Forestry Commission Booklet: Forest Mensuration Handbook
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Metric System: America Measures Up. 1979 Edition. INSTITUTION Naval Education and Training Command, Washington, D.C
DOCONENT RESUME ED 191 707 031 '926 AUTHOR Andersonv.Glen: Gallagher, Paul TITLE The Metric System: America Measures Up. 1979 Edition. INSTITUTION Naval Education and Training Command, Washington, D.C. REPORT NO NAVEDTRA,.475-01-00-79 PUB CATE 1 79 NOTE 101p. .AVAILABLE FROM Superintendent of Documents, U.S. Government Printing .Office, Washington, DC 2040Z (Stock Number 0507-LP-4.75-0010; No prise quoted). E'DES PRICE MF01/PC05 Plus Postage. DESCRIPTORS Cartoons; Decimal Fractions: Mathematical Concepts; *Mathematic Education: Mathem'atics Instruction,: Mathematics Materials; *Measurement; *Metric System; Postsecondary Education; *Resource Materials; *Science Education; Student Attitudes: *Textbooks; Visual Aids' ABSTRACT This training manual is designed to introduce and assist naval personnel it the conversion from theEnglish system of measurement to the metric system of measurement. The bcokteliswhat the "move to metrics" is all,about, and details why the changeto the metric system is necessary. Individual chaPtersare devoted to how the metric system will affect the average person, how the five basic units of the system work, and additional informationon technical applications of metric measurement. The publication alsocontains conversion tables, a glcssary of metric system terms,andguides proper usage in spelling, punctuation, and pronunciation, of the language of the metric, system. (MP) ************************************.******i**************************** * Reproductions supplied by EDRS are the best thatcan be made * * from -
Metric System Units of Length
Math 0300 METRIC SYSTEM UNITS OF LENGTH Þ To convert units of length in the metric system of measurement The basic unit of length in the metric system is the meter. All units of length in the metric system are derived from the meter. The prefix “centi-“means one hundredth. 1 centimeter=1 one-hundredth of a meter kilo- = 1000 1 kilometer (km) = 1000 meters (m) hecto- = 100 1 hectometer (hm) = 100 m deca- = 10 1 decameter (dam) = 10 m 1 meter (m) = 1 m deci- = 0.1 1 decimeter (dm) = 0.1 m centi- = 0.01 1 centimeter (cm) = 0.01 m milli- = 0.001 1 millimeter (mm) = 0.001 m Conversion between units of length in the metric system involves moving the decimal point to the right or to the left. Listing the units in order from largest to smallest will indicate how many places to move the decimal point and in which direction. Example 1: To convert 4200 cm to meters, write the units in order from largest to smallest. km hm dam m dm cm mm Converting cm to m requires moving 4 2 . 0 0 2 positions to the left. Move the decimal point the same number of places and in the same direction (to the left). So 4200 cm = 42.00 m A metric measurement involving two units is customarily written in terms of one unit. Convert the smaller unit to the larger unit and then add. Example 2: To convert 8 km 32 m to kilometers First convert 32 m to kilometers. km hm dam m dm cm mm Converting m to km requires moving 0 . -
Guide for the Use of the International System of Units (SI)
Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S. -
Measuring in Metric Units BEFORE Now WHY? You Used Metric Units
Measuring in Metric Units BEFORE Now WHY? You used metric units. You’ll measure and estimate So you can estimate the mass using metric units. of a bike, as in Ex. 20. Themetric system is a decimal system of measurement. The metric Word Watch system has units for length, mass, and capacity. metric system, p. 80 Length Themeter (m) is the basic unit of length in the metric system. length: meter, millimeter, centimeter, kilometer, Three other metric units of length are themillimeter (mm) , p. 80 centimeter (cm) , andkilometer (km) . mass: gram, milligram, kilogram, p. 81 You can use the following benchmarks to estimate length. capacity: liter, milliliter, kiloliter, p. 82 1 millimeter 1 centimeter 1 meter thickness of width of a large height of the a dime paper clip back of a chair 1 kilometer combined length of 9 football fields EXAMPLE 1 Using Metric Units of Length Estimate the length of the bandage by imagining paper clips laid next to it. Then measure the bandage with a metric ruler to check your estimate. 1 Estimate using paper clips. About 5 large paper clips fit next to the bandage, so it is about 5 centimeters long. ch O at ut! W 2 Measure using a ruler. A typical metric ruler allows you to measure Each centimeter is divided only to the nearest tenth of into tenths, so the bandage cm 12345 a centimeter. is 4.8 centimeters long. 80 Chapter 2 Decimal Operations Mass Mass is the amount of matter that an object has. The gram (g) is the basic metric unit of mass. -
Maße & Gewichte
Maße & Gewichte Die Geschichte der Maße und Gewichte Inhaltsverzeichnis 0.1 Geschichte der Maße und Gewichte .................................. 1 0.1.1 Überblick ........................................... 1 0.1.2 Längeneinheiten ....................................... 1 0.1.3 Gewichtseinheiten ...................................... 1 0.1.4 Beispiel der Vielfalt ..................................... 1 0.1.5 Einheiten für Zeit und Winkel ................................ 2 0.1.6 Angelsächsische Maßeinheiten ................................ 2 0.1.7 Das metrische System .................................... 3 0.1.8 Typografische Maßeinheiten ................................. 3 0.1.9 Listen von historischen Maßen und Gewichten ........................ 3 0.1.10 Gebräuchliche Masseeinheiten ................................ 4 0.1.11 Siehe auch .......................................... 4 0.1.12 Literatur ........................................... 4 0.1.13 Weblinks ........................................... 4 0.1.14 Einzelnachweise ....................................... 5 1 Die Anfänge des Messens in der Frühzeit des Menschen 6 1.1 Kognitive Archäologie ......................................... 6 1.1.1 Entstehung .......................................... 6 1.1.2 Kognitive Archäologie heute ................................. 6 1.1.3 Kognitive Archäologie im deutschsprachigen Raum ..................... 7 1.1.4 Kognitive Archäologie in der Diskussion ........................... 7 1.1.5 Literatur ........................................... 7 1.1.6 -
The International System of Units (SI)
NAT'L INST. OF STAND & TECH NIST National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce NIST Special Publication 330 2001 Edition The International System of Units (SI) 4. Barry N. Taylor, Editor r A o o L57 330 2oOI rhe National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization ... of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303. -
New Best Estimates of the Values of the Fundamental Constants
ing a vicious cycle in of the base units of our system of measurement, such which developing as the kilogram, metre, second, ampere, and kelvin— countries that lag in the base units of the SI, the International System of S&T capacity fall fur- units. The Consultative Committee for Units (of the ther behind, as International Committee on Weights and Measures, industrialized BIPM/CCU) advises the Comité International des nations with financial Poids et Mesures on defining (or redefining) each of resources and a the base units of the SI in terms of the fundamental trained scientific constants rather than in terms of material artefacts or work force exploit time intervals related to the rotation of the earth. new knowledge and Today, some, but not all, of the base units of the SI are technologies more defined in this way, and we are working on the quickly and inten- remainder. sively. These deficits can leave entire developing In December 2003, new best estimates of the fun- economies behind. And when nations need to damental constants were released. These are com- respond to diseases such as HIV or SARS, or make piled and published with the authority of a CODATA decisions about issues such as stem-cell research or committee that exists for this purpose, but in practice genetically modified foods, this lack of S&T infrastruc- they are produced (on this occasion) by Barry Taylor ture can breed unfounded fear and social discord. and Peter Mohr at the U.S. National Institute for The report asserts that there is no reason why, in an Standards and Technology (NIST), in Gaithersburg, era in which air travel and the Internet already tightly MD. -
The International System of Units (SI) - Conversion Factors For
NIST Special Publication 1038 The International System of Units (SI) – Conversion Factors for General Use Kenneth Butcher Linda Crown Elizabeth J. Gentry Weights and Measures Division Technology Services NIST Special Publication 1038 The International System of Units (SI) - Conversion Factors for General Use Editors: Kenneth S. Butcher Linda D. Crown Elizabeth J. Gentry Weights and Measures Division Carol Hockert, Chief Weights and Measures Division Technology Services National Institute of Standards and Technology May 2006 U.S. Department of Commerce Carlo M. Gutierrez, Secretary Technology Administration Robert Cresanti, Under Secretary of Commerce for Technology National Institute of Standards and Technology William Jeffrey, Director Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. National Institute of Standards and Technology Special Publications 1038 Natl. Inst. Stand. Technol. Spec. Pub. 1038, 24 pages (May 2006) Available through NIST Weights and Measures Division STOP 2600 Gaithersburg, MD 20899-2600 Phone: (301) 975-4004 — Fax: (301) 926-0647 Internet: www.nist.gov/owm or www.nist.gov/metric TABLE OF CONTENTS FOREWORD.................................................................................................................................................................v -
The Case of the International Bureau of Weights and Measures (BIPM) the Case of The
International Regulatory Co-operation and International Regulatory Co-operation International Organisations and International Organisations The Case of the International Bureau of Weights and Measures (BIPM) The Case of the The International Bureau of Weights and Measures (BIPM) is the intergovernmental organisation through which Member States act together on matters related to measurement International Bureau of science and measurement standards. Together with the wider metrology community, as well as other strategic partners, the BIPM ensures that the measurement results from Weights and Measures different states are comparable, mutually trusted and accepted. The BIPM provides a forum for the creation and worldwide adoption of common rules of measurement. The international system of measurement that the BIPM co-ordinates worldwide underpins the (BIPM) benefits of international regulatory co-operation (IRC): increased trade and investment flows and additional GDP points; gains in administrative efficiency and cost savings for governments, businesses and citizens; and societal benefits such as improved safety and strengthened environmental sustainability. Accurate measurements are specifically necessary to regulators and legislators for establishing and enforcing regulatory limits. This case study describes how the BIPM supports international regulatory co-operation (IRC) – its institutional context, its main characteristics, its impacts, successes and challenges. Contents The context of the regulatory co-operation Main characteristics of regulatory co-operation in the context of the BIPM Quality assurance, monitoring and evaluation mechanisms Assessment of the impact and successes of regulatory co-operation through the BIPM www.oecd.org/gov/regulatory-policy/irc.htm International Regulatory Co-operation and International Organisations The Case of the International Bureau of Weights and Measures (BIPM) By Juan (Ada) Cai PUBE 2 This work is published under the responsibility of the OECD Secretariat and the BIPM. -
The Importance of MEASUREMENT
The Importance of MEASUREMENT Scientists use many skills as they investigate the world around them. They make observations by gathering information with their senses. Some observations are simple. For example, a simple observation would be figuring out the color or texture of an object. However, if scientists want to know more about a substance, they may need to take measurements. Measurement is perhaps one of the most fundamental concepts in science. Without the ability to measure, it would be difficult for scientists to conduct experiments or form theories. Not only is measurement important in science and the chemical industry, it is also essential in farming, engineering, construction, manufacturing, commerce, and numerous other occupations and activities. The word “measurement” comes from the Greek word “metron,” which means “limited proportion.” Measurement is a technique in which properties of an object are determined by comparing them to a standard. Measurements require tools and provide scientists with a quantity. A quantity describes how much of something there is or how many there are. A good example of measurement is using a ruler to find the length of an object. The object is whatever you are measuring, the property you are trying to determine is the object’s length, and the standard you are comparing the object’s length to is the ruler. In general, scientists use a system of measurement still commonly referred to as the “metric system.” The metric system was developed in France in the 1790s and was the first standardized system of measurement. Before that time, people used a variety of measurement systems. -
The International System of Units (SI)
The International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 330 2008 Edition Barry N. Taylor and Ambler Thompson, Editors NIST SPECIAL PUBLICATION 330 2008 EDITION THE INTERNATIONAL SYSTEM OF UNITS (SI) Editors: Barry N. Taylor Physics Laboratory Ambler Thompson Technology Services National Institute of Standards and Technology Gaithersburg, MD 20899 United States version of the English text of the eighth edition (2006) of the International Bureau of Weights and Measures publication Le Système International d’ Unités (SI) (Supersedes NIST Special Publication 330, 2001 Edition) Issued March 2008 U.S. DEPARTMENT OF COMMERCE, Carlos M. Gutierrez, Secretary NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, James Turner, Acting Director National Institute of Standards and Technology Special Publication 330, 2008 Edition Natl. Inst. Stand. Technol. Spec. Pub. 330, 2008 Ed., 96 pages (March 2008) CODEN: NSPUE2 WASHINGTON 2008 Foreword The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant system used in science, the SI is rapidly becoming the dominant measurement system used in international commerce. In recognition of this fact and the increasing global nature of the marketplace, the Omnibus Trade and Competitiveness Act of 1988, which changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S. industry increase its competitiveness, designates “the metric system of measurement as the preferred system of weights and measures for United States trade and commerce.” The definitive international reference on the SI is a booklet published by the International Bureau of Weights and Measures (BIPM, Bureau International des Poids et Mesures) and often referred to as the BIPM SI Brochure. -
Three Musical Interpretations of Le Corbusier's Modulor
Radoslav Zuk Research School of Architecture Three Musical Interpretations of Le McGill University 815 Sherbrooke Street West Corbusier’s Modulor Montreal QC, H3A 2K6 Abstract. The frequent evocative comparisons between music CANADA and architecture in the text of the Modulor may explain why Le [email protected] Corbusier, in this constant search for ordering principles, Keywords: architecture, considered his proportional sequence to be equivalent to a music, proportions, Le musical scale. Yet, since the dimensional ratios of Le Corbusier, Modulor Corbusier’s ‘scale’ are much larger than the pitch ratios of the latter, the Modulor comes much closer to another structural element of music, that of harmony. By adjusting the Modulor ratios to the corresponding ratios of musical chords, three variants of a “musical” Modulor can be generated – Chromatic, Major and Minor. If, in addition, the two sets of the male- based Modulor dimensions are replaced with a universal female-male set, the inherently complex Modulor numbers become simpler and clear. The Master’s intention of producing a rational and practical system of proportions, which is related to both the scale of the human being, and to the order inherent in the physical nature of sound, can thus be realized. Introduction It is commonly known that in his mature works Le Corbusier applied the Modulor, a system of architectural proportions, which he had developed in the 1940s over a period of some seven years [Le Corbusier 1954 (2000): 83]. What is probably not as well known is the role that music may have played in this development. The Modulor constitutes a mathematical structure of specific interrelated dimensional ratios.