Chapter 5 Dimensional Analysis and Similarity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Convection Heat Transfer
Convection Heat Transfer Heat transfer from a solid to the surrounding fluid Consider fluid motion Recall flow of water in a pipe Thermal Boundary Layer • A temperature profile similar to velocity profile. Temperature of pipe surface is kept constant. At the end of the thermal entry region, the boundary layer extends to the center of the pipe. Therefore, two boundary layers: hydrodynamic boundary layer and a thermal boundary layer. Analytical treatment is beyond the scope of this course. Instead we will use an empirical approach. Drawback of empirical approach: need to collect large amount of data. Reynolds Number: Nusselt Number: it is the dimensionless form of convective heat transfer coefficient. Consider a layer of fluid as shown If the fluid is stationary, then And Dividing Replacing l with a more general term for dimension, called the characteristic dimension, dc, we get hd N ≡ c Nu k Nusselt number is the enhancement in the rate of heat transfer caused by convection over the conduction mode. If NNu =1, then there is no improvement of heat transfer by convection over conduction. On the other hand, if NNu =10, then rate of convective heat transfer is 10 times the rate of heat transfer if the fluid was stagnant. Prandtl Number: It describes the thickness of the hydrodynamic boundary layer compared with the thermal boundary layer. It is the ratio between the molecular diffusivity of momentum to the molecular diffusivity of heat. kinematic viscosity υ N == Pr thermal diffusivity α μcp N = Pr k If NPr =1 then the thickness of the hydrodynamic and thermal boundary layers will be the same. -
Che 253M Experiment No. 2 COMPRESSIBLE GAS FLOW
Rev. 8/15 AD/GW ChE 253M Experiment No. 2 COMPRESSIBLE GAS FLOW The objective of this experiment is to familiarize the student with methods for measurement of compressible gas flow and to study gas flow under subsonic and supersonic flow conditions. The experiment is divided into three distinct parts: (1) Calibration and determination of the critical pressure ratio for a critical flow nozzle under supersonic flow conditions (2) Calculation of the discharge coefficient and Reynolds number for an orifice under subsonic (non- choked) flow conditions and (3) Determination of the orifice constants and mass discharge from a pressurized tank in a dynamic bleed down experiment under (choked) flow conditions. The experimental set up consists of a 100 psig air source branched into two manifolds: the first used for parts (1) and (2) and the second for part (3). The first manifold contains a critical flow nozzle, a NIST-calibrated in-line digital mass flow meter, and an orifice meter, all connected in series with copper piping. The second manifold contains a strain-gauge pressure transducer and a stainless steel tank, which can be pressurized and subsequently bled via a number of attached orifices. A number of NIST-calibrated digital hand held manometers are also used for measuring pressure in all 3 parts of this experiment. Assorted pressure regulators, manual valves, and pressure gauges are present on both manifolds and you are expected to familiarize yourself with the process flow, and know how to operate them to carry out the experiment. A process flow diagram plus handouts outlining the theory of operation of these devices are attached. -
Laws of Similarity in Fluid Mechanics 21
Laws of similarity in fluid mechanics B. Weigand1 & V. Simon2 1Institut für Thermodynamik der Luft- und Raumfahrt (ITLR), Universität Stuttgart, Germany. 2Isringhausen GmbH & Co KG, Lemgo, Germany. Abstract All processes, in nature as well as in technical systems, can be described by fundamental equations—the conservation equations. These equations can be derived using conservation princi- ples and have to be solved for the situation under consideration. This can be done without explicitly investigating the dimensions of the quantities involved. However, an important consideration in all equations used in fluid mechanics and thermodynamics is dimensional homogeneity. One can use the idea of dimensional consistency in order to group variables together into dimensionless parameters which are less numerous than the original variables. This method is known as dimen- sional analysis. This paper starts with a discussion on dimensions and about the pi theorem of Buckingham. This theorem relates the number of quantities with dimensions to the number of dimensionless groups needed to describe a situation. After establishing this basic relationship between quantities with dimensions and dimensionless groups, the conservation equations for processes in fluid mechanics (Cauchy and Navier–Stokes equations, continuity equation, energy equation) are explained. By non-dimensionalizing these equations, certain dimensionless groups appear (e.g. Reynolds number, Froude number, Grashof number, Weber number, Prandtl number). The physical significance and importance of these groups are explained and the simplifications of the underlying equations for large or small dimensionless parameters are described. Finally, some examples for selected processes in nature and engineering are given to illustrate the method. 1 Introduction If we compare a small leaf with a large one, or a child with its parents, we have the feeling that a ‘similarity’ of some sort exists. -
Aerodynamics Material - Taylor & Francis
CopyrightAerodynamics material - Taylor & Francis ______________________________________________________________________ 257 Aerodynamics Symbol List Symbol Definition Units a speed of sound ⁄ a speed of sound at sea level ⁄ A area aspect ratio ‐‐‐‐‐‐‐‐ b wing span c chord length c Copyrightmean aerodynamic material chord- Taylor & Francis specific heat at constant pressure of air · root chord tip chord specific heat at constant volume of air · / quarter chord total drag coefficient ‐‐‐‐‐‐‐‐ , induced drag coefficient ‐‐‐‐‐‐‐‐ , parasite drag coefficient ‐‐‐‐‐‐‐‐ , wave drag coefficient ‐‐‐‐‐‐‐‐ local skin friction coefficient ‐‐‐‐‐‐‐‐ lift coefficient ‐‐‐‐‐‐‐‐ , compressible lift coefficient ‐‐‐‐‐‐‐‐ compressible moment ‐‐‐‐‐‐‐‐ , coefficient , pitching moment coefficient ‐‐‐‐‐‐‐‐ , rolling moment coefficient ‐‐‐‐‐‐‐‐ , yawing moment coefficient ‐‐‐‐‐‐‐‐ ______________________________________________________________________ 258 Aerodynamics Aerodynamics Symbol List (cont.) Symbol Definition Units pressure coefficient ‐‐‐‐‐‐‐‐ compressible pressure ‐‐‐‐‐‐‐‐ , coefficient , critical pressure coefficient ‐‐‐‐‐‐‐‐ , supersonic pressure coefficient ‐‐‐‐‐‐‐‐ D total drag induced drag Copyright material - Taylor & Francis parasite drag e span efficiency factor ‐‐‐‐‐‐‐‐ L lift pitching moment · rolling moment · yawing moment · M mach number ‐‐‐‐‐‐‐‐ critical mach number ‐‐‐‐‐‐‐‐ free stream mach number ‐‐‐‐‐‐‐‐ P static pressure ⁄ total pressure ⁄ free stream pressure ⁄ q dynamic pressure ⁄ R -
A Semi-Hydrostatic Theory of Gravity-Dominated Compressible Flow
Generated using version 3.2 of the official AMS LATEX template 1 A semi-hydrostatic theory of gravity-dominated compressible flow 2 Thomas Dubos ∗ IPSL-Laboratoire de Météorologie Dynamique, Ecole Polytechnique, Palaiseau, France Fabrice voitus CNRM-Groupe d’étude de l’Atmosphere Metéorologique, Météo-France, Toulouse, France ∗Corresponding author address: Thomas Dubos, LMD, École Polytechnique, 91128 Palaiseau, France. E-mail: [email protected] 1 3 Abstract 4 From Hamilton’s least action principle, compressible equations of motion with density diag- 5 nosed from potential temperature through hydrostatic balance are derived. Slaving density 6 to potential temperature suppresses the degrees of freedom supporting the propagation of 7 acoustic waves and results in a sound-proof system. The linear normal modes and dispersion 8 relationship for an isothermal state of rest on f- and β- planes are accurate from hydrostatic 9 to non-hydrostatic scales, except for deep internal gravity waves. Especially the Lamb wave 10 and long Rossby waves are not distorted, unlike with anelastic or pseudo-incompressible 11 systems. 12 Compared to similar equations derived by Arakawa and Konor (2009), the semi-hydrostatic 13 system derived here possesses an additional term in the horizontal momentum budget. This 14 term is an apparent force resulting from the vertical coordinate not being the actual height 15 of an air parcel, but its hydrostatic height, i.e. the hypothetical height it would have after 16 the atmospheric column it belongs to has reached hydrostatic balance through adiabatic 17 vertical displacements of air parcels. The Lagrange multiplier λ introduced in Hamilton’s 18 principle to slave density to potential temperature is identified as the non-hydrostatic ver- 19 tical displacement, i.e. -
The Role of MHD Turbulence in Magnetic Self-Excitation in The
THE ROLE OF MHD TURBULENCE IN MAGNETIC SELF-EXCITATION: A STUDY OF THE MADISON DYNAMO EXPERIMENT by Mark D. Nornberg A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) at the UNIVERSITY OF WISCONSIN–MADISON 2006 °c Copyright by Mark D. Nornberg 2006 All Rights Reserved i For my parents who supported me throughout college and for my wife who supported me throughout graduate school. The rest of my life I dedicate to my daughter Margaret. ii ACKNOWLEDGMENTS I would like to thank my adviser Cary Forest for his guidance and support in the completion of this dissertation. His high expectations and persistence helped drive the work presented in this thesis. I am indebted to him for the many opportunities he provided me to connect with the world-wide dynamo community. I would also like to thank Roch Kendrick for leading the design, construction, and operation of the experiment. He taught me how to do science using nothing but duct tape, Sharpies, and Scotch-Brite. He also raised my appreciation for the artistry of engineer- ing. My thanks also go to the many undergraduate students who assisted in the construction of the experiment, especially Craig Jacobson who performed graduate-level work. My research partner, Erik Spence, deserves particular thanks for his tireless efforts in modeling the experiment. His persnickety emendations were especially appreciated as we entered the publi- cation stage of the experiment. The conversations during our morning commute to the lab will be sorely missed. I never imagined forging such a strong friendship with a colleague, and I hope our families remain close despite great distance. -
Brazilian 14-Xs Hypersonic Unpowered Scramjet Aerospace Vehicle
ISSN 2176-5480 22nd International Congress of Mechanical Engineering (COBEM 2013) November 3-7, 2013, Ribeirão Preto, SP, Brazil Copyright © 2013 by ABCM BRAZILIAN 14-X S HYPERSONIC UNPOWERED SCRAMJET AEROSPACE VEHICLE STRUCTURAL ANALYSIS AT MACH NUMBER 7 Álvaro Francisco Santos Pivetta Universidade do Vale do Paraíba/UNIVAP, Campus Urbanova Av. Shishima Hifumi, no 2911 Urbanova CEP. 12244-000 São José dos Campos, SP - Brasil [email protected] David Romanelli Pinto ETEP Faculdades, Av. Barão do Rio Branco, no 882 Jardim Esplanada CEP. 12.242-800 São José dos Campos, SP, Brasil [email protected] Giannino Ponchio Camillo Instituto de Estudos Avançados/IEAv - Trevo Coronel Aviador José Alberto Albano do Amarante, nº1 Putim CEP. 12.228-001 São José dos Campos, SP - Brasil. [email protected] Felipe Jean da Costa Instituto Tecnológico de Aeronáutica/ITA - Praça Marechal Eduardo Gomes, nº 50 Vila das Acácias CEP. 12.228-900 São José dos Campos, SP - Brasil [email protected] Paulo Gilberto de Paula Toro Instituto de Estudos Avançados/IEAv - Trevo Coronel Aviador José Alberto Albano do Amarante, nº1 Putim CEP. 12.228-001 São José dos Campos, SP - Brasil. [email protected] Abstract. The Brazilian VHA 14-X S is a technological demonstrator of a hypersonic airbreathing propulsion system based on supersonic combustion (scramjet) to fly at Earth’s atmosphere at 30km altitude at Mach number 7, designed at the Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, at the Institute for Advanced Studies. Basically, scramjet is a fully integrated airbreathing aeronautical engine that uses the oblique/conical shock waves generated during the hypersonic flight, to promote compression and deceleration of freestream atmospheric air at the inlet of the scramjet. -
Turbulent Boundary Layers 7 - 1 David Apsley 7.2.3 Radiation
7. HEAT TRANSFER SPRING 2009 7.1 Definitions 7.2 Modes of heat transfer 7.3 The Prandtl number 7.4 Dimensionless numbers in free and forced convection 7.5 The energy equation 7.6 Laminar boundary layers with isothermal walls 7.7 Temperature profile in a turbulent boundary layer 7.8 Heat-transfer coefficients 7.9 Temperature integral results 7.10 Engineering heat-transfer calculations 7.11 References Examples 7.1 Definitions Heat transfer is energy in transit due to a temperature difference. The heat flux qh is the rate of heat transfer per unit area. 7.2 Modes of Heat Transfer 7.2.1 Conduction Heat transfer due to molecular activity in the absence of a bulk motion. Fourier ’s Law = − ∇ qh kh T (1) kh is the conductivity of heat . –1 –1 –1 –1 At 20 ºC, kh(water) = 0.604 W m K ; kh(air) = 0.0257 W m K . 7.2.2 Advection Heat transfer due to bulk motion of fluid. = − qh c p (T Te )u (2) cp is the specific heat capacity (at constant pressure). Te is a reference (usually the external or free-stream) temperature. –1 –1 –1 –1 At 20 ºC, cp(water) = 4182 J kg K ; cp(air) = 1007 J kg K . Turbulent Boundary Layers 7 - 1 David Apsley 7.2.3 Radiation Heat transfer by emission of electromagnetic radiation. Stefan-Boltzmann Law = 4 qh Ts (3) (= 5.670 ×10 -8 W m–2 K–4) is the Stefan-Boltzmann constant . is the emissivity ( = 1 for a perfect black body) 7.2.4 Free and Forced Convection For fluids, conduction and advection are usually combined as convection , which may be either: forced convection – flow driven by external means; free (or natural ) convection – flow driven by buoyancy. -
No Acoustical Change” for Propeller-Driven Small Airplanes and Commuter Category Airplanes
4/15/03 AC 36-4C Appendix 4 Appendix 4 EQUIVALENT PROCEDURES AND DEMONSTRATING "NO ACOUSTICAL CHANGE” FOR PROPELLER-DRIVEN SMALL AIRPLANES AND COMMUTER CATEGORY AIRPLANES 1. Equivalent Procedures Equivalent Procedures, as referred to in this AC, are aircraft measurement, flight test, analytical or evaluation methods that differ from the methods specified in the text of part 36 Appendices A and B, but yield essentially the same noise levels. Equivalent procedures must be approved by the FAA. Equivalent procedures provide some flexibility for the applicant in conducting noise certification, and may be approved for the convenience of an applicant in conducting measurements that are not strictly in accordance with the 14 CFR part 36 procedures, or when a departure from the specifics of part 36 is necessitated by field conditions. The FAA’s Office of Environment and Energy (AEE) must approve all new equivalent procedures. Subsequent use of previously approved equivalent procedures such as flight intercept typically do not need FAA approval. 2. Acoustical Changes An acoustical change in the type design of an airplane is defined in 14 CFR section 21.93(b) as any voluntary change in the type design of an airplane which may increase its noise level; note that a change in design that decreases its noise level is not an acoustical change in terms of the rule. This definition in section 21.93(b) differs from an earlier definition that applied to propeller-driven small airplanes certificated under 14 CFR part 36 Appendix F. In the earlier definition, acoustical changes were restricted to (i) any change or removal of a muffler or other component of an exhaust system designed for noise control, or (ii) any change to an engine or propeller installation which would increase maximum continuous power or propeller tip speed. -
Dimensional Analysis and the Theory of Natural Units
LIBRARY TECHNICAL REPORT SECTION SCHOOL NAVAL POSTGRADUATE MONTEREY, CALIFORNIA 93940 NPS-57Gn71101A NAVAL POSTGRADUATE SCHOOL Monterey, California DIMENSIONAL ANALYSIS AND THE THEORY OF NATURAL UNITS "by T. H. Gawain, D.Sc. October 1971 lllp FEDDOCS public This document has been approved for D 208.14/2:NPS-57GN71101A unlimited release and sale; i^ distribution is NAVAL POSTGRADUATE SCHOOL Monterey, California Rear Admiral A. S. Goodfellow, Jr., USN M. U. Clauser Superintendent Provost ABSTRACT: This monograph has been prepared as a text on dimensional analysis for students of Aeronautics at this School. It develops the subject from a viewpoint which is inadequately treated in most standard texts hut which the author's experience has shown to be valuable to students and professionals alike. The analysis treats two types of consistent units, namely, fixed units and natural units. Fixed units include those encountered in the various familiar English and metric systems. Natural units are not fixed in magnitude once and for all but depend on certain physical reference parameters which change with the problem under consideration. Detailed rules are given for the orderly choice of such dimensional reference parameters and for their use in various applications. It is shown that when transformed into natural units, all physical quantities are reduced to dimensionless form. The dimension- less parameters of the well known Pi Theorem are shown to be in this category. An important corollary is proved, namely that any valid physical equation remains valid if all dimensional quantities in the equation be replaced by their dimensionless counterparts in any consistent system of natural units. -
Dimensional Analysis of Models and Data Sets: Similarity Solutions and Scaling Analysis
Dimensional Analysis of Models and Data Sets: Similarity Solutions and Scaling Analysis 40 30 20 Tension, N 10 0 0 0.5 1 1.5 2 2.5 3 3.5 4 time, seconds φ = 0.2 o 2 φ = 1.0 o 1.5 1 Tension/Mg 0.5 0 0 2 4 6 8 10 12 time/(L/g)1/2 James F. Price Woods Hole Oceanographic Institution Woods Hole, Massachusetts, 02543 August 3, 2006 Summary: This essay describes a three-step procedure of dimensional analysis that can be applied to all quantitative models and data sets. In rare but important cases the result of dimensional analysis will be a solution; more often the result is an efficient way to display a large or complex data set. The first step of an analysis is to define an appropriate physical model, which is nothing more than a list of the dependent variable and all of the independent variables and parameters that are thought to be significant. The premise of dimensional analysis is that a complete equation made from this list of variables will be independent of the choice of units. This leads to the second step, calculation of a null space basis of the corresponding dimensional matrix (a computer code is made available for this calculation). To each vector 1 of the null space basis there corresponds a nondimensional variable, the number of which is less than the number of dimensional variables. The nondimensional variables are themselves a basis set and in most cases their form is not determined by dimensional analysis alone. -
Cavitation in Valves
VM‐CAV/WP White Paper Cavitation in Valves Table of Contents Introduction. 2 Cavitation Analysis. 2 Cavitation Data. 3 Valve Coefficient Data. 4 Example Application. .. 5 Conclusion & Recommendations . 5 References. 6 Val‐Matic Valve & Mfg. Corp. • www.valmatic.com • [email protected] • PH: 630‐941‐7600 Copyright © 2018 Val‐Matic Valve & Mfg. Corp. Cavitation in Valves INTRODUCTION Cavitation can occur in valves when used in throttling or modulating service. Cavitation is the sudden vaporization and violent condensation of a liquid downstream of the valve due to localized low pressure zones. When flow passes through a throttled valve, a localized low pressure zone forms immediately downstream of the valve. If the localized pressure falls below the vapor pressure of the fluid, the liquid vaporizes (boils) and forms a vapor pocket. As the vapor bubbles flow downstream, the pressure recovers, and the bubbles violently implode causing a popping or rumbling sound similar to tumbling rocks in a pipe. The sound of cavitation in a pipeline is unmistakable. The condensation of the bubbles not only produces a ringing sound, but also creates localized stresses in the pipe walls and valve body that can cause severe pitting. FIGURE 1. Cavitation Cavitation is a common occurrence in shutoff valves during the last few degrees of closure when the supply pressure is greater than about 100 psig. Valves can withstand limited durations of cavitation, but when the valve must be throttled or modulated in cavitating conditions for long periods of time, the life of the valve can be drastically reduced. Therefore, an analysis of flow conditions is needed when a valve is used for flow or pressure control.