CHAPTER 6: MEASUREMENTS Contents

Total Page:16

File Type:pdf, Size:1020Kb

CHAPTER 6: MEASUREMENTS Contents College Prep Essential Math Chapter 6: Measurements CHAPTER 6: MEASUREMENTS Chapter Objectives By the end of this chapter, students should be able to: Identify terms used in measurement in both metric and U.S. customary systems Distinguish between 1, 2, and 3 dimensional measures. Convert U.S. customary unit measures. Convert between U.S. and metric systems. Solve applications of unit measurements. Contents CHAPTER 6: MEASUREMENTS .................................................................................... 1 SECTION 6.1 MEASUREMENT .................................................................................. 2 A. U.S. CUSTOMARY SYSTEM ......................................................................... 2 I. Weight ............................................................................................................. 2 II. Length.......................................................................................................... 3 III. Area ............................................................................................................. 5 IV. Volume ........................................................................................................ 6 B. METRIC SYSTEM .......................................................................................... 9 I. Weight ............................................................................................................. 9 II. Length.......................................................................................................... 9 C. REVIEWING U.S. CUSTOMARY SYSTEM AND METRIC SYSTEM ........... 12 EXERCISES........................................................................................................... 13 SECTION 6.2 CONVERSIONS ................................................................................. 14 A. CONVERT U.S. CUSTOMARY UNITS ......................................................... 14 B. CONVERT METRIC UNITS .......................................................................... 17 C. CONVERT BETWEEN U.S. AND METRIC SYSTEMS ................................ 21 EXERCISES........................................................................................................... 24 CHAPTER REVIEW .................................................... Error! Bookmark not defined. 1 College Prep Essential Math Chapter 6: Measurements SECTION 6.1 MEASUREMENT We can measure different attributes of an object. Think about a desk. You can measure how high it is off the ground, how wide the seat is, the area of the desktop, and the space it takes up in the room. You can measure many things like length, area, volume, and weight. In the United States, two main systems of measurement are used: the metric system and the U.S. customary measurement system. The U.S. Customary System is derived from the British system of measure and will be familiar to you. The Metric system is more commonly used around the world. A. U.S. CUSTOMARY SYSTEM I. Weight When you mention how heavy or light an object is, you are referring to its weight. The tables below list common units of measurement for weight for the U.S. Customary System. U.S. Customary Measurement Ounces (표푧) Pounds (푙푏) Tons (푡) The table below describes a unit of weight and provides an example to illustrate the size of the unit of measurement. Ton Some species of whales can reach weights of up to 200 tons. Meat is a product that is usually sold by the pound. One pound of beef Pound makes about four hamburger patties. Ounces are used to measure lighter objects. A stack of 11 pennies is Ounces equal to about one ounce. 2 College Prep Essential Math Chapter 6: Measurements Media Lesson U.S. Customary Units: Weight (Duration 3:39) View the video lesson, take notes below. Unit Items that could be measured in this unit. Pounds Ounces Tons It is important to note there are different types of tons. You might have heard about the small ton and the long ton. The small ton refers to the U.S. Customary ton. The long ton is the British ton. The U.S. Customary ton is 2,000 pounds while the British ton is 2,240 pounds. The metric ton is called the tonne. It is 1,000 kilograms. In this chapter we will use the small ton. YOU TRY: a) Determine what units would be appropriate to use to measure the following weights. Item U.S. Customary Unit The weight of an elephant The weight of bananas The weight of a lipstick II. Length Length can be thought of as the distance between two points. The table below lists common units of measurement of length for the U.S. Customary System. U.S. Customary Measurement Inches (푛) Foot (푓푡) Yard (푦푑) Mile (푚) 3 College Prep Essential Math Chapter 6: Measurements The table below describes a unit of length and provides an example to illustrate the size of the unit of measurement. Some people donate their hair to be made into wigs for cancer patients who Inches have lost hair as a result of treatment. One company requires hair donation to be at least 8 inches long. Feet The length of your bed, couch, and table can be measured in feet. Soccer fields vary in their size. An official field can be any length between Yards 100 and 130 yards. Miles A marathon is 26.2 miles long. Media Lesson U.S. Customary Units: Distance (Duration 5:10) View the video lesson, take notes below. Unit Items that could be measured in this unit. Feet Inches Yard Mile YOU TRY: b) Determine what units would be appropriate to measure the following lengths. Item U.S. Customary Unit The distance from home to campus The height of a water bottle The length of an ant 4 College Prep Essential Math Chapter 6: Measurements III. Area Area is the amount of space within the boundaries of a 2-dimensional shape. The table below lists common units of measurement for area. U.S. Customary Measurement square inches (풊풏ퟐ) (a square that has 1-inch long sides) square feet (풇풕ퟐ) (a square that has 1-foot long sides) square yard (풚풅ퟐ) (a square that has 1-yard long sides) The table below describes a unit of area and provides an example to illustrate the size of the unit of measurement. A quarter is about 1 inch wide. Imagine drawing a square around a Square inch quarter. That square would be about the size of 1 square inch. Square feet The front of your school binder has an area close to 1 square foot. Poster papers are 2 feet by 3 feet. They are a little less than 1 square Square yard yard. The unit you use to measure area depends on the unit you would use to measure the length of your object. A tile has sides you would measure in inches, so its area would be measured in square inches. YOU TRY: c) What units would be appropriate to use to measure the following? Item U.S. Customary Unit The floor of your living room The area of a sheet of paper The area of a post-it note The lot size of your home 5 College Prep Essential Math Chapter 6: Measurements IV. Volume Volume is the space taken up by a 3-dimensional object. The table below lists common units of measurement. U.S. Customary Measurement Teaspoon Table spoon Fluid Ounce (푓푙 표푧) Cup (푐) Pint (푝푡) Quart (푞푡) Gallon (푔) Cubic inch (푛3) (a cube that has 1-inch long sides) The table below describes each unit of volume and provides an example to illustrate the size of the unit of measurement. Fluid Ounce The amount of liquid medicine is often measured in fluid ounces. Cup The volume of a measuring cup is one cup. Pint Cartons of ice cream are often measured in pints. Quart You often see quarts of milk sold in supermarkets. Gallon Gas is sold by gallons. Cubic Inch This is about the size of a stack of 15 quarters. Media Lesson U.S. Customary Units: Fluid Volume (Duration 7:20) View the video lesson, take notes below. Unit Items that could be measured in this unit. Teaspoon Table spoon Fluid Ounce 6 College Prep Essential Math Chapter 6: Measurements Cups Pints Quarts Gallon Example: The table below lists appropriate units of measurement for each item. Item U.S. Customary Unit The amount of water in a bathtub gallons The amount of coffee in a cup cups and cubic inches The amount of fluid in a drop of water ounces YOU TRY: a) What units would be appropriate to measure the following? Item U.S. Customary Unit The amount of water in a pool The amount of water in a bottle The amount of fluid in an allergy shot 7 College Prep Essential Math Chapter 6: Measurements Capacity 1 gallon = 4 quarts = 16 cups 1 quart = 2 pints = 4 cups 1 pint = 2 cups 1 cup = 8 fluid ounces 3 teaspoon = 1 tablespoon 8 College Prep Essential Math Chapter 6: Measurements B. METRIC SYSTEM The metric system is more commonly used around the world. You may have heard of kilograms, centimeters, millimeters, and liters. These are units of the metric system. The metric system uses three basic units: meters, grams, and liters. The meter is the basic unit of length. The gram is the basic unit of weight. The liter is the basic unit of volume. I. Weight Common units of weight of the Metric System are kilograms, grams, and milligrams. Media Lesson Metric System: Units of Weight (Duration 4:25) View the video lesson, take notes below. Unit Items that could be measured in this unit. Gram Kilogram Milligram YOU TRY: a) Determine what units would be appropriate to use to measure the following weights. Item Metric Unit The weight of an elephant The weight of bananas The weight of a lipstick II. Length Common units of length of the Metric System are kilometers, meters, centimeters, and millimeters. Media Lesson Metric System: Units of Distance(Duration 6:55) View the video lesson, take notes below.
Recommended publications
  • The Metric System: America Measures Up. 1979 Edition. INSTITUTION Naval Education and Training Command, Washington, D.C
    DOCONENT RESUME ED 191 707 031 '926 AUTHOR Andersonv.Glen: Gallagher, Paul TITLE The Metric System: America Measures Up. 1979 Edition. INSTITUTION Naval Education and Training Command, Washington, D.C. REPORT NO NAVEDTRA,.475-01-00-79 PUB CATE 1 79 NOTE 101p. .AVAILABLE FROM Superintendent of Documents, U.S. Government Printing .Office, Washington, DC 2040Z (Stock Number 0507-LP-4.75-0010; No prise quoted). E'DES PRICE MF01/PC05 Plus Postage. DESCRIPTORS Cartoons; Decimal Fractions: Mathematical Concepts; *Mathematic Education: Mathem'atics Instruction,: Mathematics Materials; *Measurement; *Metric System; Postsecondary Education; *Resource Materials; *Science Education; Student Attitudes: *Textbooks; Visual Aids' ABSTRACT This training manual is designed to introduce and assist naval personnel it the conversion from theEnglish system of measurement to the metric system of measurement. The bcokteliswhat the "move to metrics" is all,about, and details why the changeto the metric system is necessary. Individual chaPtersare devoted to how the metric system will affect the average person, how the five basic units of the system work, and additional informationon technical applications of metric measurement. The publication alsocontains conversion tables, a glcssary of metric system terms,andguides proper usage in spelling, punctuation, and pronunciation, of the language of the metric, system. (MP) ************************************.******i**************************** * Reproductions supplied by EDRS are the best thatcan be made * * from
    [Show full text]
  • Rules Relative to the Circle
    RULES RELATIVE TO THE CIRCLE TO FIND DIAMETER I Multiply circumference by 0.3183. I Or divide circumference by 3.1416. TO FIND CIRCUMFERENCE I Multiply diameter by 3.1416. I Or divide diameter by 0.3183. TO FIND RADIUS I Multiply circumference by 0.15915. I Or divide circumference by 6.28318. TO FIND SIDE OF AN I Multiply diameter by 0.7071. INSCRIBED SQUARE I Or multiply circumference by 0.2251. I Or divide circumference by 4.4428. TO FIND SIDE OF AN I Multiply diameter by 0.8862. EQUAL SQUARE I Or divide diameter by 1.1284. I Or multiply circumference by 0.2821. I Or divide circumference by 3.545. SQUARE I A side multiplied by 1.1442 equals diameter of its circumscribing circle. I A side multiplied by 4.443 equals circumference of its circumscribing circle. I A side multiplied by 1.128 equals diameter of an equal circle. I Square inches multiplied by 1.273 equals circle inches of an equal circle. TO FIND THE AREA OF I Multiply circumference by 1/4 of the diameter. A CIRCLE I Or multiply the square of diameter by 0.7854. I Or multiply the square of circumference by 0.07958. I Or multiply the square of 1/2 diameter by 3.1416. TO FIND THE SURFACE I Multiply the diameter by the circumference. OF A SPHERE OR GLOBE I Or multiply the square of diameter by 3.1416. I Or multiply four times the square of radius by 3.1416. I To find cubic inches in a globe multiply cube of diameter by 0.5236.
    [Show full text]
  • Estimating Highway Maintenance Work Indiana LTAP Center
    Estimating Highway Maintenance Work July 2011 SP-1-2011 compiled by The Ohio Department of Transportation updated by The Indiana LTAP Center Indiana LTAP Center Purdue University School of Civil Engineering Indiana LTAP Center 3000 Kent Avenue West Lafayette, Indiana 47906 Telephone: 765.494.2164 Toll Free in Indiana: 1.800.428.7639 Facsimile: 765.496.1176 This document is disseminated under the sponsorship of the Indiana LTAP Center at Purdue University in the interest of information exchange. Purdue University and the Indiana LTAP Center assume no liability for its contents or use thereof. Purdue University and the Indiana LTAP Center do not endorse products or manufacturers. Trademarks or manufacturers names may appear herein only because they are considered essential to the objective of this document. The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official policy of Purdue University or the Indiana LTAP Center. This report does not constitute a standard, specification, or regulation. Estimating Highway Maintenance Work Estimating amounts of materials, work done, size of crews, or number of trucks needed for road maintenance requires the skill of working with NUMBERS and MEASUREMENTS . By using addition, subtraction, multiplication, division and some basic rules, you can do some figuring ahead of time and make your crews look better. People feel better about themselves when they’re doing a good job, their friends do too, and so does the motoring public. NUMBERS play an important part in the everyday affairs of everybody.
    [Show full text]
  • Metric System Units of Length
    Math 0300 METRIC SYSTEM UNITS OF LENGTH Þ To convert units of length in the metric system of measurement The basic unit of length in the metric system is the meter. All units of length in the metric system are derived from the meter. The prefix “centi-“means one hundredth. 1 centimeter=1 one-hundredth of a meter kilo- = 1000 1 kilometer (km) = 1000 meters (m) hecto- = 100 1 hectometer (hm) = 100 m deca- = 10 1 decameter (dam) = 10 m 1 meter (m) = 1 m deci- = 0.1 1 decimeter (dm) = 0.1 m centi- = 0.01 1 centimeter (cm) = 0.01 m milli- = 0.001 1 millimeter (mm) = 0.001 m Conversion between units of length in the metric system involves moving the decimal point to the right or to the left. Listing the units in order from largest to smallest will indicate how many places to move the decimal point and in which direction. Example 1: To convert 4200 cm to meters, write the units in order from largest to smallest. km hm dam m dm cm mm Converting cm to m requires moving 4 2 . 0 0 2 positions to the left. Move the decimal point the same number of places and in the same direction (to the left). So 4200 cm = 42.00 m A metric measurement involving two units is customarily written in terms of one unit. Convert the smaller unit to the larger unit and then add. Example 2: To convert 8 km 32 m to kilometers First convert 32 m to kilometers. km hm dam m dm cm mm Converting m to km requires moving 0 .
    [Show full text]
  • Standard Conversion Factors
    Standard conversion factors 7 1 tonne of oil equivalent (toe) = 10 kilocalories = 396.83 therms = 41.868 GJ = 11,630 kWh 1 therm = 100,000 British thermal units (Btu) The following prefixes are used for multiples of joules, watts and watt hours: kilo (k) = 1,000 or 103 mega (M) = 1,000,000 or 106 giga (G) = 1,000,000,000 or 109 tera (T) = 1,000,000,000,000 or 1012 peta (P) = 1,000,000,000,000,000 or 1015 WEIGHT 1 kilogramme (kg) = 2.2046 pounds (lb) VOLUME 1 cubic metre (cu m) = 35.31 cu ft 1 pound (lb) = 0.4536 kg 1 cubic foot (cu ft) = 0.02832 cu m 1 tonne (t) = 1,000 kg 1 litre = 0.22 Imperial = 0.9842 long ton gallon (UK gal.) = 1.102 short ton (sh tn) 1 UK gallon = 8 UK pints 1 Statute or long ton = 2,240 lb = 1.201 U.S. gallons (US gal) = 1.016 t = 4.54609 litres = 1.120 sh tn 1 barrel = 159.0 litres = 34.97 UK gal = 42 US gal LENGTH 1 mile = 1.6093 kilometres 1 kilometre (km) = 0.62137 miles TEMPERATURE 1 scale degree Celsius (C) = 1.8 scale degrees Fahrenheit (F) For conversion of temperatures: °C = 5/9 (°F - 32); °F = 9/5 °C + 32 Average conversion factors for petroleum Imperial Litres Imperial Litres gallons per gallons per per tonne tonne per tonne tonne Crude oil: Gas/diesel oil: Indigenous Gas oil 257 1,167 Imported Marine diesel oil 253 1,150 Average of refining throughput Fuel oil: Ethane All grades 222 1,021 Propane Light fuel oil: Butane 1% or less sulphur 1,071 Naphtha (l.d.f.) >1% sulphur 232 1,071 Medium fuel oil: Aviation gasoline 1% or less sulphur 237 1,079 >1% sulphur 1,028 Motor
    [Show full text]
  • American and BRITISH UNITS of Measurement to SI UNITS
    AMERICAN AND BRITISH UNITS OF MEASUREMENT TO SI UNITS UNIT & ABBREVIATION SI UNITS CONVERSION* UNIT & ABBREVIATION SI UNITS CONVERSION* UNITS OF LENGTH UNITS OF MASS 1 inch = 40 lines in 2.54 cm 0.393701 1 grain gr 64.7989 mg 0.0154324 1 mil 25.4 µm 0.03937 1 dram dr 1.77185 g 0.564383 1 line 0.635 mm 1.57480 1 ounce = 16 drams oz 28.3495 g 0.0352739 1 foot = 12 in = 3 hands ft 30.48 cm 0.0328084 1 pound = 16 oz lb 0.453592 kg 2.204622 1 yard = 3 feet = 4 spans yd 0.9144 m 1.09361 1 quarter = 28 lb 12.7006 kg 0.078737 1 fathom = 2 yd fath 1.8288 m 0.546807 1 hundredweight = 112 lb cwt 50.8024 kg 0.0196841 1 rod (perch, pole) rd 5.0292 m 0.198839 1 long hundredweight l cwt 50.8024 kg 0.0196841 1 chain = 100 links ch 20.1168 m 0.0497097 1 short hundredweight sh cwt 45.3592 kg 0.0220462 1 furlong = 220 yd fur 0.201168 km 4.97097 1 ton = 1 long ton tn, l tn 1.016047 t 0.984206 1 mile (Land Mile) mi 1.60934 km 0.62137 1 short ton = 2000 lb sh tn 0.907185 t 1.102311 1 nautical mile (intl.) n mi, NM 1.852 km 0.539957 1 knot (Knoten) kn 1.852 km/h 0.539957 UNITS OF FORCE 1 pound-weight lb wt 4.448221 N 0.2248089 UNITS OF AREA 1 pound-force LB, lbf 4.448221 N 0.2248089 1 square inch sq in 6.4516 cm2 0.155000 1 poundal pdl 0.138255 N 7.23301 1 circular inch 5.0671 cm2 0.197352 1 kilogram-force kgf, kgp 9.80665 N 0.1019716 1 square foot = 144 sq in sq ft 929.03 cm2 1.0764 x 10-4 1 short ton-weight sh tn wt 8.896444 kN 0.1124045 1 square yard = 9 sq ft sq yd 0.83613 m2 1.19599 1 long ton-weight l tn wt 9.964015 kN 0.1003611 1 acre = 4 roods 4046.8
    [Show full text]
  • An Atomic Physics Perspective on the New Kilogram Defined by Planck's Constant
    An atomic physics perspective on the new kilogram defined by Planck’s constant (Wolfgang Ketterle and Alan O. Jamison, MIT) (Manuscript submitted to Physics Today) On May 20, the kilogram will no longer be defined by the artefact in Paris, but through the definition1 of Planck’s constant h=6.626 070 15*10-34 kg m2/s. This is the result of advances in metrology: The best two measurements of h, the Watt balance and the silicon spheres, have now reached an accuracy similar to the mass drift of the ur-kilogram in Paris over 130 years. At this point, the General Conference on Weights and Measures decided to use the precisely measured numerical value of h as the definition of h, which then defines the unit of the kilogram. But how can we now explain in simple terms what exactly one kilogram is? How do fixed numerical values of h, the speed of light c and the Cs hyperfine frequency νCs define the kilogram? In this article we give a simple conceptual picture of the new kilogram and relate it to the practical realizations of the kilogram. A similar change occurred in 1983 for the definition of the meter when the speed of light was defined to be 299 792 458 m/s. Since the second was the time required for 9 192 631 770 oscillations of hyperfine radiation from a cesium atom, defining the speed of light defined the meter as the distance travelled by light in 1/9192631770 of a second, or equivalently, as 9192631770/299792458 times the wavelength of the cesium hyperfine radiation.
    [Show full text]
  • Lesson 1: Length English Vs
    Lesson 1: Length English vs. Metric Units Which is longer? A. 1 mile or 1 kilometer B. 1 yard or 1 meter C. 1 inch or 1 centimeter English vs. Metric Units Which is longer? A. 1 mile or 1 kilometer 1 mile B. 1 yard or 1 meter C. 1 inch or 1 centimeter 1.6 kilometers English vs. Metric Units Which is longer? A. 1 mile or 1 kilometer 1 mile B. 1 yard or 1 meter C. 1 inch or 1 centimeter 1.6 kilometers 1 yard = 0.9444 meters English vs. Metric Units Which is longer? A. 1 mile or 1 kilometer 1 mile B. 1 yard or 1 meter C. 1 inch or 1 centimeter 1.6 kilometers 1 inch = 2.54 centimeters 1 yard = 0.9444 meters Metric Units The basic unit of length in the metric system in the meter and is represented by a lowercase m. Standard: The distance traveled by light in absolute vacuum in 1∕299,792,458 of a second. Metric Units 1 Kilometer (km) = 1000 meters 1 Meter = 100 Centimeters (cm) 1 Meter = 1000 Millimeters (mm) Which is larger? A. 1 meter or 105 centimeters C. 12 centimeters or 102 millimeters B. 4 kilometers or 4400 meters D. 1200 millimeters or 1 meter Measuring Length How many millimeters are in 1 centimeter? 1 centimeter = 10 millimeters What is the length of the line in centimeters? _______cm What is the length of the line in millimeters? _______mm What is the length of the line to the nearest centimeter? ________cm HINT: Round to the nearest centimeter – no decimals.
    [Show full text]
  • Hp Calculators
    hp calculators HP 9s Solving Problems Involving Unit Conversions Metric Units and Imperial Units Unit Conversions on the HP 9s Practice Working Problems Involving Conversions hp calculators HP 9s Solving Problems Involving Unit Conversions Metric units and Imperial units In the Longman Mathematics Handbook (York Press, 1990) the unit is defined as a conventional quantity that is used as a basis for mensuration, which is the study of giving numbers to quantities, that is to say, the act of measuring. There are two major system of units, namely the SI system (Système International d’Unités) and Imperial units. The latter are based on the pound and the yard, and, despite being replaced by the SI system, are still used in Britain and in the USA (with some differences). On the other hand, the SI system is a system based on these seven basic units: kilograms, meters, seconds, amperes, kelvins, moles and candelas. It is often referred to as the metric system, even though the SI system replaced this former system based on the meter and the gram. Metric units are therefore those based on the meter or belonging to a system of units that is based on the meter. Unit conversion is the change between two measurements of the same quantity in different units, and this task plays a lead role in science and engineering. Unit conversions on the HP 9s The HP 9s provides six functions for converting to and from metric units, namely in↔cm (~Ì), gal↔l (~Í), ºF↔ºC (~É), lb↔kg (~Ê), mmHg↔kpa (~Ë) and oz↔g (~Ý).
    [Show full text]
  • Chapter 5 Dimensional Analysis and Similarity
    Chapter 5 Dimensional Analysis and Similarity Motivation. In this chapter we discuss the planning, presentation, and interpretation of experimental data. We shall try to convince you that such data are best presented in dimensionless form. Experiments which might result in tables of output, or even mul- tiple volumes of tables, might be reduced to a single set of curves—or even a single curve—when suitably nondimensionalized. The technique for doing this is dimensional analysis. Chapter 3 presented gross control-volume balances of mass, momentum, and en- ergy which led to estimates of global parameters: mass flow, force, torque, total heat transfer. Chapter 4 presented infinitesimal balances which led to the basic partial dif- ferential equations of fluid flow and some particular solutions. These two chapters cov- ered analytical techniques, which are limited to fairly simple geometries and well- defined boundary conditions. Probably one-third of fluid-flow problems can be attacked in this analytical or theoretical manner. The other two-thirds of all fluid problems are too complex, both geometrically and physically, to be solved analytically. They must be tested by experiment. Their behav- ior is reported as experimental data. Such data are much more useful if they are ex- pressed in compact, economic form. Graphs are especially useful, since tabulated data cannot be absorbed, nor can the trends and rates of change be observed, by most en- gineering eyes. These are the motivations for dimensional analysis. The technique is traditional in fluid mechanics and is useful in all engineering and physical sciences, with notable uses also seen in the biological and social sciences.
    [Show full text]
  • Units and Magnitudes (Lecture Notes)
    physics 8.701 topic 2 Frank Wilczek Units and Magnitudes (lecture notes) This lecture has two parts. The first part is mainly a practical guide to the measurement units that dominate the particle physics literature, and culture. The second part is a quasi-philosophical discussion of deep issues around unit systems, including a comparison of atomic, particle ("strong") and Planck units. For a more extended, profound treatment of the second part issues, see arxiv.org/pdf/0708.4361v1.pdf . Because special relativity and quantum mechanics permeate modern particle physics, it is useful to employ units so that c = ħ = 1. In other words, we report velocities as multiples the speed of light c, and actions (or equivalently angular momenta) as multiples of the rationalized Planck's constant ħ, which is the original Planck constant h divided by 2π. 27 August 2013 physics 8.701 topic 2 Frank Wilczek In classical physics one usually keeps separate units for mass, length and time. I invite you to think about why! (I'll give you my take on it later.) To bring out the "dimensional" features of particle physics units without excess baggage, it is helpful to keep track of powers of mass M, length L, and time T without regard to magnitudes, in the form When these are both set equal to 1, the M, L, T system collapses to just one independent dimension. So we can - and usually do - consider everything as having the units of some power of mass. Thus for energy we have while for momentum 27 August 2013 physics 8.701 topic 2 Frank Wilczek and for length so that energy and momentum have the units of mass, while length has the units of inverse mass.
    [Show full text]
  • Distances in the Solar System Are Often Measured in Astronomical Units (AU). One Astronomical Unit Is Defined As the Distance from Earth to the Sun
    Distances in the solar system are often measured in astronomical units (AU). One astronomical unit is defined as the distance from Earth to the Sun. 1 AU equals about 150 million km (93 million miles). Table below shows the distance from the Sun to each planet in AU. The table shows how long it takes each planet to spin on its axis. It also shows how long it takes each planet to complete an orbit. Notice how slowly Venus rotates! A day on Venus is actually longer than a year on Venus! Distances to the Planets and Properties of Orbits Relative to Earth's Orbit Average Distance Length of Day (In Earth Length of Year (In Earth Planet from Sun (AU) Days) Years) Mercury 0.39 AU 56.84 days 0.24 years Venus 0.72 243.02 0.62 Earth 1.00 1.00 1.00 Mars 1.52 1.03 1.88 Jupiter 5.20 0.41 11.86 Saturn 9.54 0.43 29.46 Uranus 19.22 0.72 84.01 Neptune 30.06 0.67 164.8 The Role of Gravity Planets are held in their orbits by the force of gravity. What would happen without gravity? Imagine that you are swinging a ball on a string in a circular motion. Now let go of the string. The ball will fly away from you in a straight line. It was the string pulling on the ball that kept the ball moving in a circle. The motion of a planet is very similar to the ball on a strong.
    [Show full text]