Instructional Materials; *Metric System; *National Programs; Teacher Education; Vocational Education

Total Page:16

File Type:pdf, Size:1020Kb

Instructional Materials; *Metric System; *National Programs; Teacher Education; Vocational Education LAAA&V.&WWWM OVeTTMW ED 055 890 SE 012 591 TITLE U.S. Metric Study Interim Report- Education. INSTITUTION National Bureau of Standards (D0C), Washington, D.C. REPORT NO NBS-SP-345 6 PUB DATE Jul 71 NOTE 210p.; aLxth in a series of interim reports prepared for the Congress of the United States AVAILABLE FROM Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Catalog No. C 13.10:345-6 $1.75) EDRS PRICE MF-$0.65 HC-$9.67 DESCRIPTORS Curriculum Developmen ; Educational Attitudes; Educational Change; Educational Strategies; Instructional Materials; *Metric System; *National Programs; Teacher Education; Vocational Education ABSTRACT This report-is another in the .series being .prepared on the numerous investigations comprising the U. S. Metric Study, by the U. S. National Bureau of Standards. This report concerns tho effects of increasing worldwide use of the metric system on-education in the United States. Its purpose is to present the.educational; -advantages and disadvantages of both-the metric and the customary systems. of units; to determine the current usage.of metric, measurements in schools, and trends in that usage; to find the ways in:which education would have to .change as the-U. S. accommodates to increased worldwide use of the-metric system, under a planned national progra or withoutsuch a program; and to eStimate the costs . of the changes; and to make -recommendations for:ways_ in which to take best-Advantage .of the changes. It is concluded thatithe..advantages of going.metric. in education are significant:but notoverwhelming. On the'other hand, the costs are not prohibitive and cam -be .met largely- out of normal expenditures.,A conversion-period of 10 years seems to bea Close- to the optimum, bat national leadership andsense of purpose -would .be.-needed to completely benefit from metric conversion. (Author/TS) U.S. DEPARTMENTOF HEALTH, EDUCATION & WELFARE oFFICe Or EDUCATION THIS DOCUMENT HASSEEN REPRo- UNITED STATES mica) EXACTLY ASREGEIVED FROM THE PERSON OR ORGANIZATION EPARTMENT OF ORIG- INATING IT. POINTSOF Iiipw OR OPIN- :OMMERCE IONS sTATED DONOT NECESSARILY REPRESENT OFFICIAL 11BLICATION OFFICE OE FOU1 CATION POSITION ORPOLICY .0041 Of U.S. METRIC STUDY INTERIM REPORT , ,r.71 .;" U.S. &ea PARTMENT OF .:OMMERCE National Bureau of Standards S SP 345,6 U.S. METRIC SUBSTUDY REPORTS The results of substud es of the U.S. Metric Study, while being evaluated for the preparation of a comprehensive report to the Congress, are being pnblished in the interim as a series of N BS Special Publications. The titles of the individual reports are listed below. REPORTS ON SUBSTUDIES NBS SP345-1: International Standards (i sued December 1970. SD Catalog No. C13.10:345-1, Price $1.25) NBS SP345-2: Federal Government: Civilian Agencies (issued July 1971, SD Catalog No. C13.10:345-2, price $2.25) NBS SP345- Commercial Weights and Measures (issued July 1971, SD Catalog No. C13.10-345-3, price $1.00) NBS SP345-4: The Manufacturing industry (issued July 1971, SD Catalog No. C13.10:345-4, price $1.25) N BS SP345-5: Nonrnanufacturin,-; BusineSses (in press) N BS SP345-6: Education (this publication) NBS SP345-7: The Consumer in press) N BS SP345-8: International Trade (in press) NBS SP345-9: Department of Defense (issued July 1971, SD Cata- log No. C13.10:345-9, price $1.25) NBS SP345-10:A History of the Metric System Controversy in the United States (in press) NBS SP345-11:Engineering Standards (issued July 1971, SD Cata- log No. C13.10:345-11, price $2.00) N BS SP345- Testimony of Nationally Representative Groups (issued July 1971, SD Catalog No. C13.10:345-12, price $1.50) .-,COMPREENSIVE REPORT.. O.N- THEU.S. :METRi_ STUDY --.TO.ber-ptiblished in August 1971 Those publications with catalog numbers have already been issued, and may be purchased from the Superintendent of Documents, Government Printing Office, Washington, D.C. 20402 for the prices indicated. Add one- fourth of the pUrchase price if the publication ordered is to be sent to a foreign address. Be sure to include the SD Catalog number with your order. 1 US. METRIC STUDY INTERIM R.O'ORT EDUCATION Sixth in a series of reports prepared for the Congress METRIC-.STUDY Daniel V. De Sinionei- Director National Btireati Of. Standards Special Pnblication 345-6 UNITED STATES DEPARTMENT OF COMMERCE MAURICE H. STAN'S, Secretary NATIONAL BUREAU OF STANDARDS -LEWIS -M. BRANSCOMB, DireCtor Nat. Rur. Stand. (U.S. ). Spec. Publ. 45-6,216 pages (July 1971) CODEN: XN BSA Issued July.1971, ale by the Superintendent of Documents. U.S. !Government Printing Office. Washington. D.C. 20402 (Order by SD Catalog No. C 13.10:345-6), PP= 51.75 Stock Number 0303-0858 LETTER OF TRANSMITTAL THE HbNORABLE PRESIDENT OF THE SENATE THE HONORABLE SPEAKER OF THE HOUSE OF REPRESENTATIVES SIRS: I have the honor to present the sixth in the series of interim reports stemming from the U.S. Metric Study, prepared by the National Bureau of Standards. This Study was authorized by Public Law 90-472 to reduce the many un- certainties concerning the metric issue and to provide a better basis upon which the Congress may evaluate and resolve it. I shall make a final report to the Congress on this Study in August 1971. In the meantime, the data and opinions contained in this interim report ap-1 being evaluated by the Study team at the National Bureau of Standards. MY final report to you will reflect this evaluation. Respectfully submitted, Secre ary of Commerce Enclosure LETTER OF TRANSMITTAL Honorable Maurice H. Stans Secretary of Commerce Dear Mr. Secretary: I have the honor to transmit to you another interim report of the U.S. Met- nc Study, which is being conducted at the National Bureau of Standards at your request and in aecordanee with the Metric Study Act of 1968. The Study is exploring the subjects assigned to it with great care. We have tried to reach every relevant sector of the society to elicit their views on the metric issue and their estimates of the costs and benefits called for in the Metric Study Act. Moreover, all of these sectors were given an opportunity to testify in the extensive series of Metric Study Conferences that were held last year. On the basis of all that we have been able to learn from these conferences, as well as the numerous surveys and investigations, a final report will be made to you before August 1971 for your evaluation and decision as to any recommendations that you may wish to make to the Congress. The attached interim report includes data and other opinions that are still being evaluated by us to determine their relationship and significance to all of the other information that has been elicited by the Study. All of these evaluations will be reflected in the final report. Sincerely, .12A. Lewis M. Branscomb, Director National Bureau of Standards FOREWORD This report concerns the U.S. educational system. No other sector is so nearly unanimous in its endorsement of the metric system than is education. This report examines the role that education would play, as well as the problems and opportunities it would experience, in a national change to met- ric. Reports covering other substudies of the U.S. Metric Study are listed on the inside front cover. All of these, including this report, are under evalua- tion. Hence, they are published without prejudice to the comprehensive re- port on the entire U.S. Metric Study, which will be sent to the Congress by the Secretary of Commerce in August of 1971. This report was prepared by the Education Development Center (EDC) of Newton, Massachusetts. The project at EDC was directed by Dr. Berol L. Robinson, under the general guidance of a steering committee composed of Dr. Jerrold R. Zacharias, Acting President of EDC ; Kevin H. Smith, Ex- ecutive Vice President of EDC; Dr. Charles Brown of the Ford Foundation; and Dr. Bobby J. Woodruff, Ridgewood, New Jersey, High School. Profes- sor N. H. Frank of the Massachusetts Institute of Technology and Carlyle E. Maw, Jr., of Harvard University and the University of Chicago served as senior consultants to the project. Others who assisted in the project were Mrs. Cheryl Doyle, Mrs. Wendy Baron and Miss Kathleen Ennis of the Education Development Center, and Mr. Bruce D. Rothrock of the Na- tional Bureau of Standards. In addition, many educational institutions and organizations were visited to gather data for this report, and well over a hundred persons made con- tributions to the work of the Education Development Center, for which it is grateful. In this as in all aspec,s of the U.S. Metric Study, the program has benefited from the independent judgment and thoughtful counsel of its ad- visory panel and the many other organizations groups, and committees that have participated in the Study. Daniel V. De Simone, Director U.S. Metric Study TABLE OF CONTENTS Page Letters of Transmittal iii, iv Foreword Executive Summary 1 Chapter I 5 Introduction 5 Summary of Current Usage and Trends in Use 7 Educational Advantages and Disadvantages of the Customary 8 and Metric Systems of Measurement Chapter II 10 Bilingualism in Measurement Language 10 The "Costs" of Not Going Metric and Recommendations 11 Costs and Benefits of Going Metric and Recomi nendations 13 Chapter IIISome General Considerations 17 Methods 17 Metrication in Education in the United Kingdon 18 Occupational Education 20 Chapter IVPresent Status and Problems of Transitvn 21 A Curriculum Materials, and Testing 21 Textbooks 21 Publishing and Purchasing Patterns 21 Elementary Mathematics 23 Secondary School and College Mathe 29 Vocational Mathematics 30 Elementary Science 31 Intermediate Science 36 Secondary aiid College Science Going Metric in the Social Sciences 40 Books for Use in Occupational Ediication, Secondary 41 and Post-Secondary School Libraries, Works of Reference Nonprint Materials Testing 4.
Recommended publications
  • The Metric System: America Measures Up. 1979 Edition. INSTITUTION Naval Education and Training Command, Washington, D.C
    DOCONENT RESUME ED 191 707 031 '926 AUTHOR Andersonv.Glen: Gallagher, Paul TITLE The Metric System: America Measures Up. 1979 Edition. INSTITUTION Naval Education and Training Command, Washington, D.C. REPORT NO NAVEDTRA,.475-01-00-79 PUB CATE 1 79 NOTE 101p. .AVAILABLE FROM Superintendent of Documents, U.S. Government Printing .Office, Washington, DC 2040Z (Stock Number 0507-LP-4.75-0010; No prise quoted). E'DES PRICE MF01/PC05 Plus Postage. DESCRIPTORS Cartoons; Decimal Fractions: Mathematical Concepts; *Mathematic Education: Mathem'atics Instruction,: Mathematics Materials; *Measurement; *Metric System; Postsecondary Education; *Resource Materials; *Science Education; Student Attitudes: *Textbooks; Visual Aids' ABSTRACT This training manual is designed to introduce and assist naval personnel it the conversion from theEnglish system of measurement to the metric system of measurement. The bcokteliswhat the "move to metrics" is all,about, and details why the changeto the metric system is necessary. Individual chaPtersare devoted to how the metric system will affect the average person, how the five basic units of the system work, and additional informationon technical applications of metric measurement. The publication alsocontains conversion tables, a glcssary of metric system terms,andguides proper usage in spelling, punctuation, and pronunciation, of the language of the metric, system. (MP) ************************************.******i**************************** * Reproductions supplied by EDRS are the best thatcan be made * * from
    [Show full text]
  • Metric System Units of Length
    Math 0300 METRIC SYSTEM UNITS OF LENGTH Þ To convert units of length in the metric system of measurement The basic unit of length in the metric system is the meter. All units of length in the metric system are derived from the meter. The prefix “centi-“means one hundredth. 1 centimeter=1 one-hundredth of a meter kilo- = 1000 1 kilometer (km) = 1000 meters (m) hecto- = 100 1 hectometer (hm) = 100 m deca- = 10 1 decameter (dam) = 10 m 1 meter (m) = 1 m deci- = 0.1 1 decimeter (dm) = 0.1 m centi- = 0.01 1 centimeter (cm) = 0.01 m milli- = 0.001 1 millimeter (mm) = 0.001 m Conversion between units of length in the metric system involves moving the decimal point to the right or to the left. Listing the units in order from largest to smallest will indicate how many places to move the decimal point and in which direction. Example 1: To convert 4200 cm to meters, write the units in order from largest to smallest. km hm dam m dm cm mm Converting cm to m requires moving 4 2 . 0 0 2 positions to the left. Move the decimal point the same number of places and in the same direction (to the left). So 4200 cm = 42.00 m A metric measurement involving two units is customarily written in terms of one unit. Convert the smaller unit to the larger unit and then add. Example 2: To convert 8 km 32 m to kilometers First convert 32 m to kilometers. km hm dam m dm cm mm Converting m to km requires moving 0 .
    [Show full text]
  • CAPACITY One Gallon Split Into Fourths Is Four Quarts
    CAPACITY One gallon split into fourths is four quarts. Take that and divide by two and you got a pint. NAME: Split that pint up into halves and make a cup, DATE: and that cup will fit eight fluid ounces inside of it. One gallon is four quarts (or eight pints, or sixteen cups)! One quart is two pints (or four cups, or thirty-two fluid ounces)! WATCH VIDEO One pint is two cups (or sixteen fluid ounces)! One cup is eight fluid ounces! A gallon of milk split in fourths makes four quarts. Split a quart of milk in half; then a pint is what you’ll have, which can make two cups you see often when you drink your school milk carton. If you can drink the milk in eight sips, each is about an ounce going through your lips! Volume is a word that’s familiar, and capacity and volume are similar; and though it’s easy to assume, capacity’s not exactly volume. Capacity’s how much something can hold; the amount is always the same. Volume’s the measure of what’s inside, and that amount can change. Logo 1 www.numberock.com CAPACITY One gallon split into fourths is four . Take that and divide by two and you got a . NAME: Split that pint up into halves and make a , DATE: and that cup will fit eight inside of it. One gallon is quarts (or 8 pints, or 16 cups)! One quart is pints (or four cups, or thirty-two fluid ounces)! One pint is cups (or sixteen fluid ounces)! One cup is fluid ounces! A of milk split in fourths makes four quarts.
    [Show full text]
  • Forestry Commission Booklet: Forest Mensuration Handbook
    Forestry Commission ARCHIVE Forest Mensuration Handbook Forestry Commission Booklet 39 KEY TO PROCEDURES (weight) (weight) page 36 page 36 STANDING TIMBER STANDS SINGLE TREES Procedure 7 page 44 SALE INVENTORY PIECE-WORK THINNING Procedure 8 VALUATION PAYMENT CONTROL page 65 Procedure 9 Procedure 10 Procedure 11 page 81 page 108 page 114 N.B. See page 14 for further details Forestry Commission Booklet No. 39 FOREST MENSURATION HANDBOOK by G. J. Hamilton, m sc FORESTRY COMMISSION London: Her Majesty’s Stationery Office © Crown copyright 1975 First published 1975 Third impression 1988 ISBN 0 11 710023 4 ODC 5:(021) K eyw ords: Forestry, Mensuration ACKNOWLEDGEMENTS The production of the various tables and charts contained in this publication has been very much a team effort by members of the Mensuration Section of the Forestry Commission’s Research & Development Division. J. M. Christie has been largely responsible for initiating and co-ordinating the development and production of the tables and charts. A. C. Miller undertook most of the computer programming required to produce the tables and was responsible for establishing some formheight/top height and tariff number/top height relationships, and for development work in connection with assortment tables and the measurement of stacked timber. R. O. Hendrie prepared the single tree tariff charts and analysed various data concerning timber density, stacked timber, and bark. M. D. Witts established most of the form height/top height and tariff number/top height relationships and investigated bark thickness in the major conifers. Assistance in checking data was given by Miss D. Porchet, Mrs N.
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • U.S. Metric Study Interim Report
    U.S. METRIC STUDY INTERIM REPORT THE CONSUMER imHHMHPHr U.S. METRIC SUBSTUDY REPORTS The results of substudies of the U.S. Metric Study, while being evaluated for the preparation of a comprehensive report to the Congress, are being published in the interim as a series of NBS Special Publications. The titles of the individual reports are listed below. REPORTS ON SUBSTUDIES NBS SP345-I: International Standards (issued December 1970, SD Catalog No. CI 3. 10:345-1, Price $1.25) NBS SP345-2: Federal Government: Civilian Agencies (issued July 1971, SD Catalog No. CI 3. 10:345-2, price $2.25) NBS SP345-3: Commercial Weights and Measures (issued July 1971, SD Catalog No. CI 3. 10:345-3, price $1.00) NBS SP345-4: The Manufacturing Industry (issued July 1971, SD Catalog No. C 1 3. 10:345-4, price $ 1 .25) NBS SP345-5 Nonmanufacturing Businesses (in press) NBS SP345-6 Education (in press) NBS SP345-7 The Consumer (this publication) NBS SP345-8 International Trade (in press) NBS SP345-9 Department of Defense (issued July 1971, SD Catalog No. C 1 3. 1 0:345-9, price $ 1 .25) NBS SP345-10: A History of the Metric System Controversy in the United States (in press) NBSSP345-11: Engineering Standards (issued July 1971, SD Catalog No. C 1 3. 1 0:345-1 1 , price $2.00) NBSSP345-12: Testimony of Nationally Representative Groups (issued July 1971, SD Catalog No. C13. 10:345-12, price $1.50) COMPREHENSIVE REPORT ON THE U.S. METRIC STUDY NBS SP345: To be published in August 1971 Those publications with catalog numbers have already been issued, and may be purchased from the Superintendent of Documents, Government Printing Office, Washington, D.C.
    [Show full text]
  • Measuring in Metric Units BEFORE Now WHY? You Used Metric Units
    Measuring in Metric Units BEFORE Now WHY? You used metric units. You’ll measure and estimate So you can estimate the mass using metric units. of a bike, as in Ex. 20. Themetric system is a decimal system of measurement. The metric Word Watch system has units for length, mass, and capacity. metric system, p. 80 Length Themeter (m) is the basic unit of length in the metric system. length: meter, millimeter, centimeter, kilometer, Three other metric units of length are themillimeter (mm) , p. 80 centimeter (cm) , andkilometer (km) . mass: gram, milligram, kilogram, p. 81 You can use the following benchmarks to estimate length. capacity: liter, milliliter, kiloliter, p. 82 1 millimeter 1 centimeter 1 meter thickness of width of a large height of the a dime paper clip back of a chair 1 kilometer combined length of 9 football fields EXAMPLE 1 Using Metric Units of Length Estimate the length of the bandage by imagining paper clips laid next to it. Then measure the bandage with a metric ruler to check your estimate. 1 Estimate using paper clips. About 5 large paper clips fit next to the bandage, so it is about 5 centimeters long. ch O at ut! W 2 Measure using a ruler. A typical metric ruler allows you to measure Each centimeter is divided only to the nearest tenth of into tenths, so the bandage cm 12345 a centimeter. is 4.8 centimeters long. 80 Chapter 2 Decimal Operations Mass Mass is the amount of matter that an object has. The gram (g) is the basic metric unit of mass.
    [Show full text]
  • Whose- U&XD0(4 Rr ? S. Pei^ Usow
    whose- U&XD 0(4 rr ? ¿ 5 S. p e i^ usow OST of us have invented a country, oerhaps a philosoph­ ically constructed "Republic" or "Utopia", perhaps just a fictional world of our own. The country we invent will reflect our thoughts, just as the 'Lord or the Rings' and 'The Silmarillion' reveal Tolkien's ideas and ideals. Inventing a country - or what is equivalent - writing a fantasy or science-fiction story, creates certain problems. In writing a fantasy story we need to invent a certain amount. A few 'alien' versions of everyday necessities - such as currency or weights and measures - are sufficient to tell the reader that the story is not an everyday one; but invent too many words or new ideas and we risk pushing our story too far away from our audience for them to treat it as anything more than 'just' fiction. In this article I wish to look at one aspect of the fantasy world (or secondary world, if you prefer): the metrology, and its role in the 'Lord of the Rings' in particular. Why metrology? Perhaps for no better reason than that metrication is upon us. For better or for worse our world is being changed, like it or not; it is not simply another necessary change; it creates a barrier between the past and the future. Fantasy writers sometimes mention metrology; Burroughs., on Barsoom, provided footnotes on the measure used on Mars, on the time-units, and also on the measures on Venus. Not all writers go to this extreme; some mention time-units to make the point that a non-decimal system is being used, others may say nothing at all, taking it for granted that the metric system is in uni­ versal use.
    [Show full text]
  • Weights and Measures Standards of the United States—A Brief History (1963), by Lewis V
    WEIGHTS and MEASURES STANDARDS OF THE UMIT a brief history U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS NBS Special Publication 447 WEIGHTS and MEASURES STANDARDS OF THE TP ii 2ri\ ii iEa <2 ^r/V C II llinCAM NBS Special Publication 447 Originally Issued October 1963 Updated March 1976 For sale by the Superintendent of Documents, U.S. Government Printing Office Wash., D.C. 20402. Price $1; (Add 25 percent additional for other than U.S. mailing). Stock No. 003-003-01654-3 Library of Congress Catalog Card Number: 76-600055 Foreword "Weights and Measures," said John Quincy Adams in 1821, "may be ranked among the necessaries of life to every individual of human society." That sentiment, so appropriate to the agrarian past, is even more appropriate to the technology and commerce of today. The order that we enjoy, the confidence we place in weighing and measuring, is in large part due to the measure- ment standards that have been established. This publication, a reprinting and updating of an earlier publication, provides detailed information on the origin of our standards for mass and length. Ernest Ambler Acting Director iii Preface to 1976 Edition Two publications of the National Bureau of Standards, now out of print, that deal with weights and measures have had widespread use and are still in demand. The publications are NBS Circular 593, The Federal Basis for Weights and Measures (1958), by Ralph W. Smith, and NBS Miscellaneous Publication 247, Weights and Measures Standards of the United States—a Brief History (1963), by Lewis V.
    [Show full text]
  • Imperial Units
    Imperial units From Wikipedia, the free encyclopedia Jump to: navigation, search This article is about the post-1824 measures used in the British Empire and countries in the British sphere of influence. For the units used in England before 1824, see English units. For the system of weight, see Avoirdupois. For United States customary units, see Customary units . Imperial units or the imperial system is a system of units, first defined in the British Weights and Measures Act of 1824, later refined (until 1959) and reduced. The system came into official use across the British Empire. By the late 20th century most nations of the former empire had officially adopted the metric system as their main system of measurement. The former Weights and Measures office in Seven Sisters, London. Contents [hide] • 1 Relation to other systems • 2 Units ○ 2.1 Length ○ 2.2 Area ○ 2.3 Volume 2.3.1 British apothecaries ' volume measures ○ 2.4 Mass • 3 Current use of imperial units ○ 3.1 United Kingdom ○ 3.2 Canada ○ 3.3 Australia ○ 3.4 Republic of Ireland ○ 3.5 Other countries • 4 See also • 5 References • 6 External links [edit] Relation to other systems The imperial system is one of many systems of English or foot-pound-second units, so named because of the base units of length, mass and time. Although most of the units are defined in more than one system, some subsidiary units were used to a much greater extent, or for different purposes, in one area rather than the other. The distinctions between these systems are often not drawn precisely.
    [Show full text]
  • Standards and Units: a View from the President of the Royal Society of New South Wales
    Journal & Proceedings of the Royal Society of New South Wales, vol. 150, part 2, 2017, pp. 143–151. ISSN 0035-9173/17/020143-09 Standards and units: a view from the President of the Royal Society of New South Wales D. Brynn Hibbert The Royal Society of New South Wales, UNSW Sydney, and The International Union of Pure and Applied Chemistry Email: [email protected] Abstract As the Royal Society of New South Wales continues to grow in numbers and influence, the retiring president reflects on the achievements of the Society in the 21st century and describes the impending changes in the International System of Units. Scientific debates that have far reaching social effects should be the province of an Enlightenment society such as the RSNSW. Introduction solved by science alone. Our own Society t may be a long bow, but the changes in embraces “science literature philosophy and Ithe definitions of units used across the art” and we see with increasing clarity that world that have been decades in the making, our business often spans all these fields. As might have resonances in the resurgence in we shall learn the choice of units with which the fortunes of the RSNSW in the 21st cen- to measure our world is driven by science, tury. First, we have a system of units tracing philosophy, history and a large measure of back to the nineteenth century that starts social acceptability, not to mention the occa- with little traction in the world but eventu- sional forearm of a Pharaoh. ally becomes the bedrock of science, trade, Measurement health, indeed any measurement-based activ- ity.
    [Show full text]
  • Imperial Units of Measure
    Imperial Units of Measure So far we have looked at metric units of measure, but you may have spotted that these are not the only units of measurement that we use. For example, you might buy your milk in pints, or measure a journey in miles. These are some examples of imperial units of measure, which we need to be familiar with. What is the imperial system? Do not panic! You will not be expected to remember the measurements needed to convert between metric and Take a look at this video to start your imperial units. You will always be given the numbers you investigation. need to convert. https://www.bbc.co.uk/bitesize/topics/z4nsgk7/ articles/zwbndxs See if you can find these units of measure being used anywhere around your house. You will spot this symbol being used when looking at imperial and metric measures. This symbol means ‘approximately’ or ‘approximately equal to’. It is hard to be exact when using two different systems of measurement and we often use rounding to make the calculations easier. Using Imperial Units of Measure Let’s start by looking at length I’m going to use a bar model to help me solve these conversions. If I know that 1 inch is approximately 2.5 centimetres, I think I’m going to need to be counting up in 2.5 10 cm 2.5 2.5 2.5 2.5 I have used the conversion given to me, to work out that 4inches is approximately 10cm. I know that 16 is 4 lots of 4 (4x4) So, I need to know what 4 lots of 10 is (4x10) 16 inches is approximately 40cm 15inches is 1 inch less than 16.
    [Show full text]