configured during boot when appropriate. Table 98. Boot through NAND

PAD Name IO Function ALT Comments

GPIO_EMC_B1_00 semc.DATA[0] ALT 0 — GPIO_EMC_B1_01 semc.DATA[1] ALT 0 — GPIO_EMC_B2_02 semc.DATA[2] ALT 0 —

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 99 Boot mode configuration

Table 98. Boot through NAND

GPIO_EMC_B1_03 semc.DATA[3] ALT 0 — GPIO_EMC_B1_04 semc.DATA[4] ALT 0 — GPIO_EMC_B1_05 semc.DATA[5] ALT 0 — GPIO_EMC_B1_06 semc.DATA[6] ALT 0 — GPIO_EMC_B1_07 semc.DATA[7] ALT 0 — GPIO_EMC_B1_30 semc.DATA[8] ALT 0 — GPIO_EMC_B1_31 semc.DATA[9] ALT 0 — GPIO_EMC_B1_32 semc.DATA[10] ALT 0 — GPIO_EMC_B1_33 semc.DATA[11] ALT 0 — GPIO_EMC_B1_34 semc.DATA[12] ALT 0 — GPIO_EMC_B1_35 semc.DATA[13] ALT 0 — GPIO_EMC_B1_36 semc.DATA[14] ALT 0 — GPIO_EMC_B1_37 semc.DATA[15] ALT 0 — GPIO_EMC_B1_18 semc.ADDR[9] ALT 0 — GPIO_EMC_B1_19 semc.ADDR[11] ALT 0 — GPIO_EMC_B1_20 semc.ADDR[12] ALT 0 — GPIO_EMC_B1_22 semc.BA1 ALT 0 — GPIO_EMC_B1_41 semc.CSX[0] ALT 0 —

Table 99. Boot through FlexSPI1

PAD Name IO Function Mux Mode Comments

GPIO_SD_B2_00 flexspi1.B_DATA[3] ALT 1 — GPIO_SD_B2_01 flexspi1.B_DATA[2] ALT 1 — GPIO_SD_B2_02 flexspi1.B_DATA[1] ALT 1 — GPIO_SD_B2_03 flexspi1.B_DATA[0] ALT 1 — GPIO_SD_B2_04 flexspi1.B_SCLK ALT 1 — GPIO_SD_B1_05 flexspi1.B_DQS ALT 8 — GPIO_SD_B1_04 flexspi1.B_SS0_B ALT 8 — GPIO_SD_B1_03 flexspi1.B_SS1_B ALT 9 — GPIO_SD_B2_05 flexspi1.A_DQS ALT 1 — GPIO_EMC_B2_18 flexspi1.A_DQS ALT 6 Secondary option for DQS GPIO_SD_B2_06 flexspi1.A_SS0_B ALT 1 — GPIO_SD_B1_02 flexspi1.A_SS1_B ALT 9 —

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 100 NXP Semiconductors Boot mode configuration

Table 99. Boot through FlexSPI1 (continued)

PAD Name IO Function Mux Mode Comments

GPIO_SD_B2_07 flexspi1.A_SCLK ALT 1 — GPIO_SD_B2_08 flexspi1.A_DATA[0] ALT 1 —

GPIO_SD_B2_09 flexspi1.A_DATA[1] ALT 1 — GPIO_SD_B2_10 flexspi1.A_DATA[2] ALT 1 — GPIO_SD_B2_11 flexspi1.A_DATA[3] ALT 1 —

Table 100. Boot through FlexSPI2 (QSPI/HyperFLASH)

PAD Name IO Function ALT Comments

GPIO_EMC_B1_41 flexspi2.B_DATA[7] ALT 4 — GPIO_EMC_B2_00 flexspi2.B_DATA[6] ALT 4 — GPIO_EMC_B2_01 flexspi2.B_DATA[5] ALT 4 — GPIO_EMC_B2_02 flexspi2.B_DATA[4] ALT 4 — GPIO_EMC_B2_03 flexspi2.B_DATA[3] ALT 4 — GPIO_EMC_B2_04 flexspi2.B_DATA[2] ALT 4 — GPIO_EMC_B2_05 flexspi2.B_DATA[1] ALT 4 — GPIO_EMC_B2_06 flexspi2.B_DATA[0] ALT 4 — GPIO_EMC_B2_07 flexspi2.B_DQS ALT 4 — GPIO_EMC_B2_08 flexspi2.B_SS0_B ALT 4 — GPIO_EMC_B2_09 flexspi2.B_SCLK ALT 4 — GPIO_EMC_B2_10 flexspi2.A_SCLK ALT 4 — GPIO_EMC_B2_11 flexspi2.A_SS0_B ALT 4 — GPIO_EMC_B2_12 flexspi2.A_DQS ALT 4 — GPIO_EMC_B2_13 flexspi2.A_DATA[0] ALT 4 — GPIO_EMC_B2_14 flexspi2.A_DATA[1] ALT 4 — GPIO_EMC_B2_15 flexspi2.A_DATA[2] ALT 4 — GPIO_EMC_B2_16 flexspi2.A_DATA[3] ALT 4 — GPIO_EMC_B2_17 flexspi2.A_DATA[4] ALT 4 — GPIO_EMC_B2_18 flexspi2.A_DATA[5] ALT 4 — GPIO_EMC_B2_19 flexspi2.A_DATA[6] ALT 4 — GPIO_EMC_B2_20 flexspi2.A_DATA[7] ALT 4 —

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 101 Boot mode configuration

Table 101. FlexSPI reset

PAD Name IO Function Mux Mode Comments

GPIO_SD_B1_00 gpio_mux4.IO[3] ALT 5 — GPIO_EMC_B1_40 gpio_mux2.IO[8] ALT 5 Secondary option

Table 102. Boot through SAI1

PAD Name IO Function Mux Mode Comments

GPIO_AD_17 sai1.MCLK ALT 0 — GPIO_AD_18 sai1.RX_SYNC ALT 0 — GPIO_AD_19 sai1.RX_BCLK ALT 0 — GPIO_AD_20 sai1.RX_DATA[0] ALT 0 — GPIO_AD_21 sai1.TX_DATA[0] ALT 0 — GPIO_AD_22 sai1.TX_BCLK ALT 0 — GPIO_AD_23 sai1.TX_SYNC ALT 0 —

Table 103. Boot through SD1

PAD Name IO Function Mux Mode Comments

GPIO_AD_32 usdhc1.CD_B ALT 4 — GPIO_AD_33 usdhc1.WP ALT 4 — GPIO_AD_34 usdhc1.VSELECT ALT 4 — GPIO_AD_35 usdhc1.RESET_B ALT 4 — GPIO_SD_B1_00 usdhc1.CMD ALT 0 — GPIO_SD_B1_01 usdhc1.CLK ALT 0 — GPIO_SD_B1_02 usdhc1.DATA0 ALT 0 — GPIO_SD_B1_03 usdhc1.DATA1 ALT 0 — GPIO_SD_B1_04 usdhc1.DATA2 ALT 0 — GPIO_SD_B1_05 usdhc1.DATA3 ALT 0 —

Table 104. Boot through SD2

PAD Name IO Function Mux Mode Comments

GPIO_AD_26 usdhc2.CD_B ALT 11 — GPIO_AD_27 usdhc2.WP ALT 11 — GPIO_AD_28 usdhc2.VSELECT ALT 11 — GPIO_SD_B2_00 usdhc2.DATA3 ALT 0 — GPIO_SD_B2_01 usdhc2.DATA2 ALT 0 —

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 102 NXP Semiconductors Boot mode configuration

Table 104. Boot through SD2 (continued)

PAD Name IO Function Mux Mode Comments

GPIO_SD_B2_02 usdhc2.DATA1 ALT 0 — GPIO_SD_B2_03 usdhc2.DATA0 ALT 0 —

GPIO_SD_B2_04 usdhc2.CLK ALT 0 — GPIO_SD_B2_05 usdhc2.CMD ALT 0 — GPIO_SD_B2_06 usdhc2.RESET_B ALT 0 — GPIO_SD_B2_08 usdhc2.DATA4 ALT 0 — GPIO_SD_B2_09 usdhc2.DATA5 ALT 0 — GPIO_SD_B2_10 usdhc2.DATA6 ALT 0 — GPIO_SD_B2_11 usdhc2.DATA7 ALT 0 —

Table 105. Boot through SPI1

PAD Name IO Function Mux Mode Comments

GPIO_AD_28 lpspi1.SCK ALT 0 — GPIO_AD_29 lpspi1.PCS0 ALT 0 — GPIO_AD_30 lpspi1.SDO ALT 0 — GPIO_AD_31 lpspi1.SDI ALT 0 —

Table 106. Boot through SPI2

PAD Name IO Function Mux Mode Comments

GPIO_SD_B2_07 lpspi2.SCK ALT 6 — GPIO_SD_B2_08 lpspi2.PCS0 ALT 6 — GPIO_SD_B2_09 lpspi2.SDO ALT 6 — GPIO_SD_B2_10 lpspi2.SDI ALT 6 —

Table 107. Boot through SPI3

PAD Name IO Function Mux Mode Comments

GPIO_DISP_B1_04 lpspi3.SCK ALT 9 — GPIO_DISP_B1_07 lpspi3.PCS0 ALT 9 — GPIO_DISP_B1_06 lpspi3.SDO ALT 9 — GPIO_DISP_B1_05 lpspi3.SDI ALT 9 —

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 103 Boot mode configuration

Table 108. Boot through SPI4

PAD Name IO Function Mux Mode Comments

GPIO_DISP_B2_12 lpspi4.SCK ALT 9 — GPIO_DISP_B2_15 lpspi4.PCS0 ALT 9 — GPIO_DISP_B2_14 lpspi4.SDO ALT 9 — GPIO_DISP_B2_13 lpspi4.SDI ALT 9 —

Table 109. Boot through UART1

PAD Name IO Function Mux Mode Comments

GPIO_AD_24 lpuart1.TX ALT 0 — GPIO_AD_25 lpuart1.RX ALT 0 — GPIO_AD_26 lpuart1.CTS_B ALT 0 — GPIO_AD_27 lpuart1.RTS_B ALT 0 —

Table 110. Boot through UART12

PAD Name IO Function Mux Mode Comments

GPIO_LPSR_04 lpuart12.RTS_B ALT 3 — GPIO_LPSR_05 lpuart12.CTS_B ALT 3 — GPIO_LPSR_06 lpuart12.TX ALT 3 — GPIO_LPSR_07 lpuart12.RX ALT 3 —

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 104 NXP Semiconductors Package information and contact assignments 6 Package information and contact assignments This section includes the contact assignment information and mechanical package drawing.

6.1 14 x 14 mm package information

6.1.1 14 x 14 mm, 0.8 mm pitch, ball matrix Figure 53 shows the top, bottom, and side views of the 14 x 14 mm MAPBGA package.

Figure 53. 14 x 14 mm BGA, case x package top, bottom, and side Views

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 105 Package information and contact assignments 6.1.2 14 x 14 mm supplies contact assignments and functional contact assignments Table 111 shows the device connection list for ground, sense, and reference contact signals. Table 111. 14 x 14 mm supplies contact assignment

Supply Rail Name Ball(s) Position(s) Remark

ADC_VREFH G16 — DAC_OUT H16 — DCDC_ANA M7, M8 — DCDC_ANA_SENSE M6 — DCDC_DIG K8, K9, L8 — DCDC_DIG_SENSE L7 — DCDC_GND K6, K7, L6 — DCDC_IN M5, N5 — DCDC_IN_Q L5 — DCDC_LN T4, U4 — DCDC_LP T3, U3 —

DCDC_MODE N4 — DCDC_PSWITCH P3 — NVCC_DISP1 D12 — NVCC_DISP2 E7 — NVCC_EMC1 F6, F7, G6 —

NVCC_EMC2 H6, J6 — NVCC_GPIO M12 — NVCC_LPSR P7 — NVCC_SNVS U11 — NVCC_SD1 D14 — NVCC_SD2 G13 — VDD_LPSR_ANA P12 — VDD_LPSR_DIG P11 — VDD_LPSR_IN R12 — VDD_MIPI_1P0 F10 — VDD_MIPI_1P8 F9 — VDD_USB_1P8 H12 — VDD_USB_3P3 G12 —

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 106 NXP Semiconductors Package information and contact assignments

Table 111. 14 x 14 mm supplies contact assignment (continued)

Supply Rail Name Ball(s) Position(s) Remark

VDD_SOC_IN H8, H9, H10, J8, J9, J10, K10 VDD_SNVS_ANA U14 —

VDD_SNVS_DIG T14 — VDD_SNVS_IN U12 — VDDA_1P0 N11 — VDDA_1P8_IN M11 — VDDA_ADC_1P8 K15 VDDA_ADC_3P3 J13 — VSS A1, A17, B7, C8, C10, C12, C14, D4, F11, F12, F13, G3, G7, G8, G9, — G10, G11, G15, H7, H11, J7, J11, K11, L3, L10, L11, L15, P4, P14, R4, R7, T12, U1, U17

Table 112 shows an alpha-sorted list of functional contact assignments of the 14 x 14 mm package. Table 112. 14 x 14 mm functional contact assignment

Default setting 14 x 14 Ball Ball name Power group ball Types Default Input/ Default function Value modes output

CLK1_N T15 — — — — — CLK1_P U15 — — — — — GPIO_AD_00 N12 NVCC_GPIO Digital ALT 5 GPIO_MUX2_IO31 Input 35K PU1 GPIO GPIO_AD_01 R14 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO0 Input 35K PU GPIO GPIO_AD_02 R13 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO1 Input 35K PD2 GPIO GPIO_AD_03 P15 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO2 Input 35K PD GPIO

GPIO_AD_04 M13 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO3 Input 35K PD GPIO GPIO_AD_05 P13 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO4 Input 35K PD GPIO GPIO_AD_06 N13 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO5 Input 35K PD GPIO

GPIO_AD_07 T17 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO6 Input 35K PD GPIO GPIO_AD_08 R15 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO7 Input 35K PD GPIO

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 107 Package information and contact assignments

Table 112. 14 x 14 mm functional contact assignment (continued)

Default setting 14 x 14 Ball Ball name Power group ball Types Default Input/ Default function Value modes output

GPIO_AD_09 R16 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO8 Input 35K PD GPIO

GPIO_AD_10 R17 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO9 Input 35K PD GPIO GPIO_AD_11 P16 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO10 Input 35K PD GPIO

GPIO_AD_12 P17 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO11 Input 35K PD GPIO GPIO_AD_13 L12 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO12 Input 35K PD GPIO GPIO_AD_14 N14 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO13 Input 35K PD GPIO

GPIO_AD_15 M14 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO14 Input 35K PD GPIO GPIO_AD_16 N17 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO15 Input 35K PD GPIO GPIO_AD_17 N15 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO16 Input 35K PD GPIO

GPIO_AD_18 M16 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO17 Input 35K PU GPIO GPIO_AD_19 L16 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO18 Input 35K PD GPIO GPIO_AD_20 K13 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO19 Input 35K PD GPIO

GPIO_AD_21 K14 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO20 Input 35K PD GPIO GPIO_AD_22 K12 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO21 Input 35K PD GPIO GPIO_AD_23 J12 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO22 Input 35K PD GPIO

GPIO_AD_24 L13 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO23 Input 35K PD GPIO GPIO_AD_25 M15 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO24 Input 35K PD GPIO GPIO_AD_26 L14 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO25 Input 35K PU GPIO

GPIO_AD_27 N16 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO26 Input 35K PU GPIO

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 108 NXP Semiconductors Package information and contact assignments

Table 112. 14 x 14 mm functional contact assignment (continued)

Default setting 14 x 14 Ball Ball name Power group ball Types Default Input/ Default function Value modes output

GPIO_AD_28 L17 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO27 Input 35K PD GPIO

GPIO_AD_29 M17 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO28 Input 35K PD GPIO GPIO_AD_30 K17 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO29 Input 35K PD GPIO

GPIO_AD_31 J17 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO30 Input 35K PD GPIO GPIO_AD_32 K16 NVCC_GPIO Digital ALT 5 GPIO_MUX3_IO31 Input 35K PD GPIO GPIO_AD_33 H17 NVCC_GPIO Digital ALT 5 GPIO_MUX4_IO0 Input 35K PD GPIO

GPIO_AD_34 J16 NVCC_GPIO Digital ALT 5 GPIO_MUX4_IO1 Input 35K PD GPIO GPIO_AD_35 G17 NVCC_GPIO Digital ALT 5 GPIO_MUX4_IO2 Input 35K PU GPIO GPIO_DISP_B1_00 E13 NVCC_DISP1 Digital ALT 5 GPIO_MUX4_IO21 Input 50/35K GPIO PD3 GPIO_DISP_B1_01 D13 NVCC_DISP1 Digital ALT 5 GPIO_MUX4_IO22 Input 50/35K GPIO PD GPIO_DISP_B1_02 D11 NVCC_DISP1 Digital ALT 5 GPIO_MUX4_IO23 Input 50/35K GPIO PD GPIO_DISP_B1_03 E11 NVCC_DISP1 Digital ALT 5 GPIO_MUX4_IO24 Input 50/35K GPIO PD GPIO_DISP_B1_04 E10 NVCC_DISP1 Digital ALT 5 GPIO_MUX4_IO25 Input 50/35K GPIO PD GPIO_DISP_B1_05 C11 NVCC_DISP1 Digital ALT 5 GPIO_MUX4_IO26 Input 50/35K GPIO PD GPIO_DISP_B1_06 D10 NVCC_DISP1 Digital ALT 5 GPIO_MUX4_IO27 Input Highz GPIO

GPIO_DISP_B1_07 E12 NVCC_DISP1 Digital ALT 5 GPIO_MUX4_IO28 Input Highz GPIO GPIO_DISP_B1_08 A15 NVCC_DISP1 Digital ALT 5 GPIO_MUX4_IO29 Input Highz GPIO GPIO_DISP_B1_09 C13 NVCC_DISP1 Digital ALT 5 GPIO_MUX4_IO30 Input Highz GPIO

GPIO_DISP_B1_10 B14 NVCC_DISP1 Digital ALT 5 GPIO_MUX4_IO31 Input Highz GPIO

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 109 Package information and contact assignments

Table 112. 14 x 14 mm functional contact assignment (continued)

Default setting 14 x 14 Ball Ball name Power group ball Types Default Input/ Default function Value modes output

GPIO_DISP_B1_11 A14 NVCC_DISP1 Digital ALT 5 GPIO_MUX5_IO0 Input Highz GPIO

GPIO_DISP_B2_00 E8 NVCC_DISP2 Digital ALT 5 GPIO_MUX5_IO1 Input Highz GPIO GPIO_DISP_B2_01 F8 NVCC_DISP2 Digital ALT 5 GPIO_MUX5_IO2 Input Highz GPIO

GPIO_DISP_B2_02 E9 NVCC_DISP2 Digital ALT 5 GPIO_MUX5_IO3 Input Highz GPIO GPIO_DISP_B2_03 D7 NVCC_DISP2 Digital ALT 5 GPIO_MUX5_IO4 Input Highz GPIO GPIO_DISP_B2_04 C7 NVCC_DISP2 Digital ALT 5 GPIO_MUX5_IO5 Input Highz GPIO

GPIO_DISP_B2_05 C9 NVCC_DISP2 Digital ALT 5 GPIO_MUX5_IO6 Input Highz GPIO GPIO_DISP_B2_06 C6 NVCC_DISP2 Digital ALT 5 GPIO_MUX5_IO7 Input 35K PD GPIO GPIO_DISP_B2_07 D6 NVCC_DISP2 Digital ALT 5 GPIO_MUX5_IO8 Input 35K PD GPIO

GPIO_DISP_B2_08 B5 NVCC_DISP2 Digital ALT 5 GPIO_MUX5_IO9 Input 35K PD GPIO GPIO_DISP_B2_09 D8 NVCC_DISP2 Digital ALT 5 GPIO_MUX5_IO10 Input 35K PD GPIO GPIO_DISP_B2_10 D9 NVCC_DISP2 Digital ALT 5 GPIO_MUX5_IO11 Input 35K PD GPIO

GPIO_DISP_B2_11 A6 NVCC_DISP2 Digital ALT 5 GPIO_MUX5_IO12 Input 35K PD GPIO GPIO_DISP_B2_12 B6 NVCC_DISP2 Digital ALT 5 GPIO_MUX5_IO13 Input 35K PD GPIO GPIO_DISP_B2_13 A5 NVCC_DISP2 Digital ALT 5 GPIO_MUX5_IO14 Input 35K PD GPIO

GPIO_DISP_B2_14 A7 NVCC_DISP2 Digital ALT 5 GPIO_MUX5_IO15 Input 35K PD GPIO GPIO_DISP_B2_15 A4 NVCC_DISP2 Digital ALT 5 GPIO_MUX5_IO16 Input 35K PU GPIO GPIO_EMC_B1_00 F3 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO0 Input 50/35K GPIO PD GPIO_EMC_B1_01 F2 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO1 Input 50/35K GPIO PD

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 110 NXP Semiconductors Package information and contact assignments

Table 112. 14 x 14 mm functional contact assignment (continued)

Default setting 14 x 14 Ball Ball name Power group ball Types Default Input/ Default function Value modes output

GPIO_EMC_B1_02 G4 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO2 Input 50/35K GPIO PD GPIO_EMC_B1_03 E4 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO3 Input 50/35K GPIO PD GPIO_EMC_B1_04 H5 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO4 Input 50/35K GPIO PD GPIO_EMC_B1_05 F4 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO5 Input 50/35K GPIO PD GPIO_EMC_B1_06 H4 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO6 Input 50/35K GPIO PD GPIO_EMC_B1_07 H3 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO7 Input 50/35K GPIO PD GPIO_EMC_B1_08 F5 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO8 Input 50/35K GPIO PD GPIO_EMC_B1_09 A3 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO9 Input 50/35K GPIO PD GPIO_EMC_B1_10 A2 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO10 Input 50/35K GPIO PD GPIO_EMC_B1_11 C2 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO11 Input 50/35K GPIO PD GPIO_EMC_B1_12 C5 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO12 Input 50/35K GPIO PD GPIO_EMC_B1_13 D5 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO13 Input 50/35K GPIO PD GPIO_EMC_B1_14 B1 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO14 Input 50/35K GPIO PD GPIO_EMC_B1_15 C1 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO15 Input 50/35K GPIO PD GPIO_EMC_B1_16 D3 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO16 Input 50/35K GPIO PD GPIO_EMC_B1_17 B3 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO17 Input 50/35K GPIO PD GPIO_EMC_B1_18 B4 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO18 Input 50/35K GPIO PD GPIO_EMC_B1_19 C4 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO19 Input 50/35K GPIO PD GPIO_EMC_B1_20 C3 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO20 Input 50/35K GPIO PD

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 111 Package information and contact assignments

Table 112. 14 x 14 mm functional contact assignment (continued)

Default setting 14 x 14 Ball Ball name Power group ball Types Default Input/ Default function Value modes output

GPIO_EMC_B1_21 G2 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO21 Input 50/35K GPIO PD GPIO_EMC_B1_22 H2 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO22 Input 50/35K GPIO PD GPIO_EMC_B1_23 B2 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO23 Input 50/35K GPIO PD GPIO_EMC_B1_24 J5 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO24 Input 50/35K GPIO PD GPIO_EMC_B1_25 J4 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO25 Input 50/35K GPIO PD GPIO_EMC_B1_26 J3 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO26 Input 50/35K GPIO PD GPIO_EMC_B1_27 G5 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO27 Input 50/35K GPIO PD GPIO_EMC_B1_28 E5 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO28 Input 50/35K GPIO PD GPIO_EMC_B1_29 E6 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO29 Input 50/35K GPIO PD GPIO_EMC_B1_30 E3 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO30 Input 50/35K GPIO PD GPIO_EMC_B1_31 D2 NVCC_EMC1 Digital ALT 5 GPIO_MUX1_IO31 Input 50/35K GPIO PD GPIO_EMC_B1_32 D1 NVCC_EMC1 Digital ALT 5 GPIO_MUX2_IO0 Input 50/35K GPIO PD GPIO_EMC_B1_33 E2 NVCC_EMC1 Digital ALT 5 GPIO_MUX2_IO1 Input 50/35K GPIO PD GPIO_EMC_B1_34 E1 NVCC_EMC1 Digital ALT 5 GPIO_MUX2_IO2 Input 50/35K GPIO PD GPIO_EMC_B1_35 F1 NVCC_EMC1 Digital ALT 5 GPIO_MUX2_IO3 Input 50/35K GPIO PD GPIO_EMC_B1_36 G1 NVCC_EMC1 Digital ALT 5 GPIO_MUX2_IO4 Input 50/35K GPIO PD GPIO_EMC_B1_37 H1 NVCC_EMC1 Digital ALT 5 GPIO_MUX2_IO5 Input 50/35K GPIO PD GPIO_EMC_B1_38 J1 NVCC_EMC1 Digital ALT 5 GPIO_MUX2_IO6 Input 50/35K GPIO PD GPIO_EMC_B1_39 J2 NVCC_EMC1 Digital ALT 5 GPIO_MUX2_IO7 Input 50/35K GPIO PD

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 112 NXP Semiconductors Package information and contact assignments

Table 112. 14 x 14 mm functional contact assignment (continued)

Default setting 14 x 14 Ball Ball name Power group ball Types Default Input/ Default function Value modes output

GPIO_EMC_B1_40 K1 NVCC_EMC1 Digital ALT 5 GPIO_MUX2_IO8 Input 50/35K GPIO PD GPIO_EMC_B1_41 L1 NVCC_EMC1 Digital ALT 5 GPIO_MUX2_IO9 Input 50/35K GPIO PD GPIO_EMC_B2_00 K2 NVCC_EMC2 Digital ALT 5 GPIO_MUX2_IO10 Input 50/35K GPIO PD GPIO_EMC_B2_01 K4 NVCC_EMC2 Digital ALT 5 GPIO_MUX2_IO11 Input 50/35K GPIO PD GPIO_EMC_B2_02 K3 NVCC_EMC2 Digital ALT 5 GPIO_MUX2_IO12 Input 50/35K GPIO PD GPIO_EMC_B2_03 R1 NVCC_EMC2 Digital ALT 5 GPIO_MUX2_IO13 Input 50/35K GPIO PD GPIO_EMC_B2_04 M1 NVCC_EMC2 Digital ALT 5 GPIO_MUX2_IO14 Input 50/35K GPIO PD GPIO_EMC_B2_05 N1 NVCC_EMC2 Digital ALT 5 GPIO_MUX2_IO15 Input 50/35K GPIO PD GPIO_EMC_B2_06 T1 NVCC_EMC2 Digital ALT 5 GPIO_MUX2_IO16 Input 50/35K GPIO PD GPIO_EMC_B2_07 M3 NVCC_EMC2 Digital ALT 5 GPIO_MUX2_IO17 Input 50/35K GPIO PD GPIO_EMC_B2_08 P1 NVCC_EMC2 Digital ALT 5 GPIO_MUX2_IO18 Input 50/35K GPIO PU GPIO_EMC_B2_09 N2 NVCC_EMC2 Digital ALT 5 GPIO_MUX2_IO19 Input 50/35K GPIO PD GPIO_EMC_B2_10 R2 NVCC_EMC2 Digital ALT 5 GPIO_MUX2_IO20 Input 50/35K GPIO PD GPIO_EMC_B2_11 L4 NVCC_EMC2 Digital ALT 5 GPIO_MUX2_IO21 Input 50/35K GPIO PU GPIO_EMC_B2_12 M2 NVCC_EMC2 Digital ALT 5 GPIO_MUX2_IO22 Input 50/35K GPIO PD GPIO_EMC_B2_13 K5 NVCC_EMC2 Digital ALT 5 GPIO_MUX2_IO23 Input 50/35K GPIO PD GPIO_EMC_B2_14 M4 NVCC_EMC2 Digital ALT 5 GPIO_MUX2_IO24 Input 50/35K GPIO PD GPIO_EMC_B2_15 L2 NVCC_EMC2 Digital ALT 5 GPIO_MUX2_IO25 Input 50/35K GPIO PD GPIO_EMC_B2_16 P2 NVCC_EMC2 Digital ALT 5 GPIO_MUX2_IO26 Input 50/35K GPIO PD

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 113 Package information and contact assignments

Table 112. 14 x 14 mm functional contact assignment (continued)

Default setting 14 x 14 Ball Ball name Power group ball Types Default Input/ Default function Value modes output

GPIO_EMC_B2_17 T2 NVCC_EMC2 Digital ALT 5 GPIO_MUX2_IO27 Input 50/35K GPIO PD GPIO_EMC_B2_18 N3 NVCC_EMC2 Digital ALT 5 GPIO_MUX2_IO28 Input 50/35K GPIO PD GPIO_EMC_B2_19 U2 NVCC_EMC2 Digital ALT 5 GPIO_MUX2_IO29 Input 50/35K GPIO PD GPIO_EMC_B2_20 R3 NVCC_EMC2 Digital ALT 5 GPIO_MUX2_IO30 Input 50/35K GPIO PD GPIO_LPSR_00 N6 NVCC_LPSR Digital ALT 10 GPIO12_IO0 Input 35K PD GPIO GPIO_LPSR_01 R6 NVCC_LPSR Digital ALT 10 GPIO12_IO1 Input 35K PD GPIO

GPIO_LPSR_02 P6 NVCC_LPSR Digital ALT 0 BOOT_MODE0 Input 35K PD GPIO GPIO_LPSR_03 T7 NVCC_LPSR Digital ALT 0 BOOT_MODE1 Input 35K PD GPIO GPIO_LPSR_04 N7 NVCC_LPSR Digital ALT 10 GPIO12_IO4 Input 35K PD GPIO

GPIO_LPSR_05 N8 NVCC_LPSR Digital ALT 10 GPIO12_IO5 Input 35K PD GPIO GPIO_LPSR_06 P8 NVCC_LPSR Digital ALT 10 GPIO12_IO6 Input 35K PD GPIO GPIO_LPSR_07 R8 NVCC_LPSR Digital ALT 10 GPIO12_IO7 Input 35K PD GPIO

GPIO_LPSR_08 U8 NVCC_LPSR Digital ALT 10 GPIO12_IO8 Input 35K PD GPIO GPIO_LPSR_09 P5 NVCC_LPSR Digital ALT 10 GPIO12_IO9 Input 35K PD GPIO GPIO_LPSR_10 R5 NVCC_LPSR Digital ALT 0 JTAG_MUX_TRSTB Input 35K PU GPIO

GPIO_LPSR_11 T5 NVCC_LPSR Digital ALT 0 JTAG_MUX_TDO Input Highz GPIO GPIO_LPSR_12 U5 NVCC_LPSR Digital ALT 0 JTAG_MUX_TDI Input 35K PU GPIO GPIO_LPSR_13 U6 NVCC_LPSR Digital ALT 0 JTAG_MUX_MOD Input 35K PD GPIO

GPIO_LPSR_14 T6 NVCC_LPSR Digital ALT 0 JTAG_MUX_TCK Input 35K PD GPIO

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 114 NXP Semiconductors Package information and contact assignments

Table 112. 14 x 14 mm functional contact assignment (continued)

Default setting 14 x 14 Ball Ball name Power group ball Types Default Input/ Default function Value modes output

GPIO_LPSR_15 U7 NVCC_LPSR Digital ALT 0 JTAG_MUX_TMS Input 35K PU GPIO

GPIO_SD_B1_00 B16 NVCC_SD1 Digital ALT 5 GPIO_MUX4_IO3 Input 50/35K GPIO PU GPIO_SD_B1_01 D15 NVCC_SD1 Digital ALT 5 GPIO_MUX4_IO4 Input 50/35K GPIO PD GPIO_SD_B1_02 C15 NVCC_SD1 Digital ALT 5 GPIO_MUX4_IO5 Input 50/35K GPIO PU GPIO_SD_B1_03 B17 NVCC_SD1 Digital ALT 5 GPIO_MUX4_IO6 Input 50/35K GPIO PU GPIO_SD_B1_04 B15 NVCC_SD1 Digital ALT 5 GPIO_MUX4_IO7 Input 50/35K GPIO PU GPIO_SD_B1_05 A16 NVCC_SD1 Digital ALT 5 GPIO_MUX4_IO8 Input 50/35K GPIO PD GPIO_SD_B2_00 J15 NVCC_SD2 Digital ALT 5 GPIO_MUX4_IO9 Input 50/35K GPIO PD GPIO_SD_B2_01 J14 NVCC_SD2 Digital ALT 5 GPIO_MUX4_IO10 Input 50/35K GPIO PD GPIO_SD_B2_02 H13 NVCC_SD2 Digital ALT 5 GPIO_MUX4_IO11 Input 50/35K GPIO PD GPIO_SD_B2_03 E15 NVCC_SD2 Digital ALT 5 GPIO_MUX4_IO12 Input 50/35K GPIO PD GPIO_SD_B2_04 F14 NVCC_SD2 Digital ALT 5 GPIO_MUX4_IO13 Input 50/35K GPIO PU GPIO_SD_B2_05 E14 NVCC_SD2 Digital ALT 5 GPIO_MUX4_IO14 Input 50/35K GPIO PU GPIO_SD_B2_06 F17 NVCC_SD2 Digital ALT 5 GPIO_MUX4_IO15 Input 50/35K GPIO PU GPIO_SD_B2_07 G14 NVCC_SD2 Digital ALT 5 GPIO_MUX4_IO16 Input 50/35K GPIO PD GPIO_SD_B2_08 F15 NVCC_SD2 Digital ALT 5 GPIO_MUX4_IO17 Input 50/35K GPIO PD GPIO_SD_B2_09 H15 NVCC_SD2 Digital ALT 5 GPIO_MUX4_IO18 Input 50/35K GPIO PD GPIO_SD_B2_10 H14 NVCC_SD2 Digital ALT 5 GPIO_MUX4_IO19 Input 50/35K GPIO PD GPIO_SD_B2_11 F16 NVCC_SD2 Digital ALT 5 GPIO_MUX4_IO20 Input 50/35K GPIO PD

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 115 Package information and contact assignments

Table 112. 14 x 14 mm functional contact assignment (continued)

Default setting 14 x 14 Ball Ball name Power group ball Types Default Input/ Default function Value modes output

GPIO_SNVS_00 R10 NVCC_SNVS ANALOG ALT 5 GPIO13_IO3 Input PD GPIO

GPIO_SNVS_01 P10 NVCC_SNVS ANALOG ALT 5 GPIO13_IO4 Input PD GPIO GPIO_SNVS_02 L9 NVCC_SNVS ANALOG ALT 5 GPIO13_IO5 Input PD GPIO

GPIO_SNVS_03 M10 NVCC_SNVS ANALOG ALT 5 GPIO13_IO6 Input PD GPIO GPIO_SNVS_04 N10 NVCC_SNVS ANALOG ALT 5 GPIO13_IO7 Input PD GPIO GPIO_SNVS_05 P9 NVCC_SNVS ANALOG ALT 5 GPIO13_IO8 Input PD GPIO

GPIO_SNVS_06 M9 NVCC_SNVS ANALOG ALT 5 GPIO13_IO9 Input PD GPIO GPIO_SNVS_07 R9 NVCC_SNVS ANALOG ALT 5 GPIO13_IO10 Input PD GPIO GPIO_SNVS_08 N9 NVCC_SNVS ANALOG ALT 5 GPIO13_IO11 Input PD GPIO

GPIO_SNVS_09 R11 NVCC_SNVS ANALOG ALT 5 GPIO13_IO12 Input PD GPIO MIPI_CSI_CKP B12 VDD_MIPI_1P8 CSI — — — — MIPI_CSI_CKN A12 VDD_MIPI_1P8 CSI — — — — MIPI_CSI_DN0 A11 VDD_MIPI_1P8 CSI — — — — MIPI_CSI_DN1 A13 VDD_MIPI_1P8 CSI — — — — MIPI_CSI_DP0 B11 VDD_MIPI_1P8 CSI — — — — MIPI_CSI_DP1 B13 VDD_MIPI_1P8 CSI — — — — MIPI_DSI_CKP B9 VDD_MIPI_1P8 DSI — — — — MIPI_DSI_CKN A9 VDD_MIPI_1P8 DSI — — — — MIPI_DSI_DN0 A8 VDD_MIPI_1P8 DSI — — — — MIPI_DSI_DN1 A10 VDD_MIPI_1P8 DSI — — — — MIPI_DSI_DP0 B8 VDD_MIPI_1P8 DSI — — — — MIPI_DSI_DP1 B10 VDD_MIPI_1P8 DSI — — — — ONOFF U10 NVCC_SNVS ANALOG ALT 0 RESET_B Input PU GPIO

PMIC_ON_REQ U9 NVCC_SNVS ANALOG ALT 0 SNVS_LP_PMIC_ON Output Output GPIO _REQ high

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 116 NXP Semiconductors Package information and contact assignments

Table 112. 14 x 14 mm functional contact assignment (continued)

Default setting 14 x 14 Ball Ball name Power group ball Types Default Input/ Default function Value modes output

PMIC_STBY_REQ T9 NVCC_SNVS ANALOG ALT 0 CCM_PMIC_VSTBY_ Output Output GPIO REQ low POR_B T10 NVCC_SNVS ANALOG ALT 0 POR_B —PU GPIO RTC_XTALI T13 — — — — — — RTC_XTALO U13 — — — — — — TEST_MODE T11 NVCC_SNVS ANALOG ALT 0 TEST_MODE Input PD GPIO

USB1_DN E16 — — — — — — USB1_DP E17 — — — — — — USB2_DN C16 — — — — — — USB2_DP C17 — — — — — — USB1_VBUS D17 — — — — — — USB2_VBUS D16 — — — — — — XTALI U16 — — — — — — XTALO T16 — — — — — — WAKEUP T8 NVCC_SNVS ANALOG ALT 5 GPIO13_IO0 Input PU GPIO 1 Pull-up 2 Pull-down 3 Typical resistance value is 50 k for 3.3 V and 35 k for 1.8 V. The range is from 10 k to 100 k (3.3 V) and 20 k to 50 k (1.8 V).

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 117 Package information and contact assignments 6.1.3 14 x 14 mm, 0.8 mm pitch, ball map Table 113 shows the 14 x 14 mm, 0.8 mm pitch ball map for the i.MX RT1160.

Table 113. 14 x 14 mm, 0.8 mm pitch, ball map

1234567891011121314151617

VSS GPIO_ GPIO_ GPIO_ GPIO_ GPIO_ GPIO_ MIPI_ MIPI_ MIPI_ MIPI_ MIPI_ MIPI_ GPIO_ GPIO_ GPIO_ VSS A EMC_ EMC_ DISP_ DISP_ DISP_ DISP_ DSI_ DSI_ DSI_ CSI_ CSI_ CSI_ DISP_ DISP_ SD_ B1_10 B1_09 B2_15 B2_13 B2_11 B2_14 DN0 CKN DN1 DN0 CKN DN1 B1_11 B1_08 B1_05

GPIO_ GPIO_ GPIO_ GPIO_ GPIO_ GPIO_ VSS MIPI_ MIPI_ MIPI_ MIPI_ MIPI_ MIPI_ GPIO_ GPIO_ GPIO_ GPIO_ B EMC_ EMC_ EMC_ EMC_ DISP_ DISP_ DSI_ DSI_ DSI_ CSI_ CSI_ CSI_ DISP_ SD_ SD_ SD_ B1_14 B1_23 B1_17 B1_18 B2_08 B2_12 DP0 CKP DP1 DP0 CKP DP1 B1_10 B1_04 B1_00 B1_03

GPIO_ GPIO_ GPIO_ GPIO_ GPIO_ GPIO_ GPIO_ VSS GPIO_ VSS GPIO_ VSS GPIO_ VSS GPIO_ USB2_ USB2_ C EMC_ EMC_ EMC_ EMC_ EMC_ DISP_ DISP_ DISP_ DISP_ DISP_ SD_ DN DP B1_15 B1_11 B1_20 B1_19 B1_12 B2_06 B2_04 B2_05 B1_05 B1_09 B1_02

GPIO_ GPIO_ GPIO_ VSS GPIO_ GPIO_ GPIO_ GPIO_ GPIO_ GPIO_ GPIO_ NVCC_ GPIO_ NVCC_ GPIO_ USB2_ USB1_ D EMC_ EMC_ EMC_ EMC_ DISP_ DISP_ DISP_ DISP_ DISP_ DISP_ DISP1 DISP_ SD1 SD_ VBUS VBUS B1_32 B1_31 B1_16 B1_13 B2_07 B2_03 B2_09 B2_10 B1_06 B1_02 B1_01 B1_01

GPIO_ GPIO_ GPIO_ GPIO_ GPIO_ GPIO_ NVCC_ GPIO_ GPIO_ GPIO_ GPIO_ GPIO_ GPIO_ GPIO_ GPIO_ USB1_ USB1_ E EMC_ EMC_ EMC_ EMC_ EMC_ EMC_ DISP2 DISP_ DISP_ DISP_ DISP_ DISP_ DISP_ SD_ SD_ DN DP B1_34 B1_33 B1_30 B1_03 B1_28 B1_29 B2_00 B2_02 B1_04 B1_03 B1_07 B1_00 B2_05 B2_03

GPIO_ GPIO_ GPIO_ GPIO_ GPIO_ NVCC_ NVCC_ GPIO_ VDD_ VDD_M VSS VSS VSS GPIO_ GPIO_ GPIO_ GPIO_ F EMC_ EMC_ EMC_ EMC_ EMC_ EMC1 EMC1 DISP_ MIPI_ IPI_ SD_ SD_ SD_ SD_ B1_35 B1_01 B1_00 B1_05 B1_08 B2_01 1P8 1P0 B2_04 B2_08 B2_11 B2_06

GPIO_ GPIO_ VSS GPIO_ GPIO_ NVCC_ VSS VSS VSS VSS VSS VDD_ NVCC_ GPIO_ VSS ADC_ GPIO_ G EMC_ EMC_ EMC_ EMC_ EMC1 USB_ SD2 SD_ VREFH AD_35 B1_36 B1_21 B1_02 B1_27 3P3 B2_07

GPIO_ GPIO_ GPIO_ GPIO_ GPIO_ NVCC_ VSS VDD_ VDD_ VDD_ VSS VDD_ GPIO_ GPIO_ GPIO_ DAC_ GPIO_ H EMC_ EMC_ EMC_ EMC_ EMC_ EMC2 SOC_ SOC_ SOC_ USB_ SD_ SD_ SD_ OUT AD_33 B1_37 B1_22 B1_07 B1_06 B1_04 IN IN IN 1P8 B2_02 B2_10 B2_09

GPIO_ GPIO_ GPIO_ GPIO_ GPIO_ NVCC_ VSS VDD_ VDD_ VDD_ VSS GPIO_ VDDA_ GPIO_ GPIO_ GPIO_ GPIO_ J EMC_ EMC_ EMC_ EMC_ EMC_ EMC2 SOC_ SOC_ SOC_ AD_23 ADC_ SD_ SD_ AD_34 AD_31 B1_38 B1_39 B1_26 B1_25 B1_24 IN IN IN 3P3 B2_01 B2_00

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 118 NXP Semiconductors Package information and contact assignments Table 113. 14 x 14 mm, 0.8 mm pitch, ball map (continued)

GPIO_ GPIO_ GPIO_ GPIO_ GPIO_ DCDC DCDC DCDC DCDC VDD_ VSS GPIO_ GPIO_ GPIO_ VDDA_ GPIO_ GPIO_ K EMC_ EMC_ EMC_ EMC_ EMC_ _GND _GND _DIG _DIG SOC_ AD_22 AD_20 AD_21 ADC_ AD_32 AD_30 B1_40 B2_00 B2_02 B2_01 B2_13 IN 1P8

GPIO_ GPIO_ VSS GPIO_ DCDC DCDC DCDC DCDC GPIO_ VSS VSS GPIO_ GPIO_ GPIO_ VSS GPIO_ GPIO_ L EMC_ EMC_ EMC_ _IN_Q _GND _DIG_ _DIG SNVS_ AD_13 AD_24 AD_26 AD_19 AD_28 B1_41 B2_15 B2_11 SENSE 02

GPIO_ GPIO_ GPIO_ GPIO_ DCDC DCDC DCDC DCDC GPIO_ GPIO_ VDDA_ NVCC_ GPIO_ GPIO_ GPIO_ GPIO_ GPIO_ M EMC_ EMC_ EMC_ EMC_ _IN _ANA_ _ANA _ANA SNVS_ SNVS_ 1P8_IN GPIO AD_04 AD_15 AD_25 AD_18 AD_29 B2_04 B2_12 B2_07 B2_14 SENSE 06 03

GPIO_ GPIO_ GPIO_ DCDC_ DCDC GPIO_ GPIO_ GPIO_ GPIO_ GPIO_ VDDA_ GPIO_ GPIO_ GPIO_ GPIO_ GPIO_ GPIO_ N EMC_ EMC_ EMC_ MODE _IN LPSR_ LPSR_ LPSR_ SNVS_ SNVS_ 1P0 AD_00 AD_06 AD_14 AD_17 AD_27 AD_16 B2_05 B2_09 B2_18 00 04 05 08 04

GPIO_ GPIO_ DCDC VSS GPIO_ GPIO_ NVCC_ GPIO_ GPIO_ GPIO_ VDD_ VDD_ GPIO_ VSS GPIO_ GPIO_ GPIO_ P EMC_ EMC_ _PSWI LPSR_ LPSR_ LPSR LPSR_ SNVS_ SNVS_ LPSR_ LPSR_ AD_05 AD_03 AD_11 AD_12 B2_08 B2_16 TCH 09 02 06 05 01 DIG ANA

GPIO_ GPIO_ GPIO_ VSS GPIO_ GPIO_ VSS GPIO_ GPIO_ GPIO_ GPIO_ VDD_ GPIO_ GPIO_ GPIO_ GPIO_ GPIO_ R EMC_ EMC_ EMC_ LPSR_ LPSR_ LPSR_ SNVS_ SNVS_ SNVS_ LPSR_ AD_02 AD_01 AD_08 AD_09 AD_10 B2_03 B2_10 B2_20 10 01 07 07 00 09 IN

GPIO_ GPIO_ DCDC DCDC_ GPIO_ GPIO_ GPIO_ WAKE PMIC_ POR_B TEST_ VSS RTC_ VDD_ CLK1_ XTALO GPIO_ T EMC_ EMC_ _LP LN LPSR_ LPSR_ LPSR_ UP STBY_ MODE XTALI SNVS_ N AD_07 B2_06 B2_17 11 14 03 REQ DIG

VSS GPIO_ DCDC DCDC_ GPIO_ GPIO_ GPIO_ GPIO_ PMIC_ ONOFF NVCC_ VDD_ RTC_ VDD_ CLK1_ XTALI VSS U EMC_ _LP LN LPSR_ LPSR_ LPSR_ LPSR_ ON_ SNVS SNVS_ XTALO SNVS_ P B2_19 12 13 15 08 REQ IN ANA

1234567891011121314151617

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 NXP Semiconductors 119 Revision history 7 Revision history Table 114 provides a revision history for this data sheet. Table 114. i.MX RT1160 Data Sheet document revision history (continued)

Rev. Date Substantive Change(s) Number

Rev. 0 04/2021 • Initial version

i.MX RT1160 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 04/2021 120 NXP Semiconductors How To Reach Us Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or Home Page: completeness of such information and shall have no liability for the consequences of use of such information. NXP nxp.com Semiconductors takes no responsibility for the content in this document if provided by an information source outside Web Support: of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related nxp.com/support to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at [email protected]) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard warranty and NXP Semiconductors’ product specifications.

Suitability for use – Automotive Product (Functional Safety) Suitability for use in automotive applications —This NXP product has been qualified for use in automotive applications. It has been developed in accordance with ISO 26262, and has been ASIL-classified accordingly. If this product is used by customer in the development of, or for incorporation into, products or services (a) used in safety critical applications or (b) in which failure could lead to death, personal injury, or severe physical or environmental damage (such products and services hereinafter referred to as “Critical

Table continues on the next page... Applications”), then customer makes the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, safety, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. As such, customer assumes all risk related to use of any products in Critical Applications and NXP and its suppliers shall not be liable for any such use by customer. Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated costs and expenses (including attorneys’ fees) that NXP may incur related to customer’s incorporation of any product in a Critical Application.

Non-automotive products for restricted use in automotive onlySuitability for use in automotive applications — The use of this NXP Semiconductors product is restricted to automotive applications only. It has not been fully qualified for use in automotive applications. The customer of this NXP Semiconductors product therefore understands and accepts that:

• The Customer shall only use this NXP Semiconductors product for automotive applications.

• This product was not originally designed for automotive use. It will therefore, not be possible to achieve the levels of quality and failure analysis that are normally associated with products explicitly designed for automotive use.

• With respect to test-coverage, this product is not fully compliant to AEC-Q100.

• All product manufacturing locations are certified according to ISO/TS16949.

• Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commerical sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Table continues on the next page... No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Hazardous voltage — Although basic supply voltages of the product may be much lower, circuit voltages up to 60 V may appear when operating this product, depending on settings and application. Customers incorporating or otherwise using these products in applications where such high voltages may appear during operation, assembly, test etc. of such application, do so at their own risk. Customers agree to fully indemnify NXP Semiconductors for any damages resulting from or in connection with such high voltages. Furthermore, customers are drawn to safety standards (IEC 950, EN 60 950, CENELEC, ISO, etc.) and other (legal) requirements applying to such high voltages.

Bare die — All die are tested on compliance with their related technical specifications as stated in this data sheet up to the point of wafer sawing and are handled in accordance with the NXP Semiconductors storage and transportation conditions. If there are data sheet limits not guaranteed, these will be separately indicated in the data sheet. There are no post-packing tests performed on individual die or wafers.

NXP Semiconductors has no control of third party procedures in the sawing, handling, packing or assembly of the die. Accordingly, NXP Semiconductors assumes no liability for device functionality or performance of the die or systems after third party sawing, handling, packing or assembly of the die. It is the responsibility of the customer to test and qualify their application in which the die is used. All die sales are conditioned upon and subject to the customer entering into a written die sale agreement with NXP Semiconductors through its legal department.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Evaluation products —This product is provided on an “as is” and “with all faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer. In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer’s exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight,

Table continues on the next page... Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: [email protected] Date of release: 26 April 2021 Document identifier: IMXRT1160CEC