North American Geology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Proceedings Op the Twenty-Third Annual Meeting Op the Geological Society Op America, Held at Pittsburgh, Pennsylvania, December 21, 28, and 29, 1910
BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA VOL. 22, PP. 1-84, PLS. 1-6 M/SRCH 31, 1911 PROCEEDINGS OP THE TWENTY-THIRD ANNUAL MEETING OP THE GEOLOGICAL SOCIETY OP AMERICA, HELD AT PITTSBURGH, PENNSYLVANIA, DECEMBER 21, 28, AND 29, 1910. Edmund Otis Hovey, Secretary CONTENTS Page Session of Tuesday, December 27............................................................................. 2 Election of Auditing Committee....................................................................... 2 Election of officers................................................................................................ 2 Election of Fellows................................................................................................ 3 Election of Correspondents................................................................................. 3 Memoir of J. C. Ii. Laflamme (with bibliography) ; by John M. Clarke. 4 Memoir of William Harmon Niles; by George H. Barton....................... 8 Memoir of David Pearce Penhallow (with bibliography) ; by Alfred E. Barlow..................................................................................................................... 15 Memoir of William George Tight (with bibliography) ; by J. A. Bownocker.............................................................................................................. 19 Memoir of Robert Parr Whitfield (with bibliography by L. Hussa- kof) ; by John M. Clarke............................................................................... 22 Memoir of Thomas -
A History of Education in Louisiana During the Reconstruction Period, 1862-1877
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1957 A History of Education in Louisiana During the Reconstruction Period, 1862-1877. Leon Odum Beasley Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Beasley, Leon Odum, "A History of Education in Louisiana During the Reconstruction Period, 1862-1877." (1957). LSU Historical Dissertations and Theses. 191. https://digitalcommons.lsu.edu/gradschool_disstheses/191 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. A HISTORY OF EDUCATION IN LOUISIANA DURING THE RECONSTRUCTION PERIOD, 1862-1877 A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Education by, ... Leon Odum Beasley B. A., Baylor University, 1948 M. A., University of North Carolina, 1953 ACKNOWLEDGMENT The writer wishes to express his appreciation of and his gratitude for the guidance and helpful criticisms which were given by Professor John A.- Hunter, under whose direction the study was made. To Professor John Oliver Pettiss and Professor Edwin A. Davis a special word of gratitude for their many valuable suggestions and criticisms. Professors Mitchell, Fulmer, and Deer provided the full complement to the committee which was of real benefit to the writer. -
Rock Stratigraphy of the Silurian System in Northeastern and Northwestern Illinois
2UJ?. *& "1 479 S 14.GS: CIR479 STATE OF ILLINOIS c. 1 DEPARTMENT OF REGISTRATION AND EDUCATION Rock Stratigraphy of the Silurian System in Northeastern and Northwestern Illinois H. B. Willman GEOLOGICAL ILLINOIS ""SURVEY * 10RM* APR 3H986 ILLINOIS STATE GEOLOGICAL SURVEY John C. Frye, Chief Urbano, IL 61801 CIRCULAR 479 1973 CONTENTS Page Abstract 1 Introduction 1 Time-stratigraphic classification 3 Alexandrian Series 5 Niagaran Series 5 Cayugan Series 6 Regional correlations 6 Northeastern Illinois 6 Development of the classification 9 Wilhelmi Formation 12 Schweizer Member 13 Birds Member 13 Elwood Formation 14 Kankakee Formation 15 Drummond Member 17 Offerman Member 17 Troutman Member 18 Plaines Member 18 Joliet Formation 19 Brandon Bridge Member 20 Markgraf Member 21 Romeo Member 22 Sugar Run Formation . „ 22 Racine Formation 24 Northwestern Illinois 26 Development of the classification 29 Mosalem Formation 31 Tete des Morts Formation 33 Blanding Formation 35 Sweeney Formation 36 Marcus Formation 3 7 Racine Formation 39 References 40 GEOLOGIC SECTIONS Northeastern Illinois 45 Northwestern Illinois 52 FIGURES Figure 1 - Distribution of Silurian rocks in Illinois 2 2 - Classification of Silurian rocks in northeastern and northwestern Illinois 4 3 - Correlation of the Silurian formations in Illinois and adjacent states 7 - CM 4 Distribution of Silurian rocks in northeastern Illinois (modified from State Geologic Map) 8 - lis. 5 Silurian strata in northeastern Illinois 10 ^- 6 - Development of the classification of the Silurian System in |§ northeastern Illinois 11 7 - Distribution of Silurian rocks in northwestern Illinois (modified ;0 from State Geologic Map) 2 7 8 - Silurian strata in northwestern Illinois 28 o 9 - Development of the classification of the Silurian System in CO northwestern Illinois 30 10 - Index to stratigraphic units described in the geologic sections • • 46 ROCK STRATIGRAPHY OF THE SILURIAN SYSTEM IN NORTHEASTERN AND NORTHWESTERN ILLINOIS H. -
Grade 8 Social Studies
Grade 8 Social Studies Grade 8 Social Studies Table of Contents Unit 1: Louisiana’s Physical and Cultural Geography ..................................................1 Unit 2: Economics in Louisiana......................................................................................19 Unit 3: Louisiana’s Government ....................................................................................38 Unit 4: Early Peoples of Louisiana and a Meeting of Different Worlds.....................57 Unit 5: The Acadian Odyssey .........................................................................................69 Unit 6: The Early American Era of Louisiana..............................................................77 Unit 7: Civil War and Reconstruction ...........................................................................90 Unit 8: Transitions to the Twentieth Century.............................................................103 Unit 9: Eras of World War II and Civil Rights ..........................................................115 Unit 10: Louisiana Ends the Twentieth Century and Enters the Twenty-First.......128 Louisiana Comprehensive Curriculum, Revised 2008 Course Introduction The Louisiana Department of Education issued the Comprehensive Curriculum in 2005. The curriculum has been revised based on teacher feedback, an external review by a team of content experts from outside the state, and input from course writers. As in the first edition, the Louisiana Comprehensive Curriculum, revised 2008 is aligned with state content -
New Late Cretaceous Gastropods from the Pacific Slope of North America
Watural History Museum y p- CfljlWoh'cN^ Of Los Angeles County iRvartebrate Paleontology J. Paleont., 75(1), 2001, pp. 46-65 | Copyright © 2001, The Paleontological Society 0022-3360/01/0075-46$03.00 NEW LATE CRETACEOUS GASTROPODS FROM THE PACIFIC SLOPE OF NORTH AMERICA RICHARD L. SQUIRES AND LOUELLA R. SAUL Department of Geological Sciences, California State University, Northridge 91330-8266, <[email protected]>, and Invertebrate Paleontology Section, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, < lousaul @ earthlink.net > ABSTRACT—Two new genera and ten new species of shallow-marine, warm-water gastropods are reported from several Upper Creta- ceous formations found between British Columbia and southern California. The buccinid Zaglenum new genus is represented by two new species and the turbinellid Fimbrivasum new genus is represented by three new species. The nododelphinulid Trochacanthus pacificus new species is the first record of this genus in the Western Hemisphere, and the procerthiid Nudivagusl califus new species could be the first record of this genus on the Pacific slope of North America. The xenophorid Xenophora (Endoptygma) hermax new species is only the second known Cretaceous species of this genus on the Pacific slope of North America, and this species establishes that Endoptygma Gabb, 1877, is a valid taxon. The neritid Otostoma sharonae new species is only the fourth known Cretaceous species of this genus on the Pacific slope of North America. The ringiculid Ringicula? (Ringiculopsis?) hesperiae new species is the first Campanian record of this genus on the Pacific slope of North America and the first recognition of this subgenus in this area. -
Stratigraphic Succession in Lower Peninsula of Michigan
STRATIGRAPHIC DOMINANT LITHOLOGY ERA PERIOD EPOCHNORTHSTAGES AMERICANBasin Margin Basin Center MEMBER FORMATIONGROUP SUCCESSION IN LOWER Quaternary Pleistocene Glacial Drift PENINSULA Cenozoic Pleistocene OF MICHIGAN Mesozoic Jurassic ?Kimmeridgian? Ionia Sandstone Late Michigan Dept. of Environmental Quality Conemaugh Grand River Formation Geological Survey Division Late Harold Fitch, State Geologist Pennsylvanian and Saginaw Formation ?Pottsville? Michigan Basin Geological Society Early GEOL IN OG S IC A A B L N Parma Sandstone S A O G C I I H E C T I Y Bayport Limestone M Meramecian Grand Rapids Group 1936 Late Michigan Formation Stratigraphic Nomenclature Project Committee: Mississippian Dr. Paul A. Catacosinos, Co-chairman Mark S. Wollensak, Co-chairman Osagian Marshall Sandstone Principal Authors: Dr. Paul A. Catacosinos Early Kinderhookian Coldwater Shale Dr. William Harrison III Robert Reynolds Sunbury Shale Dr. Dave B.Westjohn Mark S. Wollensak Berea Sandstone Chautauquan Bedford Shale 2000 Late Antrim Shale Senecan Traverse Formation Traverse Limestone Traverse Group Erian Devonian Bell Shale Dundee Limestone Middle Lucas Formation Detroit River Group Amherstburg Form. Ulsterian Sylvania Sandstone Bois Blanc Formation Garden Island Formation Early Bass Islands Dolomite Sand Salina G Unit Paleozoic Glacial Clay or Silt Late Cayugan Salina F Unit Till/Gravel Salina E Unit Salina D Unit Limestone Salina C Shale Salina Group Salina B Unit Sandy Limestone Salina A-2 Carbonate Silurian Salina A-2 Evaporite Shaley Limestone Ruff Formation -
Grain-Size Variability Within a Mega-Scale Point-Bar System, False River, Louisiana
Sedimentology (2018) doi: 10.1111/sed.12528 Grain-size variability within a mega-scale point-bar system, False River, Louisiana PETER D. CLIFT*†, ELIZABETH D. OLSON*, ALEXANDRA LECHNOWSKYJ*, MARY GRACE MORAN*, ALLISON BARBATO* and JUAN M. LORENZO* *Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803, USA (E-mail: [email protected]) †Coastal Studies Institute, Louisiana State University, Baton Rouge, LA 70803, USA ABSTRACT Point bars formed by meandering river systems are an important class of sedimentary deposit and are of significant economic interest as hydrocar- bon reservoirs. Standard point-bar models of how the internal sedimentol- ogy varies are based on the structure of small-scale systems with little information about the largest complexes and how these might differ. Here a very large point bar (>25Á0 m thick and 7Á5 9 13Á0 km across) on the Mis- sissippi River (USA) was examined. The lithology and grain-size character- istics at different parts of the point bar were determined by using a combination of coring and electrical conductivity logging. The data confirm that there is a general fining up-section along most parts of the point bar, with a well-defined transition from massive medium-grained sands below about 9 to 11 m depth up into interbedded silts and fine–medium sand sediment (inclined heterolithic strata). There is also a poorly defined increase in sorting quality at the transition level. Massive medium sands are especially common in the region of the channel bend apex and regions upstream of that point. Downstream of the meander apex, there is much less evidence for fining up-section. -
Cretaceous Acila (Truncacila) (Bivalvia: Nuculidae) from the Pacific Slope of North America
THE VELIGER ᭧ CMS, Inc., 2006 The Veliger 48(2):83–104 (June 30, 2006) Cretaceous Acila (Truncacila) (Bivalvia: Nuculidae) from the Pacific Slope of North America RICHARD L. SQUIRES Department of Geological Sciences, California State University, Northridge, California 91330-8266, USA AND LOUELLA R. SAUL Invertebrate Paleontology Section, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA Abstract. The Cretaceous record of the nuculid bivalve Acila (Truncacila) Grant & Gale, 1931, is established for the first time in the region extending from the Queen Charlotte Islands, British Columbia, southward to Baja California, Mexico. Its record is represented by three previously named species, three new species, and one possible new species. The previously named species are reviewed and refined. The cumulative geologic range of all these species is Early Cretaceous (late Aptian) to Late Cretaceous (early late Maastrichtian), with the highest diversity (four species) occurring in the latest Campanian to early Maastrichtian. Acila (T.) allisoni, sp. nov., known only from upper Aptian strata of northern Baja California, Mexico, is one of the earliest confirmed records of this subgenus. ‘‘Aptian’’ reports of Trun- cacila in Tunisia, Morocco, and possibly eastern Venzeula need confirmation. Specimens of the study area Acila are most abundant in sandy, shallow-marine deposits that accumulated under warm- water conditions. Possible deeper water occurrences need critical evaluation. INTRODUCTION and Indo-Pacific regions and is a shallow-burrowing de- posit feeder. Like other nuculids, it lacks siphons but has This is the first detailed study of the Cretaceous record an anterior-to-posterior water current (Coan et al., 2000). -
First Recognition of a Laurentide Ice Stream : Robert Bell on Hudson Strait
Document generated on 10/01/2021 7:42 p.m. Géographie physique et Quaternaire First recognition of a Laurentide Ice Stream : Robert Bell on Hudson Strait Première identification d’un fleuve de glace laurentidien : Robert Bell dans le détroit d’Hudson Ian A. Brookes Volume 61, Number 2-3, 2007 Article abstract In papers published in 1895 and 1901, and in undated notes for a 1907 paper he URI: https://id.erudit.org/iderudit/038993ar did not deliver or publish, Robert Bell of the Geological Survey of Canada DOI: https://doi.org/10.7202/038993ar interpreted the pattern of glacial striae, stossing of rock knobs, and surficial sediment composition along the margins of Hudson Strait, between Labrador, See table of contents Ungava Bay and Baffin Island, as evidence of what he called an ice-stream, a long river-like glacier, fed from Hudson Bay and Foxe Basin, that had moved eastward along the Strait during the Late Glacial period. This was the earliest Publisher(s) mention of such a glaciological feature within the Laurentide Ice Sheet (LIS). It was not until ice-streams were recognized in the West Antarctic Ice Sheet in Les Presses de l'Université de Montréal the 1970’s that Bell’s concept was revived in the next decade and subsequently, in recognition of several ice-streams within the Late Wisconsinan LIS. ISSN 0705-7199 (print) 1492-143X (digital) Explore this journal Cite this article Brookes, I. A. (2007). First recognition of a Laurentide Ice Stream : Robert Bell on Hudson Strait. Géographie physique et Quaternaire, 61(2-3), 211–215. -
Reflection Seismic Profiling of the Wabash Valley Fault System in the Illinois Basin
Reflection Seismic Profiling of the Wabash Valley Fault System in the Illinois Basin U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1538-0 MISSOURI ~"3t3fc: «tr- ^t-i. ARKANSAS Cover. Gray, shaded-relief map of magnetic anomaly data. Map area includes parts of Missouri, Illinois, Indiana, Kentucky, Tennessee, and Arkansas. Illumination is from the west. Figure is from Geophysical setting of the Reelfoot rift and relations between rift structures and the New Madrid seismic zone, by Thomas G. Hildenbrand and John D. Hendricks (chapter E in this series). Reflection Seismic Profiling of the Wabash Valley Fault System in the Illinois Basin By R.M. Rene and F.L. Stanonis INVESTIGATIONS OF THE NEW MADRID SEISMIC ZONE Edited by Kaye M. Shedlock and Arch C. Johnston U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1538-O This research was jointly supported by the U.S. Geological Survey and ARPEX (Industrial Associates' Research Program in Exploration Seismology—Indiana University, University of Southern Indiana, Indiana Geological Survey) UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1995 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging-in-Publication Data Rene, R.M. Reflection seismic profiling of the Wabash Valley fault system in the Illinois Basin / by R.M. Rend and F.L. Stanonis. p. cm.—(U.S. -
Geologic Cross Section
Geologic Cross Section I–I′ Through the Appalachian Basin from the Eastern Margin of the Illinois Basin, Jefferson County, Kentucky, to the Valley and Ridge Province, Scott County, Virginia By Robert T. Ryder, Michael H. Trippi, and Christopher S. Swezey Pamphlet B to accompany Scientific Investigations Map 3343 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2015 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copy- righted items must be secured from the copyright owner. Suggested citation: Ryder, R.T., Trippi, M.H., and Swezey, C.S., 2015, Geologic cross section I–I′ through the Appalachian basin from the eastern margin of the Illinois basin, Jefferson County, Kentucky, to the Valley and Ridge province, Scott County, Virginia: U.S. Geological Survey Scientific Investigations Map 3343, 2 sheets and pamphlet A, 41 p.; pamphlet B, 102 p., http://dx.doi.org/10.3133/sim3343. -
Alumni Newsletter No. 22
McGill University Alumni Newsletter #22 January 2019 Crystals form the building blocks of much of our world. Studying them closely lets us understand the structure of biomolecules of things like our bones and muscles, medications, and even chocolate. Here are five things you might not know about crystals and crystallography 1. Crystallography takes the prize The father and son combination of father William Henry Bragg and son William Lawrence Bragg first revealed the structure of salt and won the Nobel Prize in Physics in 1915 for their services “in the analysis of crystal structure by means of x-ray.” So far, the Braggs are the only father and son team to receive a Nobel Prize. In fact, crystallography is the science or discipline directly attributable to winning the most Nobel Prizes, taking the award 28 times. X-ray crystallography has developed at a rapid pace in the last 20 years. Scientists first used the technique over 100 years ago when they determined the crystal structure of salt. In essence, the method involves placing a tiny crystal in the path of an x-ray beam. As the x-ray passes through the crystal, the radiation is diffracted into a pattern by the atoms that make up the molecules in the crystal structure. The diffraction pattern is like a fingerprint that identifies not only the nature of the atoms and bonds in the molecules, but also their three-dimensional arrangement. It is the only analytical method that can achieve this level of analysis in such a complete and unambiguous fashion. 2. Around 90 percent of all drugs are crystals That’s because it’s much easier to control the solid state of a crystalline structure—even using a gel would involve crystals that are suspended in a gooey substance to aid the delivery of the drug involved.