Methods, Figures and Practices in Early Nineteenth Century Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Methods, Figures and Practices in Early Nineteenth Century Geometry "Die Freude an der Gestalt" : methods, figures and practices in early nineteenth century geometry Jemma Lorenat To cite this version: Jemma Lorenat. "Die Freude an der Gestalt" : methods, figures and practices in early nine- teenth century geometry. History and Overview [math.HO]. Universit´ePierre et Marie Curie - Paris VI, 2015. English. <NNT : 2015PA066079>. <tel-01158895> HAL Id: tel-01158895 https://tel.archives-ouvertes.fr/tel-01158895 Submitted on 2 Jun 2015 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. THÈSE DE DOCTORAT Discipline : Mathématiques présentée par Jemma Lorenat pour obtenir le grade de Docteur de l’université Pierre et Marie Curie et de Doctor of Philosophy of Simon Fraser University “Die Freude an der Gestalt ”: méthodes, figures et pratiques de la géométrie au début du dix-neuvième siècle Thèse dirigée par Thomas Archibald et Catherine Goldstein présentée et soutenue publiquement le 10 avril 2015 devant un jury composé de Mme Nilima Nigam, professor, Simon Fraser University (Burnaby, Canada), présidente du jury M. Christian Gilain, professeur émérite, Université Pierre et Marie Curie (Paris, France), examinateur M. Dirk Schlimm, associate professor, Mac Gill University (Montréal, Canada), rapporteur M. Thomas Archibald, professor, Simon Fraser University (Burnaby, Canada), directeur Mme Catherine Goldstein, directrice de recherche au CNRS, Institut de mathématiques de Jussieu-Paris Gauche (Paris, France), directrice Rapporteur non présent à la soutenance : M. Philippe Nabonnand, pro- fesseur à l’université de Lorraine (Nancy, France) c Simon Fraser University (Canada) et Université Pierre et Marie Curie (France) ii ACKNOWLEDGEMENTS First, this research would not have been possible without the encouragements, critiques, and administrative feats of my dissertation directors, Tom Archibald and Catherine Goldstein. They continually inspire me with their dedication, understanding, exactitude, generosity, and often uncanny ability to succinctly state what I am trying to express in so many words. I am grateful for all the reporters and members of my committee, in particular to Nilima Nigam who joined at the very beginning and has offered valuable support and recommendations over the past four years. My family has been a source of comfort and wisdom. Bobby has shown me how to be an artist, my sister has allowed me to feel like a role model, my mother has been a rock of optimism in a sea of doubts, and my father has never stopped telling me to ask good questions. Thank you. iii ABSTRACT As recounted by later historians, modern geometry began with Jean Victor Poncelet, whose contributions then spread to Germany alongside an opposition between geometric methods that came to be exemplified by the antagonism of Julius Plücker, an analytic geometer, and Jakob Steiner, a synthetic geometer. To determine the participants, arguments, and qualities of this perceived divide, we drew upon historical accounts from the late nineteenth and early twentieth centuries. Several themes emerged from the historical perspective, which we investigated within the original sources. Our questions centred on how geometers distinguished methods, when op- position arose, in what ways geometry disseminated from Poncelet to Plücker and Steiner, and whether this geometry was “modern” as claimed. Our search for methodological debates led to Poncelet’s proposal that within pure geometry the figure was never lost from view, while it could be obscured by the calculations of algebra. We examined his argument through a case study that revealed visual attention within constructive problem solving, regardless of method. Further, geometers manipulated and represented figures through textual descriptions and coor- dinate equations. In these same texts, Poncelet and Joseph-Diez Gergonne instigated a debate on the principle of duality. Rather than dismiss their priority dispute as external to mathemat- ics, we consider the texts involved as a medium for communicating geometry in which Poncelet and Gergonne developed strategies for introducing new geometry to a conservative audience. This conservative audience did not include Plücker and Steiner, who adapted new vocabulary, techniques and objects. Through comparing their common research, we found they differenti- ated methods based on personal considerations. Plücker practiced a “pure analytic geometry” that avoided calculation. Steiner admired “synthetic geometry” because of its organic unity. These qualities contradicted descriptions of analytic geometry as computational or synthetic geometry as ad-hoc. Finally, we turned to claims for novelty in the context of contemporary French books on geometry. Most of these books point to a pedagogical orientation, where the methodological divide was grounded in student prerequisites and “modern” implied the use of algebra in geometry. By contrast, research publications exhibited evolving forms of geometry that evaded dichotomous categorization. Keywords: geometry, nineteenth century, analysis and synthesis, visualization, Jean Victor Poncelet, Joseph-Diez Gergonne, Julius Plücker, Jakob Steiner iv RÉSUMÉ Die Freude an der Gestalt: méthodes, figures et pratiques dans la géométrie au début du dix-neuvième siècle L’histoire standard de la géométrie projective souligne une opposition entre les méthodes ana- lytiques et synthétiques. Selon les historiens de la fin du dix-neuvième siècle, la géométrie mod- erne a commencé avec le Traité des propriétés projectives de Jean Victor Poncelet en 1817, puis, pendant le premier tiers du siècle, les contributions de Poncelet se répandirent en Allemagne, ainsi qu’une opposition entre différentes approches géométriques dont l’exemple toujours cité est l’antagonisme entre Julius Plücker, un géométre analytique, et Jakob Steiner, un géomètre synthétique. Ce n’est qu’à partir des années 1870, selon ces récits, que les géomètres mirent fin à une distinction qui avait cessé d’être pertinente. Pour déterminer les participants, les arguments et les qualités de cette apparente division méthodologique, nous avons puisé dans les récits historiques écrits à la fin du dix-neuvième siècle et au début du vingtième siècles. Même s’ils insistent pour résumer la situation dans l’opposition globale et binaire que nous avons décrite, leurs écrits suggèrent déjà qu’il y avait plutôt une multitude d’oppositions à plus petite échelle, qui résultaient en particulier de ce que des découvertes multiples, presque simultanées, étaient faites par un petit groupe de géomètres. Plusieurs thèmes principaux émergeaient de cette perspective historiographique, qui forme le premier chapitre de cette thèse, et nous avons décidé de les approfondir en les confrontant à une étude détaillée des textes originaux : des textes de Poncelet, Plücker, Steiner et Joseph-Diez Gergonne sur la géométrie et la méthodologie écrits pendant le premiers tiers du dix-neuvième siècle. Nos questions sont centrées sur la manière dont ces géomètres ont distingué leurs pro- pres méthodes géométriques de celles des autres mathématiciens contemporains, quand une opposition surgissait en géométrie, sur la manière dont à la fois la géométrie et ces opposi- tions se sont transmises de Poncelet à Plücker et Steiner, et dans quelle mesure cette géométrie était “moderne” et nouvelle comme le clamaient ses praticiens, et plus tard les historiens de la géométrie. Dans le deuxième chapitre, nous examinons donc en détail un problème de mathématiques concernant l’inscription de figures dans des coniques, problème qui a été discuté entre plusieurs mathématiciens (Gergonne, Poncelet, Plücker, etc.) et a déclenché des polémiques sur les méthodes de solution. J’ai étudié en détail les arguments, les techniques, etc. et les oppositions, j’ai aussi montré le rôle des nouveaux moyens de diffusion que sont les journaux mathématiques. Notre recherche sur ce débat méthodologique nous a conduit à un échange épistémologique entre Poncelet et Gergonne sur l’utilisation de l’analyse algébrique en géométrie. En distinguant ce qu’il appelle la pure géométrie de la géométrie analytique, Poncelet insistait sur le role central v de la figure. Il suggérait que tant dans l’ancienne géométrie pure, celle héritée d’Euclide et de l’Antiquité, que dans la géométrie pure moderne qu’il incarnait, la figure n’était jamais perdue de vue, et qu’elle pourrait être obscurcie par les calculs de l’algèbre appliquée à la géométrie. En géométrie synthétique, les objets de la géométrie étaient representationnels et tangibles, ces qualités étant encore mises en avant même lorsque les géomètres introduisirent des points imaginaires ou à l’infini. Nous examinons ici l’argument de Poncelet en action à travers l’étude de plusieurs solutions à un même problème de construction géométrique qui a été discuté et résolu dans un ensemble de publications étroitement connectées, mais écrites par plusieurs auteurs différents. Il s’agit de construire une courbe du second ordre ayant un contact d’ordre trois avec une courbe plane donnée, dont cinq solutions paraissent entre
Recommended publications
  • OF Versailles
    THE CHÂTEAU DE VErSAILLES PrESENTS science & CUrIOSITIES AT THE COUrT OF versailles AN EXHIBITION FrOM 26 OCTOBEr 2010 TO 27 FEBrUArY 2011 3 Science and Curiosities at the Court of Versailles CONTENTS IT HAPPENED AT VErSAILLES... 5 FOrEWOrD BY JEAN-JACqUES AILLAGON 7 FOrEWOrD BY BÉATrIX SAULE 9 PrESS rELEASE 11 PArT I 1 THE EXHIBITION - Floor plan 3 - Th e exhibition route by Béatrix Saule 5 - Th e exhibition’s design 21 - Multimedia in the exhibition 22 PArT II 1 ArOUND THE EXHIBITION - Online: an Internet site, and TV web, a teachers’ blog platform 3 - Publications 4 - Educational activities 10 - Symposium 12 PArT III 1 THE EXHIBITION’S PArTNErS - Sponsors 3 - Th e royal foundations’ institutional heirs 7 - Partners 14 APPENDICES 1 USEFUL INFOrMATION 3 ILLUSTrATIONS AND AUDIOVISUAL rESOUrCES 5 5 Science and Curiosities at the Court of Versailles IT HAPPENED AT VErSAILLES... DISSECTION OF AN Since then he has had a glass globe made that ELEPHANT WITH LOUIS XIV is moved by a big heated wheel warmed by holding IN ATTENDANCE the said globe in his hand... He performed several experiments, all of which were successful, before Th e dissection took place at Versailles in January conducting one in the big gallery here... it was 1681 aft er the death of an elephant from highly successful and very easy to feel... we held the Congo that the king of Portugal had given hands on the parquet fl oor, just having to make Louis XIV as a gift : “Th e Academy was ordered sure our clothes did not touch each other.” to dissect an elephant from the Versailles Mémoires du duc de Luynes Menagerie that had died; Mr.
    [Show full text]
  • A Calendar of Mathematical Dates January
    A CALENDAR OF MATHEMATICAL DATES V. Frederick Rickey Department of Mathematical Sciences United States Military Academy West Point, NY 10996-1786 USA Email: fred-rickey @ usma.edu JANUARY 1 January 4713 B.C. This is Julian day 1 and begins at noon Greenwich or Universal Time (U.T.). It provides a convenient way to keep track of the number of days between events. Noon, January 1, 1984, begins Julian Day 2,445,336. For the use of the Chinese remainder theorem in determining this date, see American Journal of Physics, 49(1981), 658{661. 46 B.C. The first day of the first year of the Julian calendar. It remained in effect until October 4, 1582. The previous year, \the last year of confusion," was the longest year on record|it contained 445 days. [Encyclopedia Brittanica, 13th edition, vol. 4, p. 990] 1618 La Salle's expedition reached the present site of Peoria, Illinois, birthplace of the author of this calendar. 1800 Cauchy's father was elected Secretary of the Senate in France. The young Cauchy used a corner of his father's office in Luxembourg Palace for his own desk. LaGrange and Laplace frequently stopped in on business and so took an interest in the boys mathematical talent. One day, in the presence of numerous dignitaries, Lagrange pointed to the young Cauchy and said \You see that little young man? Well! He will supplant all of us in so far as we are mathematicians." [E. T. Bell, Men of Mathematics, p. 274] 1801 Giuseppe Piazzi (1746{1826) discovered the first asteroid, Ceres, but lost it in the sun 41 days later, after only a few observations.
    [Show full text]
  • La Geometria Proiettiva Complessa Origini E Sviluppi Da Von Staudt a Segre E Cartan
    DOTTORATO DI RICERCA in Storia e Didattica delle Matematiche, Storia e Didattica della Fisica, Storia e Didattica della Chimica Ciclo XX - 2005/2006 Consorzio tra Università Bologna, Università Catania, Università di Bratislava (Slovacchia), Università Nitra (Slovacchia), Università di Napoli “Federico II, Università di Alicante (Spagna), Università di Pavia, Università di Palermo, CIRE (Centro Interdipartimentale Ricerche Educative, Università di Palermo) SEDE AMMINISTRATIVA: UNIVERSITÀ DI PALERMO CARMELA ZAPPULLA La Geometria Proiettiva Complessa Origini e sviluppi da von Staudt a Segre e Cartan Tutor Prof. Aldo Brigaglia TESI DI DOTTORATO DI RICERCA Palermo 2009 0 A mio figlio Pietro 1 Indice INDICE Pag. 2 INTRODUZIONE Pag. 5 CAP. 1. I NUMERI COMPLESSI E LA LORO ORIGINE Pag. 9 CAP. 2. LE ORIGINI DELLA RAPPRESENTAZIONE DEI NUMERI COMPLESSI Pag. 19 2.1 Wessell Pag. 21 2.2 Gauss Pag. 23 2.3 Argand Pag. 27 2.4 Buée Pag. 32 2.5 Cauchy Pag. 35 2.6 Carnot Pag. 39 2.7 Bellavitis Pag. 43 CAP. 3. VERSO LA DEFINIZIONE DELLA GEOMETRIA PROIETTIVA COMPLESSA Pag. 49 3.1 La teoria delle inversioni (Dandelin, Quetelet, Steiner, Pag. 51 Pluecker) 3.2 Bellavitis Pag. 58 3.3 Möbius Pag. 61 3.4 von Staudt Pag. 72 CAP. 4. LA GEOMETRIA PROIETTIVA COMPLESSA IN ITALIA Pag. 79 4.1 Introduzione Pag. 81 4.2 Segre 1888 Pag. 83 4.2.1 Contenuto della memoria (Segre 1888) Pag. 86 4.3 Segre 1889-91 Pag. 96 4.3.1 Contenuto della memoria (Segre 1889-91) Pag. 97 4.4 Segre 1892 Pag. 114 4.4.1 Contenuto della memoria (Segre 1892) Pag.
    [Show full text]
  • Leonhard Euler: the First St. Petersburg Years (1727-1741)
    HISTORIA MATHEMATICA 23 (1996), 121±166 ARTICLE NO. 0015 Leonhard Euler: The First St. Petersburg Years (1727±1741) RONALD CALINGER Department of History, The Catholic University of America, Washington, D.C. 20064 View metadata, citation and similar papers at core.ac.uk brought to you by CORE After reconstructing his tutorial with Johann Bernoulli, this article principally investigates provided by Elsevier - Publisher Connector the personality and work of Leonhard Euler during his ®rst St. Petersburg years. It explores the groundwork for his fecund research program in number theory, mechanics, and in®nitary analysis as well as his contributions to music theory, cartography, and naval science. This article disputes Condorcet's thesis that Euler virtually ignored practice for theory. It next probes his thorough response to Newtonian mechanics and his preliminary opposition to Newtonian optics and Leibniz±Wolf®an philosophy. Its closing section details his negotiations with Frederick II to move to Berlin. 1996 Academic Press, Inc. ApreÁs avoir reconstruit ses cours individuels avec Johann Bernoulli, cet article traite essen- tiellement du personnage et de l'oeuvre de Leonhard Euler pendant ses premieÁres anneÂes aÁ St. PeÂtersbourg. Il explore les travaux de base de son programme de recherche sur la theÂorie des nombres, l'analyse in®nie, et la meÂcanique, ainsi que les reÂsultats de la musique, la cartographie, et la science navale. Cet article attaque la theÁse de Condorcet dont Euler ignorait virtuellement la pratique en faveur de la theÂorie. Cette analyse montre ses recherches approfondies sur la meÂcanique newtonienne et son opposition preÂliminaire aÁ la theÂorie newto- nienne de l'optique et a la philosophie Leibniz±Wolf®enne.
    [Show full text]
  • Méthodes, Figures Et Pratiques De La Géométrie Au Début Du Dix
    THÈSE DE DOCTORAT Discipline : Mathématiques présentée par Jemma Lorenat pour obtenir le grade de Docteur de l’université Pierre et Marie Curie et de Doctor of Philosophy of Simon Fraser University “Die Freude an der Gestalt ”: méthodes, figures et pratiques de la géométrie au début du dix-neuvième siècle Thèse dirigée par Thomas Archibald et Catherine Goldstein présentée et soutenue publiquement le 10 avril 2015 devant un jury composé de Mme Nilima Nigam, professor, Simon Fraser University (Burnaby, Canada), présidente du jury M. Christian Gilain, professeur émérite, Université Pierre et Marie Curie (Paris, France), examinateur M. Dirk Schlimm, associate professor, Mac Gill University (Montréal, Canada), rapporteur M. Thomas Archibald, professor, Simon Fraser University (Burnaby, Canada), directeur Mme Catherine Goldstein, directrice de recherche au CNRS, Institut de mathématiques de Jussieu-Paris Gauche (Paris, France), directrice Rapporteur non présent à la soutenance : M. Philippe Nabonnand, pro- fesseur à l’université de Lorraine (Nancy, France) c Simon Fraser University (Canada) et Université Pierre et Marie Curie (France) ii ACKNOWLEDGEMENTS First, this research would not have been possible without the encouragements, critiques, and administrative feats of my dissertation directors, Tom Archibald and Catherine Goldstein. They continually inspire me with their dedication, understanding, exactitude, generosity, and often uncanny ability to succinctly state what I am trying to express in so many words. I am grateful for all the reporters and members of my committee, in particular to Nilima Nigam who joined at the very beginning and has offered valuable support and recommendations over the past four years. My family has been a source of comfort and wisdom.
    [Show full text]
  • Methods, Figures, and Practices in Early Nineteenth Century Geometry
    Die Freude an der Gestalt: Methods, Figures, and Practices in Early Nineteenth Century Geometry by Jemma Lorenat M. A., City University of New York Graduate Center, B. A., San Francisco State University Dissertation Submitted in Partial Fulfillment of the Requirements for the Joint Degree (cotutelle) Doctor of Philosophy in the Department of Mathematics, Faculty of Science at Simon Fraser University (Canada); Sorbonne Universités, Université Pierre et Marie Curie (Paris 6), Institut de mathématiques de Jussieu-Paris Rive Gauche (France) c Jemma Lorenat 2015 SIMON FRASER UNIVERSITY Spring 2015 All rights reserved. However, in accordance with the Copyright Act of Canada, this work may be reproduced without authorization under the conditions for “Fair Dealing.” Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately. APPROVAL Name: Jemma Lorenat Degree: Doctor of Philosophy (Mathematics) Title of Thesis: Die Freude an der Gestalt: Methods, Figures, and Practices in Early Nineteenth Century Geometry Examining Committee: Brenda Davison Chair Department of Mathematics Dr. Thomas Archibald Senior Supervisor (co-tutelle) Professor Dr. Catherine Goldstein Senior Supervisor (co-tutelle) Directrice de recherche au CNRS, Institut de mathématiques de Jussieu-Paris Rive gauche Dr. Nilima Nigam Supervisor Professor Dr. Christian Gilain Internal Examiner (co-tutelle) by videoconference (Paris) Professeur émérite à l’Université Pierre-et-Marie-Curie (Paris 6) Dr. Dirk Schlimm External Examiner Associate Professor, Department of Philosophy, McGill University Date Defended: 10 April 2015 ii Partial Copyright Licence iii ABSTRACT As recounted by later historians, modern geometry began with Jean Victor Poncelet, whose contributions then spread to Germany alongside an opposition between geometric methods that came to be exemplified by the antagonism of Julius Plücker, an analytic geometer, and Jakob Steiner, a synthetic geometer.
    [Show full text]
  • SKRIPTUM Zur Lehrveranstaltung GEOMETRIE FÜR LEHRAMT Von
    SKRIPTUM zur Lehrveranstaltung GEOMETRIE FÜR LEHRAMT von Ferdinand Österreicher Fachbereich Mathematik der Universität Salzburg Salzburg Oktober 2014 1 2 Contents 1 Einleitung 5 2 Synthetische Geometrie 9 2.1 Kegelschnitte ........................... 9 2.1.1 Einstieg .......................... 9 2.1.2 Erarbeitung mit Hilfe der Darstellenden Geometrie . 11 2.1.3 Brennpunkt-Leitlinie-Parametrisierung . 11 2.2 Die Zentralperspektive . 16 2.2.1 Der Satz von Pappos . 17 2.2.2 Ausblick: Pappos und die harmonische Teilung . 24 2.2.3 Übungsaufgabe zur Zentralperspektive . 28 2.2.4 Der Satz von Desargues . 33 2.2.5 Ausblick: Falsche Perspektive . 35 3 Analytische Geometrie 37 3.1 Ausgewählte Texte aus Descartes’ Geometrie . 37 3.2 Tangentenkonstruktion für die Kegelschnitte nach Fermat . 41 3.3 Darstellung der Kegelschnitte in Cartesischen Koordinaten . 44 3.3.1 Parabel .......................... 44 3.3.2 Ellipse und Hyperbel . 45 3.3.3 Darstellung mit Hilfe einer Leitlinie . 48 3.3.4 Darstellung in Polarkoordinaten . 51 3.3.5 Archimedes’ Quadratur der Parabel . 52 3.3.6 Klassifikation der Kegelschnitte mit Hilfe von Schwer- linien............................ 55 3.4 Anwendungen der Kegelschnitte . 57 3.4.1 Das Delische Problem . 57 3.4.2 Physik und Astronomie . 59 3 4 CONTENTS 3.4.3 Sonnenuhren, Optik, Akustik, Architektur und Erdab- plattung.......................... 67 3.5 Quadriken............................. 73 3.5.1 Normalformtypen . 73 3.5.2 Wiederholung zu Bewegungen (Isometrien) im R2 . 74 3.5.3 Quadriken......................... 76 3.6 Hüllkurven und Krümmung . 88 3.6.1 Hüllkurven einer Geradenschar . 88 3.6.2 Krümmungsradius und Krümmung . 95 3.6.3 Ausblick: Traktrix und Kettenlinie .
    [Show full text]
  • Bibliography
    Bibliography References to works cited in the text are made via the Harvard system of author’s name and date of publication, thus: (Adams 2005). If not otherwise referenced, quotations are copied from the summarizing and general works that are referenced near the beginning of the chapter or section. I received James Lequeux’ new biography of François Arago (Lequeux 2008) too late to be able to take advantage of its comprehensive scholarship. Adams , M. (2005) Admiral Collingwood: Nelson’s own Hero London : Weidenfeld and Nicholson . Alder , K. (2002) The Measure of All Things: the Seven Year Odyssey that Transformed the World London : Little Brown . Anon (1854) “François Arago – his life and discoveries” North British Review , XX, 459, 1854 – review essay based on “François Arago” by J.A. Barral, Paris 1853, “Discours prononcé au funeraille de M. Arago, le Mercredi 5 Oct 1853” by M. Flourens, and “François Arago” by M. De la Rive, in Bull. Univ. de Genève , Oct 1853, xxiv, 265; also “Obituary of François Arago” Monthly Notices of the Royal Astronomical Society , 14 , 102, 1854. Arago, F. (1857) “The story of my youth” in Biographies of Distinguished Men , translated by W.H. Smyth, the Rev. Baden Powell and Robert Grant London: Longman, Brown, Green, Longmans and Roberts. See electronic text at http://www.gutenberg.org/etext/16775. The French version of “Histoire de ma Jeunesse” is available through http://gallica.bnf.fr/ (Barral, J.-A., ed. (1854–1862) Arago, F. (1786–1853) Oeuvres completes , Tome 1, p. 1). See also “Mesure de la Méridienne de France”, ibid . Tome 11, p.
    [Show full text]
  • Philippe De La Hire (1640-1718) Reste Un Savant Relativement Peu Étudié
    A. Becchi A. Rousteau-Chambon H. Sakarovitch J. ersonnage fascinant et polymorphe, dont le « seul divertissement était de changer de travail », Philippe de La Hire (1640-1718) reste un savant relativement peu étudié. Fils du peintre Laurent P de La Hyre (1606-1656) – et destiné à une carrière artistique – , il se tourne très tôt vers les sciences avec boulimie. Ses travaux de géomé- trie le font bientôt entrer à l’Académie royale des sciences où il devient cartographe du royaume avec l’abbé Picard, s’intéresse à l’hydraulique, à la gnomonique (l’art de tracer les cadrans solaires), à la physiologie, sciences et Entre architecture à la botanique et à l’astronomie, son sujet de publication le plus impor- tant à partir de sa nomination à l’Observatoire de Paris. Homme de sciences mais non homme de cour, sa carrière ne s’arrête pourtant pas là. Sans jamais avoir fait œuvre d’architecte, il est nommé professeur à l’Académie royale d’architecture en 1687. Il s’y montre tout aussi actif, et rédige, outre de nombreux mémoires, un Traité de coupe des pierres puis un Traité d’architecture. Peu à peu, il établit un véritable dialogue entre les deux institutions royales. Par ses travaux, et en particulier ceux concernant la mécanique des voûtes, il construit des liens profonds entre l’architecture et les sciences, à la charnière des XVIIe et XVIIIe siècles, et joue un rôle central dans la constitution des sciences de la construction. C’est cette œuvre foisonnante que ce livre a pour ambition d’éclairer, à travers des contributions d’historiens des Philippe de La Hire sciences, d’historiens de l’architecture et d’historiens de l’art.
    [Show full text]
  • Probable Histories: Novel Recoveries of the Past by Margaret Kolb A
    Probable Histories: Novel Recoveries of the Past By Margaret Kolb A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in English in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Ian Duncan, Chair Professor Kevis Goodman Professor Catherine Gallagher Professor Paolo Mancosu Summer 2016 Abstract Probable Histories: Novel Recoveries of the Past By Margaret Kolb Doctor of Philosophy in English University of California, Berkeley Professor Ian Duncan, Chair The eighteenth and nineteenth centuries witnessed the simultaneous rise of two discourses that promised to explain the past and predict the future: probability and the novel. The two were not merely historically coincident. In dialogue from the start, “Probable Histories” argues that probability and the novel were also mutually constitutive. Drawing on standard histories of each, I summarize their respective “rises” in the eighteenth century and analyze their interdependence. I then turn to a series of case studies, investigating the novels of Henry Fielding, Charlotte Lennox, Walter Scott, George Eliot, Charles Dickens, and Thomas Hardy as points of intersection between the concerns of probability and those of the novel. The project reveals how these two modes of temporal projection extend and inform one another as modes of prediction. In so doing, “Probable Histories” offers a new account of the novel’s shared role in conceptualizing causation. 1 Table of Contents Acknowledgements……………………….……………………… i Introduction……………………………….……………………... 1 Chapter 1……………………….………………………………… 6 Chapter 2 ………………………..………………………………... 23 Chapter 3……………………….…………………………………. 43 Chapter 4 ……………………….………………………………… 61 Chapter 5 ……………………….………………………………… 76 i Acknowledgements Thanks to the Mabelle McLeod Lewis Foundation, the UC Berkeley English Department, and the Hart Summer Grant for providing financial support.
    [Show full text]
  • Dissertation Die Zyklografie Wilhelm Fiedlers
    Dissertation ⋆ ⋆ ⋆ Die Zyklografie Wilhelm Fiedlers Inauguraldissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) der Bergischen Universität Wuppertal ⋆ ⋆ ⋆ vorgelegt von : Robert Wengel Gutachter : Prof. Dr. Klaus Volkert (Wuppertal) Prof. Dr. Norbert Hungerbühler (Zürich) Prof. Dr. Andreas Filler (Berlin) Datum : 20.01.2020 Die Dissertation kann wie folgt zitiert werden: urn:nbn:de:hbz:468-20200513-100658-4 [http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20200513-100658-4] DOI: 10.25926/ap24-xa94 [https://doi.org/10.25926/ap24-xa94] Danksagung Mein herzlichster Dank gilt Herrn Prof. Dr. Klaus Volkert, der mich zur Auseinan- dersetzung mit dem Thema der vorliegenden Arbeit angeregt hat. Ich danke ihm insbesondere für die sehr gute Unterstützung bei der Abfassung der Dissertation, die intensive Betreuung sowie für viele zahlreiche Hinweise und Ratschläge. Außer- dem danke ich Herrn Prof. Dr. Norbert Hungerbühler und Herrn Prof. Dr. Andreas Filler für die Erstellung eines Zweit- und Drittgutachtens. Darüber hinaus danke ich meiner Familie, die mir unterstützend zur Seite gestan- den und mir mein Studium ermöglicht hat. Inhaltsverzeichnis 1. Einleitung 9 1.1. Einführung ................................ 9 1.2. Bemerkungen zu mathematischen Zeichen, Konstruktionen und Sät- zen .................................... 13 2. Die Zyklografie Wilhelm Fiedlers 15 2.1. Fiedlers Leben und Einfluss auf die Geometrie . ... 15 2.2. Die Bedeutung der Kreisgeometrie . 18 2.3. ZurEntstehungderZyklografie . 23 2.4. RezeptionderZyklografie . 29 2.4.1. Besprechungen . .. .. 29 2.4.2. LehrwerkeundAufsätze . 32 2.4.3. Die Verbreitung der zyklografischen Idee . .. 35 2.5. Aufbau und Inhalt Fiedlers Cyklographie ................ 40 3.ElementederDarstellendenGeometrie 47 3.1. GeometrischeGrößen . 47 3.1.1.
    [Show full text]
  • A Selection of New Arrivals September 2018
    A selection of new arrivals September 2018 Rare and important books & manuscripts in science and medicine, by Christian Westergaard. Flæsketorvet 68 – 1711 København V – Denmark Cell: (+45)27628014 www.sophiararebooks.com Académie Royale des Sciences. ENTIRELY UNRESTORED IN PRESENTATION BINDING ACADÉMIE ROYALE DES SCIENCES [AUZOUT, FRENICLE, HUYGENS, MARIOTTE, PICARD, ROBERVAL, RØMER]. Divers ouvrages de mathématique et de physique. Paris: L’Imprimerie Royale, 1693. $15,000 Folio (365 x 240 mm), pp. [viii, last leaf blank], 518, [2, colophon], with numerous woodcut diagrams and illustrations in text. Contemporary mottled calf with the arms of Louis XIV in the centre of each cover (Olivier 2494, fer 10), and with his monogram in each spine compartment, hinges with some wear and top capital chipped, an entirely unrestored copy in its original state. First edition of this superb collection of thirty-one treatises by the leading scientists of seventeenth-century France, almost all of which are published here for the first time. This is one of the earliest important publications of the Académie des Sciences, and one of the most magnificent, and the present copy was probably intended for presentation: it is bound in contemporary calf with the arms of Louis XIV on each cover. Founded on 22 December 1666, one of the principal functions of the Académie was to facilitate publication of the works of its members. Frenicle and Roberval were founding members (as was Huygens), and without the assistance of the Académie it is likely that many of their works would have remained unpublished (only two works by Frenicle and two by Roberval were published in their lifetimes).
    [Show full text]