Grain-Size Variability Within a Mega-Scale Point-Bar System, False River, Louisiana
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A 3D Forward Stratigraphic Model of Fluvial Meander-Bend Evolution for Prediction of Point-Bar Lithofacies Architecture
This is a repository copy of A 3D forward stratigraphic model of fluvial meander-bend evolution for prediction of point-bar lithofacies architecture. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/116031/ Version: Accepted Version Article: Yan, N orcid.org/0000-0003-1790-5861, Mountney, NP orcid.org/0000-0002-8356-9889, Colombera, L et al. (1 more author) (2017) A 3D forward stratigraphic model of fluvial meander-bend evolution for prediction of point-bar lithofacies architecture. Computers & Geosciences, 105. pp. 65-80. ISSN 0098-3004 https://doi.org/10.1016/j.cageo.2017.04.012 © 2017 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Author’s Accepted Manuscript A 3D forward stratigraphic model of fluvial meander-bend evolution for prediction of point-bar lithofacies architecture Na Yan, Nigel P. -
A History of Education in Louisiana During the Reconstruction Period, 1862-1877
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1957 A History of Education in Louisiana During the Reconstruction Period, 1862-1877. Leon Odum Beasley Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Beasley, Leon Odum, "A History of Education in Louisiana During the Reconstruction Period, 1862-1877." (1957). LSU Historical Dissertations and Theses. 191. https://digitalcommons.lsu.edu/gradschool_disstheses/191 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. A HISTORY OF EDUCATION IN LOUISIANA DURING THE RECONSTRUCTION PERIOD, 1862-1877 A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Education by, ... Leon Odum Beasley B. A., Baylor University, 1948 M. A., University of North Carolina, 1953 ACKNOWLEDGMENT The writer wishes to express his appreciation of and his gratitude for the guidance and helpful criticisms which were given by Professor John A.- Hunter, under whose direction the study was made. To Professor John Oliver Pettiss and Professor Edwin A. Davis a special word of gratitude for their many valuable suggestions and criticisms. Professors Mitchell, Fulmer, and Deer provided the full complement to the committee which was of real benefit to the writer. -
Lesson 4: Sediment Deposition and River Structures
LESSON 4: SEDIMENT DEPOSITION AND RIVER STRUCTURES ESSENTIAL QUESTION: What combination of factors both natural and manmade is necessary for healthy river restoration and how does this enhance the sustainability of natural and human communities? GUIDING QUESTION: As rivers age and slow they deposit sediment and form sediment structures, how are sediments and sediment structures important to the river ecosystem? OVERVIEW: The focus of this lesson is the deposition and erosional effects of slow-moving water in low gradient areas. These “mature rivers” with decreasing gradient result in the settling and deposition of sediments and the formation sediment structures. The river’s fast-flowing zone, the thalweg, causes erosion of the river banks forming cliffs called cut-banks. On slower inside turns, sediment is deposited as point-bars. Where the gradient is particularly level, the river will branch into many separate channels that weave in and out, leaving gravel bar islands. Where two meanders meet, the river will straighten, leaving oxbow lakes in the former meander bends. TIME: One class period MATERIALS: . Lesson 4- Sediment Deposition and River Structures.pptx . Lesson 4a- Sediment Deposition and River Structures.pdf . StreamTable.pptx . StreamTable.pdf . Mass Wasting and Flash Floods.pptx . Mass Wasting and Flash Floods.pdf . Stream Table . Sand . Reflection Journal Pages (printable handout) . Vocabulary Notes (printable handout) PROCEDURE: 1. Review Essential Question and introduce Guiding Question. 2. Hand out first Reflection Journal page and have students take a minute to consider and respond to the questions then discuss responses and questions generated. 3. Handout and go over the Vocabulary Notes. Students will define the vocabulary words as they watch the PowerPoint Lesson. -
Geomorphic Classification of Rivers
9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations. -
Grade 8 Social Studies
Grade 8 Social Studies Grade 8 Social Studies Table of Contents Unit 1: Louisiana’s Physical and Cultural Geography ..................................................1 Unit 2: Economics in Louisiana......................................................................................19 Unit 3: Louisiana’s Government ....................................................................................38 Unit 4: Early Peoples of Louisiana and a Meeting of Different Worlds.....................57 Unit 5: The Acadian Odyssey .........................................................................................69 Unit 6: The Early American Era of Louisiana..............................................................77 Unit 7: Civil War and Reconstruction ...........................................................................90 Unit 8: Transitions to the Twentieth Century.............................................................103 Unit 9: Eras of World War II and Civil Rights ..........................................................115 Unit 10: Louisiana Ends the Twentieth Century and Enters the Twenty-First.......128 Louisiana Comprehensive Curriculum, Revised 2008 Course Introduction The Louisiana Department of Education issued the Comprehensive Curriculum in 2005. The curriculum has been revised based on teacher feedback, an external review by a team of content experts from outside the state, and input from course writers. As in the first edition, the Louisiana Comprehensive Curriculum, revised 2008 is aligned with state content -
Stream Restoration, a Natural Channel Design
Stream Restoration Prep8AICI by the North Carolina Stream Restonltlon Institute and North Carolina Sea Grant INC STATE UNIVERSITY I North Carolina State University and North Carolina A&T State University commit themselves to positive action to secure equal opportunity regardless of race, color, creed, national origin, religion, sex, age or disability. In addition, the two Universities welcome all persons without regard to sexual orientation. Contents Introduction to Fluvial Processes 1 Stream Assessment and Survey Procedures 2 Rosgen Stream-Classification Systems/ Channel Assessment and Validation Procedures 3 Bankfull Verification and Gage Station Analyses 4 Priority Options for Restoring Incised Streams 5 Reference Reach Survey 6 Design Procedures 7 Structures 8 Vegetation Stabilization and Riparian-Buffer Re-establishment 9 Erosion and Sediment-Control Plan 10 Flood Studies 11 Restoration Evaluation and Monitoring 12 References and Resources 13 Appendices Preface Streams and rivers serve many purposes, including water supply, The authors would like to thank the following people for reviewing wildlife habitat, energy generation, transportation and recreation. the document: A stream is a dynamic, complex system that includes not only Micky Clemmons the active channel but also the floodplain and the vegetation Rockie English, Ph.D. along its edges. A natural stream system remains stable while Chris Estes transporting a wide range of flows and sediment produced in its Angela Jessup, P.E. watershed, maintaining a state of "dynamic equilibrium." When Joseph Mickey changes to the channel, floodplain, vegetation, flow or sediment David Penrose supply significantly affect this equilibrium, the stream may Todd St. John become unstable and start adjusting toward a new equilibrium state. -
Verified Complaint for Declaratory and Injunctive Relief Introduction
Case 1:15-cv-01241 Document 1 Filed 08/03/15 Page 1 of 54 United States District Court District of Columbia Republican Party of Louisiana 530 Lakeland Drive, Suite 215 Baton Rouge, LA 70802 Jefferson Parish Republican Parish Exec- utive Committee 729 Champagne Drive Kenner, LA 70065 Orleans Parish Republican Executive Civil Case No. 15-cv-1241 Committee 230 Carondelet Street THREE-JUDGE COURT REQUESTED New Orleans, LA 70130, Plaintiffs v. Federal Election Commission 999 E Street, NW Washington, DC 20463, Defendant Verified Complaint for Declaratory and Injunctive Relief Plaintiffs complain as follows: Introduction 1. Plaintiffs challenge provisions of the Bipartisan Campaign Reform Act of 2002 (“BCRA”), Pub. L. 107-155, 116 Stat. 81 (Mar. 27, 2002), restricting “federal election activity,” 52 U.S.C. 30101(20) (definition), as unconstitutional under the First Amendment (I) as applied to (a) non- individualized, independent communications exhorting registering/voting and (b) non-individu- alized, independent communications by Internet; (II) as applied to (a) non-individualized, inde- pendent communications and (b) such communications from an independent-communications- only account (“ICA”); (III) as applied to all independent federal election activity; and (IV) fa- cially. Verified Complaint 1 Case 1:15-cv-01241 Document 1 Filed 08/03/15 Page 2 of 54 2. Because Plaintiffs “elect [BCRA’s judicial-review] provisions to apply to this action,” BCRA § 403(d)(2), “[i]t shall be the duty of the ... Court ... to advance on the docket and to expe- dite to the greatest possible extent the disposition of this action ...,” § 403(a)(4). 3. In relevant part, BCRA § 403, 116 Stat. -
Coal Zone of the Lower Wilcox Group (Paleocene), Northwestern Louisiana
Preliminary Assessment of Coal Resources for the Chemard Lake (Naborton No. 2) Coal Zone of the Lower Wilcox Group (Paleocene), Northwestern Louisiana By Peter D. Warwick, Steven M. Podwysocki and Adam C. Schultz Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government Open-File Report 2005-1262 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia 2005 Revised and reprinted: 2005 For sale by U.S. Geological Survey, Information Services Box 25286, Denver Federal Center Denver, CO 80225 For more information about the USGS and its products: Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov/ Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. ii Contents Introduction………………………..……………………….……………………………………………………… 1 Stratigraphy…………………………………………………………………………….………………………….. 1 Methods……….…………………………………………………………………………….……………………… 7 Results……………………………………………………………………………………….………………………12 Maps…………………………………………………………………………….…….…………………..12 Coal Resources…..……………………………….…………………………………….....................12 Conclusions.…...…………………………………………………………………………………………………...12 Literature Cited……………………………………………..……………………………………………………...17 Appendix 1—Locations and intercepts for public data points used in the Louisiana -
Classifying Rivers - Three Stages of River Development
Classifying Rivers - Three Stages of River Development River Characteristics - Sediment Transport - River Velocity - Terminology The illustrations below represent the 3 general classifications into which rivers are placed according to specific characteristics. These categories are: Youthful, Mature and Old Age. A Rejuvenated River, one with a gradient that is raised by the earth's movement, can be an old age river that returns to a Youthful State, and which repeats the cycle of stages once again. A brief overview of each stage of river development begins after the images. A list of pertinent vocabulary appears at the bottom of this document. You may wish to consult it so that you will be aware of terminology used in the descriptive text that follows. Characteristics found in the 3 Stages of River Development: L. Immoor 2006 Geoteach.com 1 Youthful River: Perhaps the most dynamic of all rivers is a Youthful River. Rafters seeking an exciting ride will surely gravitate towards a young river for their recreational thrills. Characteristically youthful rivers are found at higher elevations, in mountainous areas, where the slope of the land is steeper. Water that flows over such a landscape will flow very fast. Youthful rivers can be a tributary of a larger and older river, hundreds of miles away and, in fact, they may be close to the headwaters (the beginning) of that larger river. Upon observation of a Youthful River, here is what one might see: 1. The river flowing down a steep gradient (slope). 2. The channel is deeper than it is wide and V-shaped due to downcutting rather than lateral (side-to-side) erosion. -
Fluvial Sedimentary Patterns
ANRV400-FL42-03 ARI 13 November 2009 11:49 Fluvial Sedimentary Patterns G. Seminara Department of Civil, Environmental, and Architectural Engineering, University of Genova, 16145 Genova, Italy; email: [email protected] Annu. Rev. Fluid Mech. 2010. 42:43–66 Key Words First published online as a Review in Advance on sediment transport, morphodynamics, stability, meander, dunes, bars August 17, 2009 The Annual Review of Fluid Mechanics is online at Abstract fluid.annualreviews.org Geomorphology is concerned with the shaping of Earth’s surface. A major by University of California - Berkeley on 02/08/12. For personal use only. This article’s doi: contributing mechanism is the interaction of natural fluids with the erodible 10.1146/annurev-fluid-121108-145612 Annu. Rev. Fluid Mech. 2010.42:43-66. Downloaded from www.annualreviews.org surface of Earth, which is ultimately responsible for the variety of sedi- Copyright c 2010 by Annual Reviews. mentary patterns observed in rivers, estuaries, coasts, deserts, and the deep All rights reserved submarine environment. This review focuses on fluvial patterns, both free 0066-4189/10/0115-0043$20.00 and forced. Free patterns arise spontaneously from instabilities of the liquid- solid interface in the form of interfacial waves affecting either bed elevation or channel alignment: Their peculiar feature is that they express instabilities of the boundary itself rather than flow instabilities capable of destabilizing the boundary. Forced patterns arise from external hydrologic forcing affect- ing the boundary conditions of the system. After reviewing the formulation of the problem of morphodynamics, which turns out to have the nature of a free boundary problem, I discuss systematically the hierarchy of patterns observed in river basins at different scales. -
Impact of Inclined Heterolithic Stratification on Oil Sands
Impact of Inclined Heterolithic Stratification on Oil Sands Reservoir Delineation and Management: An Outcrop Analog from the Late Cretaceous Horseshoe Canyon Formation, Willow Creek, Alberta Mark B. Dahl ConocoPhillips, Calgary, Alberta [email protected] Dr. John R. Suter ConocoPhillips, Calgary, Alberta [email protected] Dr. Stephen M. Hubbard University of Calgary, Calgary, Alberta [email protected] Dr. Dale A. Leckie Nexen Inc., Calgary, Alberta [email protected] Inclined heterolithic strata (IHS) formed by laterally-accreting, fluvial-estuarine point-bars are economically important deposits of the lower Cretaceous McMurray Formation, which hosts the Athabasca Oil Sands (AOS) in Northern Alberta. Stratigraphic and lithologic heterogeneities occur at various scales and orientations throughout IHS, rendering interpretation and modeling of their 3-dimensional stratigraphic architecture, aimed at better estimation and extraction or resources/reserves, a serious challenge. An exceptional 3-dimensional exposure of a laterally- accreting, fluvial-estuarine point-bar deposit occurs at Willow Creek, in the Badlands of central Alberta, approximately two hours northeast of Calgary. This exposure serves as an ancient analogue to the IHS point-bar deposits commonly observed in the subsurface at the AOS (Figure 1). The Willow Creek deposits, from the Late Cretaceous Horseshoe Canyon Formation, were studied in order to better understand the stratigraphic architecture of a point-bar deposit. Figure 1. An exceptional 3-dimensional exposure of a laterally-accreting, fluvial-estuarine point-bar deposit occurs at Willow Creek. The alternating units of darker (mud-rich) and lighter (sand-rich) commonly observed in this type of deposit is known as inclined heterolithic stratification (IHS). -
Characteristics of Point-Bar Development Under the Influence of a Dam: Case Study on the Dráva River at Sigetec, Croatia
JOURNAL OF ENVIRONMENTAL GEOGRAPHY Journal of Environmental Geography 8 (1–2), 23–30. DOI: 10.1515/jengeo-2015-0003 ISSN: 2060-467X CHARACTERISTICS OF POINT-BAR DEVELOPMENT UNDER THE INFLUENCE OF A DAM: CASE STUDY ON THE DRÁVA RIVER AT SIGETEC, CROATIA Tímea Kiss*, Márton Balogh Department of Physical Geography and Geoinformatics, University of Szeged, Egyetem u. 2-6, H-6722 Szeged, Hungary *Corresponding author, e-mail: [email protected] Research article, received 20 February 2015, accepted 1 April 2015 Abstract Before the extensive engineering works the Dráva River had braided pattern. However in the 19-20th centuries river regulation works became widespread, thus meanders were cut off, side-channels were blocked and hydroelectric power plants were completed. These human impacts significantly changed the hydro-morphology of the river. The aim of the present research is to analyse meander development and the formation of a point-bar from the point of view of indirect human impact. Series of maps and ortho-photos representing the period of 1870-2011 were used to quantify the long- term meander development, rate of bank erosion and point-bar aggradation. Besides, at-a-site erosion measurements and grain-size analysis were also carried out. As the result of reservoir constructions during the last 145 years floods almost totally disappeared, as their return period increased to 5-15 years and their duration decreased to 1-2 days. The channel pattern had changed from braided to sinuous and to meandering, thus the rate of bank erosion increased from 3.7 m/y to 32 m/y. On the upstream part of the point-bar the maximum grain size is 49.7–83.4 mm and the mean particle size is 7.6 mm, whilst on the downstream part the maximum grain size was only 39.7–39.9 mm and mean sediment size decreased to 6.1 mm.