<<

Mass appeal: World reaches new consensus on of the kilogram By Sarah Kaplan, Washington Post on 11.21.18 Word Count 1,669 Level MAX

The U.S. national kilogram, made in 1879 and kept at the National Institute of Standards and Technology in Gaithersburg, Maryland. Photo by: Salwan Georges/The Washington Post

Humanity has made a weighty achievement. On Friday, November 16 representatives of more than 60 nations convened in Versailles, France, to approve a new definition for the kilogram.

Since the 19th century, scientists have based their definition of the fundamental unit of mass on a physical object — a shining platinum iridium cylinder stored in a locked vault in the bowels of the International Bureau of and Measures (BIPM) in Sevres, France. A kilogram was equal to the heft of this aging hunk of metal, and the cylinder, by definition, weighed exactly a kilogram. If the cylinder changed, even a little bit, then the entire global system of had to change, too.

With Friday's vote, scientists will redefine the kilogram for the 21st century by tying it to a fundamental feature of the universe — a small, strange figure from quantum known as Planck's constant, which describes the smallest possible unit of energy.

This article is available at 5 reading levels at https://newsela.com. Thanks to Albert Einstein's revelation that energy and mass are related, determining exactly how much energy is in that unit can let scientists define mass in terms of Planck's constant — a value that should hold up across space and time — rather than relying on an inconstant metal cylinder. (Mass determines something's , and for most purposes mass and weight are interchangeable.)

The redefinition is the result of a decades-long, worldwide quest to measure Planck's constant precisely enough that the number would stand up to scientific scrutiny.

Though the newly defined kilogram won't affect your bathroom scale, it will have practical applications in research and industries that depend on meticulous measurement.

Friday's vote was mostly a formality; everyone involved expected the resolution to pass. But to Jon Pratt, one of the leaders of that global effort, the event is about more than symbolism, bigger than business and beyond even physics.

In this era of violence and vitriol, when it seems there's so little on which people can agree, Pratt said, the redefinition represents something sublime.

It is an acknowledgment of an immutable truth — that nature has laws to which all of us are subject. And it's one more step toward a lofty dream — that, in understanding nature's laws, scientists can help build a better world.

The scientist grinned, sheepish. "It's an emotional moment," he said. "I'm just really proud of our species."

At the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, where Pratt works, measurement is often described as the "invisible infrastructure" of the modern world. Everything a person does — whether it's checking a clock, forecasting the weather, cooking a meal, building a rocket, signing a contract, waging a war — requires of some kind.

The International System of Units, or SI, is what allows us to communicate measurements around the globe. This system, which has its origins in the heady days of the Enlightenment, was meant to end the bickering over the number of Spanish vara in a British furlong and ease the anxieties of a merchant who bought goods in the Netherlands, where the unit of weight was based on the amount of fish that could fit in a ship's hold, and sold them in France, where weight was tied to the heft of a wheat .

The motto of one of the system's creators, "for all times and for all people," is among Pratt's favorite phrases.

"It's such an optimistic view," Pratt said. "He just imagined this business of ... was going to be a great force for freedom and a great force for moving the world forward."

In 1875, the signing of the Treaty of the made the system official. Two platinum and iridium prototypes — a meter- bar and a kilogram-mass cylinder — were forged to serve as the units for the whole world. The BIPM distributed copies of each prototype to the signatory nations; the century-old U.S. national kilogram still sits in a glass case in a locked room down the hall from Pratt's lab.

This article is available at 5 reading levels at https://newsela.com. As science and commerce advanced, the SI expanded to include units for other kinds of measurements and the definitions were revised to allow for greater and greater precision. The meter prototype was ditched in favor of the distance travels in a vacuum in one- 299,792,458th of a second. The length of a second was pegged to the cycles of radiation of the element cesium.

These values — the speed of light, the behavior of atoms, the nature of electromagnetism — are fundamental features of nature that do not change whether the observer is on Earth or Mars, whether it's the year 1875 or 2018.

But the kilogram prototype, known as "Le Grand K," was made by humans and is subject to all our limitations. It is inaccessible — the safe containing the cylinder can be opened only by three custodians carrying three separate keys, an event that has happened fewer than a dozen times in the object's 139-year history. And it is inconsistent. When Le Grand K was examined in the 1980s, it weighed several micrograms less than it was supposed to. This meant that anyone who made products based on the standards had to reissue their weights. Manufacturers were furious. Metrologists, people who study measurements, were accused of incompetence.

So, in a 2014 meeting at the BIPM, the community resolved to redefine the kilogram. But the value of Planck's constant was still uncertain, and scientists couldn't redefine the kilogram without it.

It has been more than 100 years since the quantum physicist Max Planck discovered that energy is expressed in discrete units — that is, it's "quantized." But his constant — a figure that describes the size of these energy packets — has been hard to pin down.

There are only two experimental setups that allow scientists to calculate this number, and both require rare and expensive tools.

One technique involves counting all the atoms in a perfectly round silicon sphere.

The second option uses an exquisitely accurate weighing machine known as a watt balance, which measures an object's mass by calculating the force needed to lift it. This is no ordinary scale; it took a pair of British scientists several decades to invent and refine the instrument, and there are only two in the world powerful enough to meet the BIPM's high standards for precision.

One is in Canada. The other sits inside Pratt's lab in the NIST basement.

"It really is a beautiful instrument," Pratt said during a visit this week to the steel-encased room where the balance is stored. "I like to just come here and stare at it."

The enormous metal machine, which took five years to build, is as tall as a professional basketball player and shiny as a disco ball, with a tungsten carbide fulcrum on which the balance hinges and a one- magnet that helps generate a force. While experiments are run, the entire balance is placed inside a vacuum chamber. Anyone who operates the instrument must wear a hairnet, a lab coat and booties. Pratt and his colleagues measure every factor that could possibly affect their result, from the temperature of the room to the strength of Earth's gravity.

"In a physics sense, we're really chasing perfection here," Pratt said. "We really need things to behave just as their idealized versions."

This article is available at 5 reading levels at https://newsela.com. The 2014 resolution required that at least one instrument would need to calculate Planck's constant to an uncertainty of just 20 parts per billion — or within 0.000002 percent of what is thought to be the correct number.

On June 30, 2017, the before the deadline to submit a value to the BIPM's weights and measures committee, Pratt and his team finally published a result that met this standard.

Planck's constant is equal to 6.626069934 x 10−34 k∙m2/s, they said. And their uncertainty was just 13 parts per billion.

That number may be barely intelligible to the casual observer. But to Pratt, measuring it felt for a moment like some cosmic curtain had been lifted, revealing the innermost workings of the universe.

Here in the echoing basement of an obscure federal agency, he and his crew of hair-netted nerds had gotten as close to one standard for perfection as any human has ever been. They had transcended their human biases and earthly flaws to make an observation so precise it will work "for all times and for all people" — or at least, until the day when scientists are able to pull back another fold of the curtain, eliminating one more of uncertainty about this fundamental fact of physics.

Pratt and his colleagues are not the only scientists who have spent the better part of the past decade in pursuit of Planck's constant. Researchers using the watt balance in Canada have achieved a measurement with even less uncertainty than NIST's. Teams in Germany and Japan produced similarly precise measurements using the silicon-sphere technique.

But not all the measurements agreed. In the metrology community, where careers can be staked on quibbles over points, this discrepancy could have been catastrophic. "There was a lot of hemming and hawing, and at one point there were questions about whether [the vote] would even happen," Pratt said.

But that debate, too, was an important part of the process. Only through repeated observations, refutations and confirmations does an idea become a globally accepted fact. It's what makes science bigger than scientists; it's how we establish that something is true.

Still, Pratt didn't wait for the debate to end to get NIST's value for Planck's constant tattooed on his forearm — the 10- number and an illustration of a statue clutching a meter bar and a kilogram cylinder. And above it, in French, were the words that have guided metrologists since the beginning: A tous les temps, a tous les peuples.

For all times, for all people.

This article is available at 5 reading levels at https://newsela.com. Quiz

1 Read the following two summaries of the article.

1. Researchers across the world have redefined the kilogram after a decades-long search for Planck's constant. The newly defined value will serve as a more accurate unit of measurement for the world. Finding the value of the constant required rigorous experimentation and precision. 2. Researchers have all agreed that using Planck's constant to determine the weight of a kilogram is the best way for now. Because mass and weight are always changing, they will need to find another new measurement in the future. Scientists are already working toward this.

Which option provides an objective, accurate summary of the article, and why?

(A) Summary 1; it clearly outlines the value of Planck's constant and why it is the best unit of measurement.

(B) Summary 1; it clearly explains the achievement of creating the new definition and the effort it required.

(C) Summary 2; it clearly outlines the challenges of determining an accurate value for the kilogram.

(D) Summary 2; it clearly explains why scientists are continuing their experiments on Planck's constant.

2 Read the following two details from the article.

Thanks to Albert Einstein's revelation that energy and mass are related, determining exactly how much energy is in that unit can let scientists define mass in terms of Planck's constant — a value that should hold up across space and time — rather than relying on an inconstant metal cylinder. It has been more than 100 years since the quantum physicist Max Planck discovered that energy is expressed in discrete units — that is, it's "quantized." But his constant — a figure that describes the size of these energy packets — has been hard to pin down.

Select the option that BEST explains how these details develop a central idea of the article.

(A) Both details demonstrate the likelihood that future studies of Planck's constant will reveal that scientists have not yet discovered.

(B) Both details highlight the perspective that using energy to define mass is more accurate than using the weight of the cylinder Le Grand K.

(C) Both details reflect the view that Einstein and Planck forever changed scientists' understanding of the basic measurements of the universe.

(D) Both details contribute to the understanding that defining Planck's constant has been the result of gradual scientific effort and progress.

This article is available at 5 reading levels at https://newsela.com. 3 Read the paragraph from the article.

But that debate, too, was an important part of the process. Only through repeated observations, refutations and confirmations does an idea become a globally accepted fact. It's what makes science bigger than scientists; it's how we establish that something is true.

Which of the following conclusions can be drawn from the paragraph above?

(A) Any resolution about the definition of a kilogram's measurement might be undone and changed after further observations.

(B) A true and precise figure to define Planck's constant and therefore the kilogram itself might never be known for certain.

(C) Scientists still come up with different calculations disputing the validity of the figure for Planck's constant.

(D) The various calculations and disagreements about an accurate figure for Planck's constant have established its validity.

4 Which of the following claims does the author support the LEAST?

(A) The old measurement of the kilogram was inaccurate and inconvenient.

(B) SI tries to create standard units to communicate measurement for the whole world.

(C) Agreement on the measurement represents better relations among the world's nations.

(D) Calculating the number of Planck's constant required rigorous precision and effort.

This article is available at 5 reading levels at https://newsela.com.