Proceedings of the Indiana Academy of Science
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rock Stratigraphy of the Silurian System in Northeastern and Northwestern Illinois
2UJ?. *& "1 479 S 14.GS: CIR479 STATE OF ILLINOIS c. 1 DEPARTMENT OF REGISTRATION AND EDUCATION Rock Stratigraphy of the Silurian System in Northeastern and Northwestern Illinois H. B. Willman GEOLOGICAL ILLINOIS ""SURVEY * 10RM* APR 3H986 ILLINOIS STATE GEOLOGICAL SURVEY John C. Frye, Chief Urbano, IL 61801 CIRCULAR 479 1973 CONTENTS Page Abstract 1 Introduction 1 Time-stratigraphic classification 3 Alexandrian Series 5 Niagaran Series 5 Cayugan Series 6 Regional correlations 6 Northeastern Illinois 6 Development of the classification 9 Wilhelmi Formation 12 Schweizer Member 13 Birds Member 13 Elwood Formation 14 Kankakee Formation 15 Drummond Member 17 Offerman Member 17 Troutman Member 18 Plaines Member 18 Joliet Formation 19 Brandon Bridge Member 20 Markgraf Member 21 Romeo Member 22 Sugar Run Formation . „ 22 Racine Formation 24 Northwestern Illinois 26 Development of the classification 29 Mosalem Formation 31 Tete des Morts Formation 33 Blanding Formation 35 Sweeney Formation 36 Marcus Formation 3 7 Racine Formation 39 References 40 GEOLOGIC SECTIONS Northeastern Illinois 45 Northwestern Illinois 52 FIGURES Figure 1 - Distribution of Silurian rocks in Illinois 2 2 - Classification of Silurian rocks in northeastern and northwestern Illinois 4 3 - Correlation of the Silurian formations in Illinois and adjacent states 7 - CM 4 Distribution of Silurian rocks in northeastern Illinois (modified from State Geologic Map) 8 - lis. 5 Silurian strata in northeastern Illinois 10 ^- 6 - Development of the classification of the Silurian System in |§ northeastern Illinois 11 7 - Distribution of Silurian rocks in northwestern Illinois (modified ;0 from State Geologic Map) 2 7 8 - Silurian strata in northwestern Illinois 28 o 9 - Development of the classification of the Silurian System in CO northwestern Illinois 30 10 - Index to stratigraphic units described in the geologic sections • • 46 ROCK STRATIGRAPHY OF THE SILURIAN SYSTEM IN NORTHEASTERN AND NORTHWESTERN ILLINOIS H. -
Stratigraphic Succession in Lower Peninsula of Michigan
STRATIGRAPHIC DOMINANT LITHOLOGY ERA PERIOD EPOCHNORTHSTAGES AMERICANBasin Margin Basin Center MEMBER FORMATIONGROUP SUCCESSION IN LOWER Quaternary Pleistocene Glacial Drift PENINSULA Cenozoic Pleistocene OF MICHIGAN Mesozoic Jurassic ?Kimmeridgian? Ionia Sandstone Late Michigan Dept. of Environmental Quality Conemaugh Grand River Formation Geological Survey Division Late Harold Fitch, State Geologist Pennsylvanian and Saginaw Formation ?Pottsville? Michigan Basin Geological Society Early GEOL IN OG S IC A A B L N Parma Sandstone S A O G C I I H E C T I Y Bayport Limestone M Meramecian Grand Rapids Group 1936 Late Michigan Formation Stratigraphic Nomenclature Project Committee: Mississippian Dr. Paul A. Catacosinos, Co-chairman Mark S. Wollensak, Co-chairman Osagian Marshall Sandstone Principal Authors: Dr. Paul A. Catacosinos Early Kinderhookian Coldwater Shale Dr. William Harrison III Robert Reynolds Sunbury Shale Dr. Dave B.Westjohn Mark S. Wollensak Berea Sandstone Chautauquan Bedford Shale 2000 Late Antrim Shale Senecan Traverse Formation Traverse Limestone Traverse Group Erian Devonian Bell Shale Dundee Limestone Middle Lucas Formation Detroit River Group Amherstburg Form. Ulsterian Sylvania Sandstone Bois Blanc Formation Garden Island Formation Early Bass Islands Dolomite Sand Salina G Unit Paleozoic Glacial Clay or Silt Late Cayugan Salina F Unit Till/Gravel Salina E Unit Salina D Unit Limestone Salina C Shale Salina Group Salina B Unit Sandy Limestone Salina A-2 Carbonate Silurian Salina A-2 Evaporite Shaley Limestone Ruff Formation -
Columnals (PDF)
2248 22482 2 4 V. INDEX OF COLUMNALS 8 Remarks: In this section the stratigraphic range given under the genus is the compiled range of all named species based solely on columnals assigned to the genus. It should be noted that this range may and often differs considerably from the range given under the same genus in Section I, because that range is based on species identified on cups or crowns. All other abbreviations and format follow that of Section I. Generic names followed by the type species are based on columnals. Genera, not followed by the type species, are based on cups and crowns as given in Section I. There are a number of unlisted columnal taxa from the literature that are indexed as genera recognized on cups and crowns. Bassler and Moodey (1943) did not index columnal taxa that were not new names or identified genera with the species unnamed. I have included some of the omissions of Bassler and Moodey, but have not made a search of the extensive literature specifically for the omitted citations because of time constraints. Many of these unlisted taxa are illustrated in the early state surveys of the eastern and central United States. Many of the columnal species assigned to genera based on cups or crowns are incorrect assignments. An uncertain, but significant, number of the columnal genera are synonyms of other columnal genera as they are based on different parts of the stem of a single taxon. Also a number of the columnal genera are synonyms of genera based on cups and crowns as they come from more distal parts of the stem not currently known to be associated with the cup or crown. -
Further Paleomagnetic Evidence for Oroclinal Rotation in the Central Folded Appalachians from the Bloomsburg and the Mauch Chunk Formations
TECTONICS, VOL. 7, NO. 4, PAGES 749-759, AUGUST 1988 FURTHER PALEOMAGNETIC EVIDENCE FOR OROCLINAL ROTATION IN THE CENTRAL FOLDED APPALACHIANS FROM THE BLOOMSBURG AND THE MAUCH CHUNK FORMATIONS Dennis V. Kent Lamont-DohertyGeological Observatory and Departmentof GeologicalSciences ColumbiaUniversity, Palisades, New York Abstract.Renewed paleomagnetic investigations of red fromthe Bloomsburg, Mauch Chunk, and revised results bedsof theUpper Silurian Bloomsburg and the Lower recentlyreported for theUpper Devonian Catskill Formation Carboniferous Mauch Chunk Formations were undertaken togetherindicate 22.8•>+_11.9 oof relativerotation, accounting with theobjective of obtainingevidence regarding the for approximatelyhalf thepresent change in structuraltrend possibilityof oroclinalbending as contributing to thearcuate aroundthe Pennsylvania salient. The oroclinalrotation can be structuraltrend of thePennsylvania salient. These formations regardedas a tightenS.*'.3 o/'a lessarcuate depositional package cropout on both limbs of thesalient and earlier, but less thatdeveloped across a basementreentrant, to achievea definitivepaleomagnetic studies on these units indicate that curvaturecloser to that of the earlierzigzag continental margin earlyacquired magnetizations can be recovered. Oriented outline. sampleswere obtained from nine sites on the southern limb of thesalient and eight sites from the northern limb in the INTRODUCTION Bloomsburg.The naturalremanent magnetizations are multivectorial,dominated by a component(B) with a A testof the oroclinehypothesis -
IGS 2015B-Maquoketa Group
,QGLDQD*HRORJLFDO6XUYH\ $ERXW8V_,*66WDII_6LWH0DS_6LJQ,Q ,*6:HEVLWHIGS Website Search ,1',$1$ *(2/2*,&$/6859(< +20( *HQHUDO*HRORJ\ (QHUJ\ 0LQHUDO5HVRXUFHV :DWHUDQG(QYLURQPHQW *HRORJLFDO+D]DUGV 0DSVDQG'DWD (GXFDWLRQDO5HVRXUFHV 5HVHDUFK ,QGLDQD*HRORJLF1DPHV,QIRUPDWLRQ6\VWHP'HWDLOV 9LHZ&DUW 7ZHHW *1,6 0$482.(7$*5283 $ERXWWKH,*1,6 $JH 6HDUFKIRUD7HUP 2UGRYLFLDQ 6WUDWLJUDSKLF&KDUW 7\SHGHVLJQDWLRQ 7\SHORFDOLW\7KH0DTXRNHWD6KDOHZDVQDPHGE\:KLWH S IRUH[SRVXUHVRIEOXHDQGEURZQVKDOH 025(,*65(6285&(6 WKDWDJJUHJDWHIW P LQWKLFNQHVVDORQJWKH/LWWOH0DTXRNHWD5LYHULQ'XEXTXH&RXQW\,RZD *UD\DQG6KDYHU 5HODWHG%RRNVWRUH,WHPV +LVWRU\RIXVDJH 6LQFHLWVILUVWXVHWKHWHUPKDVVSUHDGJUDGXDOO\HDVWZDUGLQWKHSURFHVVEHFRPLQJDJURXSWKDWHPEUDFHVVHYHUDO IRUPDWLRQV *UD\DQG6KDYHU ,WLVQRZXVHGWKURXJKRXW,OOLQRLV :LOOPDQDQG%XVFKEDFKS ZDV H[WHQGHGLQWRQRUWKZHVWHUQ,QGLDQDE\*XWVWDGW DQGZDVDGRSWHGIRUXVHLQDJURXSVHQVHWKURXJKRXW,QGLDQD 5(/$7('6,7(6 E\*UD\ *UD\DQG6KDYHU 86*6*(2/(; 'HVFULSWLRQ 1RUWK$PHULFDQ6WUDWLJUDSKLF $VGHVFULEHGE\*UD\ WKH0DTXRNHWD*URXSLQ,QGLDQDLVDZHVWZDUGWKLQQLQJZHGJHIW P WKLFNLQ &RGH VRXWKHDVWHUQ,QGLDQDDQGIW P WKLFNLQQRUWKZHVWHUQ,QGLDQD *UD\DQG6KDYHU ,WFRQVLVWVSULQFLSDOO\RI $$3*&2681$&KDUW VKDOH DERXWSHUFHQW OLPHVWRQHFRQWHQWLVPLQLPDOWKURXJKRXWPRVWRI,QGLDQDEXWLQFUHDVHVSURPLQHQWO\LQWKH VRXWKHDVWVRWKDWSDUWVRIWKHJURXSDUHLQSODFHVGRPLQDQWO\OLPHVWRQH *UD\DQG6KDYHU 7KHORZHUSDUWRIWKH JURXSLVHYHU\ZKHUHDOPRVWHQWLUHO\VKDOHDQGWKHORZHUSDUWRIWKHVKDOHLVGDUNEURZQWRQHDUO\EODFN *UD\DQG 6KDYHU $VDFRQVHTXHQFHRIWKLVSDWWHUQRIURFNGLVWULEXWLRQWZRVFKHPHVRIQRPHQFODWXUHDUHXVHGLQVXEGLYLVLRQRIWKH 0DTXRNHWD*URXSLQ,QGLDQD -
106Th Annual Report of the State Geologist
106TH ANNUAL REPORT OF THE STATE GEOLOGIST of INDIANA GEOLOGICAL SURVEY DEPARTMENT OF NATURAL RESOURCES for July 1, 1981 - June 30, 1982 GEOLOGICAL SURVEY ONE HUNDRED AND SIXTH ANNUAL REPORT OF THE STATE GEOLOGIST PERSONNEL Permanent Personnel Administration John B. Patton •.•••• • .•.•••••••••.. State Geo 1og i st Maurice E. Biggs •. Assistant State Geologist Mary E. Fox • • • • • • • • . • . • . • • • • • • . •Mineral Statistician E. Co leen George. • . • . • . • • . • . • . • • • • • Principal Secretary Coal and Industrial Minerals Section Donald D. Carr .•• • •••.•••Geologist and Head Curtis H. Ault ••. .Geologist and Associate Head Donald L. Eggert. • Geologist Gordon S. Fraser •••••• • .•.• Geologist Denver Harper • • · .••• Geologist Nancy R. Hasenmueller .•...• • Geologist Wa 1ter A. Hasenmue 11 er. • • . .••••• Geologist Paul Irwin (Reclamation). • Geologist Nelson R. Shaffer ••• • Geologist Michele Wright (NRC) •. • • Geo log ist Janet Roller ••• · . • • • Secretary (To August 14, 1981) Susan E. Rumple . • • • . • Secretary (From August 12, 1981) Kathryn Shaffer • • . • • . • • Secretary Drafting and Photography Section William H. Moran. ••Chief Draftsman and Head Richard T. Hill •. •••.•.• Senior Geological Draftsman Roger L. Purcell. • Senior Geological Draftsman George R. Ringer ••. • •••••••••.•Photographer Wilbur E. Stalions. • Geological Artist-Draftsman Educational Services Reevan D. Rarick .•••. .•••.•.•. Geologist 1 Geochemistry Section Richard K. Leininger. Geochemist and Head Margaret V. Golde •.••. • .Instrument Analyst -
Download Download
The Niagaran (Middle Silurian) Macrofauna of Northern Indiana: Review, Appraisal, and Inventory Robert H. Shaver Indiana Geological Survey and Department of Geology Indiana University, Bloomington, Indiana 47401 Abstract During the past 130 years more than 360 subgeneric taxa of macrofossils were identi- fied from a few score collection sites in Niagaran (middle Silurian) rocks cropping out in northern Indiana. These fossils served geology well when primary paleontological ob- jectives were to discover and to describe faunas and to use them for stratigraphic cor- relation. More than this, they came to occupy a niche of special importance in paleonto- logical and stratigx-aphic literature because they were closely associated with development of the concept of Silurian reefs. Emphases in paleontological purpose wax and wane, however, and, particularly in the example of the Niagaran fossils of northern Indiana, much recent revision of their assigned stratigraphic order of succession allows this rhetorical question to be asked: what, is the residual value of the long but outdated record of Niagaran species in northern Indiana? The record may prove to be even more meaningful than ever before, and to that end this threefold synthesis of updated paleontological data will be a basis for future studies having primary emphases in phylogeny, paleoecology, biozonation, and economic geology: 1) A listing of 366 taxa of subgeneric rank intended to include all Niagaran macro- fossils previously identified in northern Indiana. 2) Identification of all species occurrences in terms of stratigraphic units, distances in feet above or below the base of the Waldron Formation, and paleoenvironments (reef vs. interreef or nonreef). -
Paleomagnetism of the Upper Ordovician Juniata Formation of the Central Appalachians Revisited Again
JOURNALOF GEOPHYSICALRESEARCH, VOL. 94, NO. B2, PAGES1843-1849, FEBRUARY10, 1989 PALEOMAGNETISM OF THE UPPER ORDOVICIAN JUNIATA FORMATION OF THE CENTRAL APPALACHIANS REVISITED AGAIN JohnD. Miller1 andDennis V. Kent Lamont-DohertyGeological Observatol 3, and Department of GeologicalSciences, ColumbiaUniversity, Palisades, New York Abstract.Two componentsof magnetizationwere isolated demagnetizationin thestudy of red beds.During this time in theUpper Ordovician Juniata Formation sampled in the area periodall of themajor Appalachian red beds were studied or of the Pennsylvaniasalient. The thermallydistributed, restudiedusing modem paleomagnetic techniques. The revised reversedpolarity B componentwas most likely acquired resultsfrom the Juniatawere reported by Van der Voo and duringAlleghenian deformation, and although it is poorly French[ 1977], andwere incorporatedinto the analysisof grouped,it is similarto otherAppalachian synfolding Schwartzand Van der Voo [ 1983], which concludedthat there magnetizations.The pre-Alleghenianage C magnetizationis was no oroclinal rotation involved in the formation of the entirelyof normalpolarity and showsa differencein Pennsylvaniasalient, a majorstructural feature of thecentral declinationsbetween the meanmagnetizations isolated on the Appalachians. northern and southern limbs of the salient of 24 ø _+23 ø. This Recentcontroversy regarding the Paleozoic reference poles anomalyis consistentwith the senseand magnitude of for North Americaand their tectonic implications [Kent and declinationanomalies observed -
Bedrock Geology of the Southern Half of the Knox 30
Bedrock Geology of the Southern Half of the TODD A. THOMPSON, STATE GEOLOGIST Knox 30- X 60-Minute Quadrangle, Indiana By Patrick I. McLaughlin, Alyssa M. Bancroft, and Matthew R. Johnson Bloomington, Indiana 2021 -86°0'00" -86°15'00" 5 000 -86°7'30" 5 000 580000E 5 000 -86°22'30" 5 000 5 000 565000E 70 E 75 E -87°0'00" -86°52'30" -86°45'00" 5 000 5 000 -86°37'30" 5 000 5 000 -86°30'00" 545000E 50 E 55 E 60 E 505 515000E 520 25 E 30 E 35 E 40 E 146859 520 10 Summit Chapel 159301 Rutland Winona 17 Y 560 Argos T Da Houghton Y Lake 158174 Da 144404 N T Da 600 Round 560 4565000N U N 4565000N O U Lake 146860 Dt C 600 162469 O E 500 S C Da 10 10 Dunns ER 162054 Bass ORT Lake 143696 Old Tip Bridge P PER 39 Town Da AS S 400 E J 162049 Da 31 W 560 143695 0 North 0 0 520 146870 1 159302 W 600 S Judson Culver MUCKSHAW RD MUCKSHAW S 10 10 146864 Tippecanoe Dt Dt Maxinkuckee Lake COUNTY MARSHALL Dt Maxinkuckee Dt COUNTY KOSCIUSKO STARKE COUNTY STARKE 560 Aldine MARSHALL COUNTY Tefft San Pierre Lost 19 Da Lena Park Lake 146875 4560000N 35 4560 Da Bass 331 560 Station 117 Da Da Hartz Da Lake 600 560 Walnut 140912 Da Mentone 421 159300 CR 800 N 25 Ora MARSHALL COUNTY STARKE COUNTY 600 STARKE COUNTY 110 110 141955 PULASKI COUNTY Langenbahn FULTON COUNTY 158173 158082 PULASKI COUNTY Lake 560 17 Dt Da Radioville Dt 520 Richland Monterey Tiosa Talma Center 136071 39 Denham 560 31 136072 45 000 45 000 55 N Dt 141952 55 N 600 Zink 141951 141959 136070 Lake Beardstown Delong 140891 Clarks 144534 Dt 560 136073 Dt 520 Sevastopol Da 140894 144535 Dt 41°7'30" Dt -
Geology of Michigan and the Great Lakes
35133_Geo_Michigan_Cover.qxd 11/13/07 10:26 AM Page 1 “The Geology of Michigan and the Great Lakes” is written to augment any introductory earth science, environmental geology, geologic, or geographic course offering, and is designed to introduce students in Michigan and the Great Lakes to important regional geologic concepts and events. Although Michigan’s geologic past spans the Precambrian through the Holocene, much of the rock record, Pennsylvanian through Pliocene, is miss- ing. Glacial events during the Pleistocene removed these rocks. However, these same glacial events left behind a rich legacy of surficial deposits, various landscape features, lakes, and rivers. Michigan is one of the most scenic states in the nation, providing numerous recre- ational opportunities to inhabitants and visitors alike. Geology of the region has also played an important, and often controlling, role in the pattern of settlement and ongoing economic development of the state. Vital resources such as iron ore, copper, gypsum, salt, oil, and gas have greatly contributed to Michigan’s growth and industrial might. Ample supplies of high-quality water support a vibrant population and strong industrial base throughout the Great Lakes region. These water supplies are now becoming increasingly important in light of modern economic growth and population demands. This text introduces the student to the geology of Michigan and the Great Lakes region. It begins with the Precambrian basement terrains as they relate to plate tectonic events. It describes Paleozoic clastic and carbonate rocks, restricted basin salts, and Niagaran pinnacle reefs. Quaternary glacial events and the development of today’s modern landscapes are also discussed. -
Italic Page Numbers Indicate Major References]
Index [Italic page numbers indicate major references] Abbott Formation, 411 379 Bear River Formation, 163 Abo Formation, 281, 282, 286, 302 seismicity, 22 Bear Springs Formation, 315 Absaroka Mountains, 111 Appalachian Orogen, 5, 9, 13, 28 Bearpaw cyclothem, 80 Absaroka sequence, 37, 44, 50, 186, Appalachian Plateau, 9, 427 Bearpaw Mountains, 111 191,233,251, 275, 377, 378, Appalachian Province, 28 Beartooth Mountains, 201, 203 383, 409 Appalachian Ridge, 427 Beartooth shelf, 92, 94 Absaroka thrust fault, 158, 159 Appalachian Shelf, 32 Beartooth uplift, 92, 110, 114 Acadian orogen, 403, 452 Appalachian Trough, 460 Beaver Creek thrust fault, 157 Adaville Formation, 164 Appalachian Valley, 427 Beaver Island, 366 Adirondack Mountains, 6, 433 Araby Formation, 435 Beaverhead Group, 101, 104 Admire Group, 325 Arapahoe Formation, 189 Bedford Shale, 376 Agate Creek fault, 123, 182 Arapien Shale, 71, 73, 74 Beekmantown Group, 440, 445 Alabama, 36, 427,471 Arbuckle anticline, 327, 329, 331 Belden Shale, 57, 123, 127 Alacran Mountain Formation, 283 Arbuckle Group, 186, 269 Bell Canyon Formation, 287 Alamosa Formation, 169, 170 Arbuckle Mountains, 309, 310, 312, Bell Creek oil field, Montana, 81 Alaska Bench Limestone, 93 328 Bell Ranch Formation, 72, 73 Alberta shelf, 92, 94 Arbuckle Uplift, 11, 37, 318, 324 Bell Shale, 375 Albion-Scioio oil field, Michigan, Archean rocks, 5, 49, 225 Belle Fourche River, 207 373 Archeolithoporella, 283 Belt Island complex, 97, 98 Albuquerque Basin, 111, 165, 167, Ardmore Basin, 11, 37, 307, 308, Belt Supergroup, 28, 53 168, 169 309, 317, 318, 326, 347 Bend Arch, 262, 275, 277, 290, 346, Algonquin Arch, 361 Arikaree Formation, 165, 190 347 Alibates Bed, 326 Arizona, 19, 43, 44, S3, 67. -
North American Geology
DEPARTMENT OF THE INTERIOR FRANKLIN K. LANE, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Bulletin 684 BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY FOB 1917 WITH SUBJECT INDEX BY JOHN M. NICKLES i WASHINGTON.' GOVEENMENT PHINTING OFFICE 191 5 CONTENTS. Introduction................................................................. 3 Serials examined........................................................... 5 Bibliography............................................................... 9 Outline of subject headinga................................................. 89 Index.................................................................... 93 Lists..................................................................... 135 Chemical analyses...................................................... 135 Minerals described..................................................... 136 Rocks described.. '...................................................... 138 Geologic formations described........................................... 139 2 BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY FOR 1917, WITH SUBJECT INDEX. By JOHN M. NICKLES. INTRODUCTION. The bibliography of North American geology, including paleon tology, petrology, and mineralogy, for the year 1917 follows the plan and arrangement of its immediate predecessors. It includes publications bearing on the geology of the Continent of North America and adjoining islands; also Panama and the Hawaiian Islands. Papers by American writers on the geology of other parts of the world are not included.