Probable Histories: Novel Recoveries of the Past by Margaret Kolb A

Total Page:16

File Type:pdf, Size:1020Kb

Probable Histories: Novel Recoveries of the Past by Margaret Kolb A Probable Histories: Novel Recoveries of the Past By Margaret Kolb A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in English in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Ian Duncan, Chair Professor Kevis Goodman Professor Catherine Gallagher Professor Paolo Mancosu Summer 2016 Abstract Probable Histories: Novel Recoveries of the Past By Margaret Kolb Doctor of Philosophy in English University of California, Berkeley Professor Ian Duncan, Chair The eighteenth and nineteenth centuries witnessed the simultaneous rise of two discourses that promised to explain the past and predict the future: probability and the novel. The two were not merely historically coincident. In dialogue from the start, “Probable Histories” argues that probability and the novel were also mutually constitutive. Drawing on standard histories of each, I summarize their respective “rises” in the eighteenth century and analyze their interdependence. I then turn to a series of case studies, investigating the novels of Henry Fielding, Charlotte Lennox, Walter Scott, George Eliot, Charles Dickens, and Thomas Hardy as points of intersection between the concerns of probability and those of the novel. The project reveals how these two modes of temporal projection extend and inform one another as modes of prediction. In so doing, “Probable Histories” offers a new account of the novel’s shared role in conceptualizing causation. 1 Table of Contents Acknowledgements……………………….……………………… i Introduction……………………………….……………………... 1 Chapter 1……………………….………………………………… 6 Chapter 2 ………………………..………………………………... 23 Chapter 3……………………….…………………………………. 43 Chapter 4 ……………………….………………………………… 61 Chapter 5 ……………………….………………………………… 76 i Acknowledgements Thanks to the Mabelle McLeod Lewis Foundation, the UC Berkeley English Department, and the Hart Summer Grant for providing financial support. Thanks also to the Thomas Hardy Association, Harper’s Magazine, the British Library, and the Victoria and Albert Museum for permission to reproduce images. A version of Chapter 5 was published in Victorian Studies, where suggestions from Ivan Kreilkamp and anonymous readers greatly improved the essay. “Probable Histories” began with a reading of Daniel Deronda in Ian Duncan’s course. The project would not have begun without him; nor could it have been completed. It took root entirely thanks to his encouragement, good humor, and intellectual generosity. Paolo Mancosu—who gave me precious time during a busy semester—taught me how to read the philosophy and history of mathematics. A perpetual model for scholarship and pedagogy, Kevis Goodman applied her transformative intellectual rigor to my work with unfailing kindness. Cathy Gallagher offered wise advice at the right times. Her comments continue to guide the project as they unfold. Wendy Xin kept deadlines, and kept me in the program. Laura Kolb and Jocelyn Rodal have been sounding boards and sympathetic readers. Serena Le hummed out the tune of my thoughts whenever I lost hold of it. Daniel Kolb, Eisha Matsubara, and Joe Tuman taught me that reflection and running go hand in hand, and Reinhard Stoewe reminded me that this holds true even when it happens to be hot outside. Nick Halpern, my most loyal reader, helped me mail my graduate school applications long ago. He has been part of every adventure since. ii Introduction A traveler, long expected home, has not returned. Who might begin a story in this way? Not Homer or Defoe, Dickens or Hardy, but a mathematician. In illustrations of the probability computations in the final section of his seminal Ars Conjectandi (1713), Jacob Bernoulli joins a lofty literary company by offering an account of a traveler’s extended absence. Probability, Bernoulli explains, can help us uncover “causes that are entirely hidden,” even those as inscrutable as the traveler’s whereabouts (327). In predicting what has befallen him, Bernoulli advises, we should attend “not only to those arguments that serve to prove a thing, but also to all those that can be adduced for the contrary” (319). As Bernoulli models them, such arguments consist of a series of stories. “Perhaps he was taken captive by barbarians so that he could not write,” Bernoulli offers, transporting the traveler to “the ends of India,” before considering the homeward draw an expected inheritance might exert. As these speculations draw to a close, we’re reminded that “we know that many who have been away longer have returned uninjured in the end,” a truth derived as much from the fictional traveler’s penchant for return, as his historical counterpart’s. In closing his example, Bernoulli reflects that “[a]nyone, from daily life, could formulate for himself many more axioms of this kind” (321). Briefly, this argument anticipates Robinson Crusoe (1719), rather than what actually follows it: the law of large numbers. After this tale comes one of the more strange and wonderful tricks in Ars Conjectandi. Bernoulli returns to the classic example of an urn, filled with black and white tokens in unknown quantities. He will go on to prove a weak form of the law of large numbers—demonstrating that the proportion of the two colors can be obtained within the bounds of any pre-specified accuracy, in a certain number of draws. In other words, we can understand what’s inside the urn, even if we empty it only partially. Before his proof, Bernoulli first performs an important transubstantiation: he asks us to think about bodies as urns, holding within them “diseases just as an urn contains tokens” (329). Given enough observation, we could compute how many chances at plague lurk inside us, how many chances at dropsy, how many at fever. We can think of the urn as we calculate one individual’s particular chance of dying of plague, or use it equally feasibly to contemplate a population’s rate of disease. Through this metaphor and others like it, Part IV of Ars Conjectandi articulates probability as a technique that can explain a past, look inside the body, and knit together a nation.1 In the applications that proliferated after Ian Hacking’s hotly contested, yet heuristically useful, originary “moment” of the 1660s, probabilistic computations promised to mitigate uncertainties of all kinds: they could document public health, price annuities and insurance, consider murder cases, quantify the value of religious belief, evaluate financial ventures, and parametrize uncertainty in judicial cases. Given these massive ambitions, occasional frustration was inevitable. “The concern is to discover the truths of practice & in the usage of civil society,” probabilist Pierre Rémond de Montmort wrote of probability logic in a letter to Bernoulli’s nephew Nicolas in 1711, admitting that he could only uncover “trifles” (322). The eighteenth-century novel was also concerned with travelers’ whereabouts, the truths of civil society, daily life, who killed whom, and—though perhaps without Montmort’s chagrin—trifles. Probability and the novel shared eerily similar “rises” over the eighteenth and nineteenth centuries. The publication of Ars Conjectandi marked a radical expansion of the 1 For the mathematical and philosophical implications of this metaphor for chance, see Lorraine Daston, “The Probability of Causes,” section 5.2, esp. p. 245-46. 1 bounds of probability logic, which trickled from gambling and mathematical circles into public discourse, solidifying in the 1740s when it was ushered into the drawing room with the publication of Edmund Hoyle's pamphlet on whist. Standard accounts of the novel trace a similar chronology, with solidification of the genre taking place in the 1740s. Historians of both fields often point to the same epistemic shifts as chief historical drivers: secularism, a broadening world, a turn from textual authority towards empirical methods of knowledge acquisition, and receptivity to provisional—or fictional—narrative. Catherine Gallagher has brilliantly argued that fictionality—a growing recognition in the eighteenth century of fiction as a category—depended on “(1) a conceptual category of fiction, and (2) believable stories that did not solicit belief” (340). Crucial to (2) is a measure for credit, a social faculty whose growing prominence derives, for Gallagher, from the broadening economic sphere. Necessary to “the kind of cognitive provisionality one practices in reading fiction” (347) was the concept that stories could be more or less likely, and a language for designating them as such. The novel is consistently theorized in terms of probability, albeit with varying engagement with the discipline. John Alcock boasts of “an air of Probability” in his novel The Life of Miss Fanny Brown (1760), which he claims to achieve via the use of “several well-known Christian, as well as Sur-names” (xxx). Others, like Henry Fielding, offer more nuanced reflections on literary likelihood, contemplating, for example, the problem of describing “a single Instance” of a rare character, when “we are writing to thousands who never heard of such a person, nor of any Thing like him” (404). By mid-nineteenth century, probability was the key feature of narrative fiction to be defended. Charles Dickens prefaces Bleak House (1852-53) with justifications for two central features of the novel—the length and cost of legal proceedings in Chancery, and spontaneous combustion—declaring “I shall not abandon the facts until there shall have been a considerable spontaneous Combustion of the
Recommended publications
  • A Calendar of Mathematical Dates January
    A CALENDAR OF MATHEMATICAL DATES V. Frederick Rickey Department of Mathematical Sciences United States Military Academy West Point, NY 10996-1786 USA Email: fred-rickey @ usma.edu JANUARY 1 January 4713 B.C. This is Julian day 1 and begins at noon Greenwich or Universal Time (U.T.). It provides a convenient way to keep track of the number of days between events. Noon, January 1, 1984, begins Julian Day 2,445,336. For the use of the Chinese remainder theorem in determining this date, see American Journal of Physics, 49(1981), 658{661. 46 B.C. The first day of the first year of the Julian calendar. It remained in effect until October 4, 1582. The previous year, \the last year of confusion," was the longest year on record|it contained 445 days. [Encyclopedia Brittanica, 13th edition, vol. 4, p. 990] 1618 La Salle's expedition reached the present site of Peoria, Illinois, birthplace of the author of this calendar. 1800 Cauchy's father was elected Secretary of the Senate in France. The young Cauchy used a corner of his father's office in Luxembourg Palace for his own desk. LaGrange and Laplace frequently stopped in on business and so took an interest in the boys mathematical talent. One day, in the presence of numerous dignitaries, Lagrange pointed to the young Cauchy and said \You see that little young man? Well! He will supplant all of us in so far as we are mathematicians." [E. T. Bell, Men of Mathematics, p. 274] 1801 Giuseppe Piazzi (1746{1826) discovered the first asteroid, Ceres, but lost it in the sun 41 days later, after only a few observations.
    [Show full text]
  • La Geometria Proiettiva Complessa Origini E Sviluppi Da Von Staudt a Segre E Cartan
    DOTTORATO DI RICERCA in Storia e Didattica delle Matematiche, Storia e Didattica della Fisica, Storia e Didattica della Chimica Ciclo XX - 2005/2006 Consorzio tra Università Bologna, Università Catania, Università di Bratislava (Slovacchia), Università Nitra (Slovacchia), Università di Napoli “Federico II, Università di Alicante (Spagna), Università di Pavia, Università di Palermo, CIRE (Centro Interdipartimentale Ricerche Educative, Università di Palermo) SEDE AMMINISTRATIVA: UNIVERSITÀ DI PALERMO CARMELA ZAPPULLA La Geometria Proiettiva Complessa Origini e sviluppi da von Staudt a Segre e Cartan Tutor Prof. Aldo Brigaglia TESI DI DOTTORATO DI RICERCA Palermo 2009 0 A mio figlio Pietro 1 Indice INDICE Pag. 2 INTRODUZIONE Pag. 5 CAP. 1. I NUMERI COMPLESSI E LA LORO ORIGINE Pag. 9 CAP. 2. LE ORIGINI DELLA RAPPRESENTAZIONE DEI NUMERI COMPLESSI Pag. 19 2.1 Wessell Pag. 21 2.2 Gauss Pag. 23 2.3 Argand Pag. 27 2.4 Buée Pag. 32 2.5 Cauchy Pag. 35 2.6 Carnot Pag. 39 2.7 Bellavitis Pag. 43 CAP. 3. VERSO LA DEFINIZIONE DELLA GEOMETRIA PROIETTIVA COMPLESSA Pag. 49 3.1 La teoria delle inversioni (Dandelin, Quetelet, Steiner, Pag. 51 Pluecker) 3.2 Bellavitis Pag. 58 3.3 Möbius Pag. 61 3.4 von Staudt Pag. 72 CAP. 4. LA GEOMETRIA PROIETTIVA COMPLESSA IN ITALIA Pag. 79 4.1 Introduzione Pag. 81 4.2 Segre 1888 Pag. 83 4.2.1 Contenuto della memoria (Segre 1888) Pag. 86 4.3 Segre 1889-91 Pag. 96 4.3.1 Contenuto della memoria (Segre 1889-91) Pag. 97 4.4 Segre 1892 Pag. 114 4.4.1 Contenuto della memoria (Segre 1892) Pag.
    [Show full text]
  • Méthodes, Figures Et Pratiques De La Géométrie Au Début Du Dix
    THÈSE DE DOCTORAT Discipline : Mathématiques présentée par Jemma Lorenat pour obtenir le grade de Docteur de l’université Pierre et Marie Curie et de Doctor of Philosophy of Simon Fraser University “Die Freude an der Gestalt ”: méthodes, figures et pratiques de la géométrie au début du dix-neuvième siècle Thèse dirigée par Thomas Archibald et Catherine Goldstein présentée et soutenue publiquement le 10 avril 2015 devant un jury composé de Mme Nilima Nigam, professor, Simon Fraser University (Burnaby, Canada), présidente du jury M. Christian Gilain, professeur émérite, Université Pierre et Marie Curie (Paris, France), examinateur M. Dirk Schlimm, associate professor, Mac Gill University (Montréal, Canada), rapporteur M. Thomas Archibald, professor, Simon Fraser University (Burnaby, Canada), directeur Mme Catherine Goldstein, directrice de recherche au CNRS, Institut de mathématiques de Jussieu-Paris Gauche (Paris, France), directrice Rapporteur non présent à la soutenance : M. Philippe Nabonnand, pro- fesseur à l’université de Lorraine (Nancy, France) c Simon Fraser University (Canada) et Université Pierre et Marie Curie (France) ii ACKNOWLEDGEMENTS First, this research would not have been possible without the encouragements, critiques, and administrative feats of my dissertation directors, Tom Archibald and Catherine Goldstein. They continually inspire me with their dedication, understanding, exactitude, generosity, and often uncanny ability to succinctly state what I am trying to express in so many words. I am grateful for all the reporters and members of my committee, in particular to Nilima Nigam who joined at the very beginning and has offered valuable support and recommendations over the past four years. My family has been a source of comfort and wisdom.
    [Show full text]
  • Methods, Figures, and Practices in Early Nineteenth Century Geometry
    Die Freude an der Gestalt: Methods, Figures, and Practices in Early Nineteenth Century Geometry by Jemma Lorenat M. A., City University of New York Graduate Center, B. A., San Francisco State University Dissertation Submitted in Partial Fulfillment of the Requirements for the Joint Degree (cotutelle) Doctor of Philosophy in the Department of Mathematics, Faculty of Science at Simon Fraser University (Canada); Sorbonne Universités, Université Pierre et Marie Curie (Paris 6), Institut de mathématiques de Jussieu-Paris Rive Gauche (France) c Jemma Lorenat 2015 SIMON FRASER UNIVERSITY Spring 2015 All rights reserved. However, in accordance with the Copyright Act of Canada, this work may be reproduced without authorization under the conditions for “Fair Dealing.” Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately. APPROVAL Name: Jemma Lorenat Degree: Doctor of Philosophy (Mathematics) Title of Thesis: Die Freude an der Gestalt: Methods, Figures, and Practices in Early Nineteenth Century Geometry Examining Committee: Brenda Davison Chair Department of Mathematics Dr. Thomas Archibald Senior Supervisor (co-tutelle) Professor Dr. Catherine Goldstein Senior Supervisor (co-tutelle) Directrice de recherche au CNRS, Institut de mathématiques de Jussieu-Paris Rive gauche Dr. Nilima Nigam Supervisor Professor Dr. Christian Gilain Internal Examiner (co-tutelle) by videoconference (Paris) Professeur émérite à l’Université Pierre-et-Marie-Curie (Paris 6) Dr. Dirk Schlimm External Examiner Associate Professor, Department of Philosophy, McGill University Date Defended: 10 April 2015 ii Partial Copyright Licence iii ABSTRACT As recounted by later historians, modern geometry began with Jean Victor Poncelet, whose contributions then spread to Germany alongside an opposition between geometric methods that came to be exemplified by the antagonism of Julius Plücker, an analytic geometer, and Jakob Steiner, a synthetic geometer.
    [Show full text]
  • SKRIPTUM Zur Lehrveranstaltung GEOMETRIE FÜR LEHRAMT Von
    SKRIPTUM zur Lehrveranstaltung GEOMETRIE FÜR LEHRAMT von Ferdinand Österreicher Fachbereich Mathematik der Universität Salzburg Salzburg Oktober 2014 1 2 Contents 1 Einleitung 5 2 Synthetische Geometrie 9 2.1 Kegelschnitte ........................... 9 2.1.1 Einstieg .......................... 9 2.1.2 Erarbeitung mit Hilfe der Darstellenden Geometrie . 11 2.1.3 Brennpunkt-Leitlinie-Parametrisierung . 11 2.2 Die Zentralperspektive . 16 2.2.1 Der Satz von Pappos . 17 2.2.2 Ausblick: Pappos und die harmonische Teilung . 24 2.2.3 Übungsaufgabe zur Zentralperspektive . 28 2.2.4 Der Satz von Desargues . 33 2.2.5 Ausblick: Falsche Perspektive . 35 3 Analytische Geometrie 37 3.1 Ausgewählte Texte aus Descartes’ Geometrie . 37 3.2 Tangentenkonstruktion für die Kegelschnitte nach Fermat . 41 3.3 Darstellung der Kegelschnitte in Cartesischen Koordinaten . 44 3.3.1 Parabel .......................... 44 3.3.2 Ellipse und Hyperbel . 45 3.3.3 Darstellung mit Hilfe einer Leitlinie . 48 3.3.4 Darstellung in Polarkoordinaten . 51 3.3.5 Archimedes’ Quadratur der Parabel . 52 3.3.6 Klassifikation der Kegelschnitte mit Hilfe von Schwer- linien............................ 55 3.4 Anwendungen der Kegelschnitte . 57 3.4.1 Das Delische Problem . 57 3.4.2 Physik und Astronomie . 59 3 4 CONTENTS 3.4.3 Sonnenuhren, Optik, Akustik, Architektur und Erdab- plattung.......................... 67 3.5 Quadriken............................. 73 3.5.1 Normalformtypen . 73 3.5.2 Wiederholung zu Bewegungen (Isometrien) im R2 . 74 3.5.3 Quadriken......................... 76 3.6 Hüllkurven und Krümmung . 88 3.6.1 Hüllkurven einer Geradenschar . 88 3.6.2 Krümmungsradius und Krümmung . 95 3.6.3 Ausblick: Traktrix und Kettenlinie .
    [Show full text]
  • Dissertation Die Zyklografie Wilhelm Fiedlers
    Dissertation ⋆ ⋆ ⋆ Die Zyklografie Wilhelm Fiedlers Inauguraldissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) der Bergischen Universität Wuppertal ⋆ ⋆ ⋆ vorgelegt von : Robert Wengel Gutachter : Prof. Dr. Klaus Volkert (Wuppertal) Prof. Dr. Norbert Hungerbühler (Zürich) Prof. Dr. Andreas Filler (Berlin) Datum : 20.01.2020 Die Dissertation kann wie folgt zitiert werden: urn:nbn:de:hbz:468-20200513-100658-4 [http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20200513-100658-4] DOI: 10.25926/ap24-xa94 [https://doi.org/10.25926/ap24-xa94] Danksagung Mein herzlichster Dank gilt Herrn Prof. Dr. Klaus Volkert, der mich zur Auseinan- dersetzung mit dem Thema der vorliegenden Arbeit angeregt hat. Ich danke ihm insbesondere für die sehr gute Unterstützung bei der Abfassung der Dissertation, die intensive Betreuung sowie für viele zahlreiche Hinweise und Ratschläge. Außer- dem danke ich Herrn Prof. Dr. Norbert Hungerbühler und Herrn Prof. Dr. Andreas Filler für die Erstellung eines Zweit- und Drittgutachtens. Darüber hinaus danke ich meiner Familie, die mir unterstützend zur Seite gestan- den und mir mein Studium ermöglicht hat. Inhaltsverzeichnis 1. Einleitung 9 1.1. Einführung ................................ 9 1.2. Bemerkungen zu mathematischen Zeichen, Konstruktionen und Sät- zen .................................... 13 2. Die Zyklografie Wilhelm Fiedlers 15 2.1. Fiedlers Leben und Einfluss auf die Geometrie . ... 15 2.2. Die Bedeutung der Kreisgeometrie . 18 2.3. ZurEntstehungderZyklografie . 23 2.4. RezeptionderZyklografie . 29 2.4.1. Besprechungen . .. .. 29 2.4.2. LehrwerkeundAufsätze . 32 2.4.3. Die Verbreitung der zyklografischen Idee . .. 35 2.5. Aufbau und Inhalt Fiedlers Cyklographie ................ 40 3.ElementederDarstellendenGeometrie 47 3.1. GeometrischeGrößen . 47 3.1.1.
    [Show full text]
  • On the Advancements of Conformal Transformations and Their Associated Symmetries in Geometry and Theoretical Physics1
    DESY 08{107 On the Advancements of Conformal Transformations and their Associated Symmetries in Geometry and Theoretical Physics1 H.A. Kastrup2 DESY, Theory Group Notkestr. 85, D-22603 Hamburg Germany PACS 03.70.+k, 11.25.Hf, 11.30.-j Dedicated to the memory of Julius Wess (1934-2007), colleague and friend for many years Abstract The historical developments of conformal transformations and symmetries are sketched: Their origin from stereographic projections of the globe, their blossoming in two dimen- sions within the field of analytic complex functions, the generic role of transformations by reciprocal radii in dimensions higher than two and their linearization in terms of poly- spherical coordinates by Darboux, Weyl's attempt to extend General Relativity, the slow rise of finite dimensional conformal transformations in classical field theories and the prob- arXiv:0808.2730v1 [physics.hist-ph] 20 Aug 2008 lem of their interpretation, then since about 1970 the rapid spread of their acceptance for asymptotic and structural problems in quantum field theories and beyond, up to the current AdS=CF T conjecture. The occasion for the present article: hundred years ago Bateman and Cunningham dis- covered the form invariance of Maxwell's equations for electromagnetism with respect to conformal space-time transformations. 1Invited contribution to the special issue (Sept./Oct. 2008) of Annalen der Physik (Berlin) comme- morating Hermann Minkowski's lecture on \Raum und Zeit", Sept. 1908, in Cologne. 2E-mail: [email protected] Contents 1 Introduction 2 1.1 The occasion . 2 1.2 The issue . 4 1.2.1 Conformal mappings as point transformations .
    [Show full text]
  • Methods, Figures and Practices in Early Nineteenth Century Geometry
    "Die Freude an der Gestalt" : methods, figures and practices in early nineteenth century geometry Jemma Lorenat To cite this version: Jemma Lorenat. "Die Freude an der Gestalt" : methods, figures and practices in early nine- teenth century geometry. History and Overview [math.HO]. Universit´ePierre et Marie Curie - Paris VI, 2015. English. <NNT : 2015PA066079>. <tel-01158895> HAL Id: tel-01158895 https://tel.archives-ouvertes.fr/tel-01158895 Submitted on 2 Jun 2015 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. THÈSE DE DOCTORAT Discipline : Mathématiques présentée par Jemma Lorenat pour obtenir le grade de Docteur de l’université Pierre et Marie Curie et de Doctor of Philosophy of Simon Fraser University “Die Freude an der Gestalt ”: méthodes, figures et pratiques de la géométrie au début du dix-neuvième siècle Thèse dirigée par Thomas Archibald et Catherine Goldstein présentée et soutenue publiquement le 10 avril 2015 devant un jury composé de Mme Nilima Nigam, professor, Simon Fraser University (Burnaby, Canada), présidente du jury M. Christian Gilain, professeur émérite, Université Pierre et Marie Curie (Paris, France), examinateur M. Dirk Schlimm, associate professor, Mac Gill University (Montréal, Canada), rapporteur M.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Probable Histories: Novel Recoveries of the Past Permalink https://escholarship.org/uc/item/3j37s643 Author Kolb, Margaret Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Probable Histories: Novel Recoveries of the Past By Margaret Kolb A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in English in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Ian Duncan, Chair Professor Kevis Goodman Professor Catherine Gallagher Professor Paolo Mancosu Summer 2016 Abstract Probable Histories: Novel Recoveries of the Past By Margaret Kolb Doctor of Philosophy in English University of California, Berkeley Professor Ian Duncan, Chair The eighteenth and nineteenth centuries witnessed the simultaneous rise of two discourses that promised to explain the past and predict the future: probability and the novel. The two were not merely historically coincident. In dialogue from the start, “Probable Histories” argues that probability and the novel were also mutually constitutive. Drawing on standard histories of each, I summarize their respective “rises” in the eighteenth century and analyze their interdependence. I then turn to a series of case studies, investigating the novels of Henry Fielding, Charlotte Lennox, Walter Scott, George Eliot, Charles Dickens, and Thomas Hardy as points of intersection between the concerns of probability and those of the novel. The project reveals how these two modes of temporal projection extend and inform one another as modes of prediction. In so doing, “Probable Histories” offers a new account of the novel’s shared role in conceptualizing causation.
    [Show full text]
  • Philosophie Mathématique
    AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm Universit¶ede Lorraine / LHSP / AHP Laboratoire d'Histoire des Sciences et de Philosophie Archives Henri Poincar¶e(UMR 7117) Universidade Federal do Rio de Janeiro / HCTE Hist¶oriadas Ci^enciase das T¶ecnicase Epistemologia Etienne¶ BOBILLIER (1798 - 1840) : parcours math¶ematique,enseignant et professionnel. Th`esede doctorat en co-tutelle pr¶esent¶eepar Cleber Haubrichs dos Santos sous direction de Philippe Nabonnand et Tatiana Roque 2015 Cleber Haubrichs dos Santos ETIENNE¶ BOBILLIER (1798-1840) : PARCOURS MATHEMATIQUE,¶ ENSEIGNANT ET PROFESSIONNEL Th`ese de doctorat en co-tutelle present¶ee `al'Ecole¶ Doctorale \Langages, Temps, Soci¶et¶es"de la Universit¶ede Lorraine et `ale Programa de P¶os-Gradua»c~aoHist¶oriadas Ci^enciase das T¶ecnicase Epistemologia da Universidade Federal do Rio de Janeiro. Th`eseapprouv¶eele 03 d¶ecembre 2015. Directeurs
    [Show full text]