Methods, Figures, and Practices in Early Nineteenth Century Geometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mathematics Is a Gentleman's Art: Analysis and Synthesis in American College Geometry Teaching, 1790-1840 Amy K
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 Amy K. Ackerberg-Hastings Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Higher Education and Teaching Commons, History of Science, Technology, and Medicine Commons, and the Science and Mathematics Education Commons Recommended Citation Ackerberg-Hastings, Amy K., "Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 " (2000). Retrospective Theses and Dissertations. 12669. https://lib.dr.iastate.edu/rtd/12669 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margwis, and improper alignment can adversely affect reproduction. in the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. -
Jean-Baptiste Charles Joseph Bélanger (1790-1874), the Backwater Equation and the Bélanger Equation
THE UNIVERSITY OF QUEENSLAND DIVISION OF CIVIL ENGINEERING REPORT CH69/08 JEAN-BAPTISTE CHARLES JOSEPH BÉLANGER (1790-1874), THE BACKWATER EQUATION AND THE BÉLANGER EQUATION AUTHOR: Hubert CHANSON HYDRAULIC MODEL REPORTS This report is published by the Division of Civil Engineering at the University of Queensland. Lists of recently-published titles of this series and of other publications are provided at the end of this report. Requests for copies of any of these documents should be addressed to the Civil Engineering Secretary. The interpretation and opinions expressed herein are solely those of the author(s). Considerable care has been taken to ensure accuracy of the material presented. Nevertheless, responsibility for the use of this material rests with the user. Division of Civil Engineering The University of Queensland Brisbane QLD 4072 AUSTRALIA Telephone: (61 7) 3365 3619 Fax: (61 7) 3365 4599 URL: http://www.eng.uq.edu.au/civil/ First published in 2008 by Division of Civil Engineering The University of Queensland, Brisbane QLD 4072, Australia © Chanson This book is copyright ISBN No. 9781864999211 The University of Queensland, St Lucia QLD JEAN-BAPTISTE CHARLES JOSEPH BÉLANGER (1790-1874), THE BACKWATER EQUATION AND THE BÉLANGER EQUATION by Hubert CHANSON Professor, Division of Civil Engineering, School of Engineering, The University of Queensland, Brisbane QLD 4072, Australia Ph.: (61 7) 3365 3619, Fax: (61 7) 3365 4599, Email: [email protected] Url: http://www.uq.edu.au/~e2hchans/ REPORT No. CH69/08 ISBN 9781864999211 Division of Civil Engineering, The University of Queensland August 2008 Jean-Baptiste BÉLANGER (1790-1874) (Courtesy of the Bibliothèque de l'Ecole Nationale Supérieure des Ponts et Chaussées) Abstract In an open channel, the transition from a high-velocity open channel flow to a fluvial motion is a flow singularity called a hydraulic jump. -
Karl Weierstraß – Zum 200. Geburtstag „Alles Im Leben Kommt Doch Leider Zu Spät“ Reinhard Bölling Universität Potsdam, Institut Für Mathematik Prolog Nunmehr Im 74
1 Karl Weierstraß – zum 200. Geburtstag „Alles im Leben kommt doch leider zu spät“ Reinhard Bölling Universität Potsdam, Institut für Mathematik Prolog Nunmehr im 74. Lebensjahr stehend, scheint es sehr wahrscheinlich, dass dies mein einziger und letzter Beitrag über Karl Weierstraß für die Mediathek meiner ehemaligen Potsdamer Arbeitsstätte sein dürfte. Deshalb erlaube ich mir, einige persönliche Bemerkungen voranzustellen. Am 9. November 1989 ging die Nachricht von der Öffnung der Berliner Mauer um die Welt. Am Tag darauf schrieb mir mein Freund in Stockholm: „Herzlich willkommen!“ Ich besorgte das damals noch erforderliche Visum in der Botschaft Schwedens und fuhr im Januar 1990 nach Stockholm. Endlich konnte ich das Mittag- Leffler-Institut in Djursholm, im nördlichen Randgebiet Stockholms gelegen, besuchen. Dort befinden sich umfangreiche Teile des Nachlasses von Weierstraß und Kowalewskaja, die von Mittag-Leffler zusammengetragen worden waren. Ich hatte meine Arbeit am Briefwechsel zwischen Weierstraß und Kowalewskaja, die meine erste mathematikhistorische Publikation werden sollte, vom Inhalt her abgeschlossen. Das Manuskript lag in nahezu satzfertiger Form vor und sollte dem Verlag übergeben werden. Geradezu selbstverständlich wäre es für diese Arbeit gewesen, die Archivalien im Mittag-Leffler-Institut zu studieren. Aber auch als Mitarbeiter des Karl-Weierstraß- Institutes für Mathematik in Ostberlin gehörte ich nicht zu denen, die man ins westliche Ausland reisen ließ. – Nun konnte ich mir also endlich einen ersten Überblick über die Archivalien im Mittag-Leffler-Institut verschaffen. Ich studierte in jenen Tagen ohne Unterbrechung von morgens bis abends Schriftstücke, Dokumente usw. aus dem dortigen Archiv, denn mir stand nur eine Woche zur Verfügung. Am zweiten Tag in Djursholm entdeckte ich unter Papieren ganz anderen Inhalts einige lose Blätter, die Kowalewskaja beschrieben hatte. -
Halloweierstrass
Happy Hallo WEIERSTRASS Did you know that Weierestrass was born on Halloween? Neither did we… Dmitriy Bilyk will be speaking on Lacunary Fourier series: from Weierstrass to our days Monday, Oct 31 at 12:15pm in Vin 313 followed by Mesa Pizza in the first floor lounge Brought to you by the UMN AMS Student Chapter and born in Ostenfelde, Westphalia, Prussia. sent to University of Bonn to prepare for a government position { dropped out. studied mathematics at the M¨unsterAcademy. University of K¨onigsberg gave him an honorary doctor's degree March 31, 1854. 1856 a chair at Gewerbeinstitut (now TU Berlin) professor at Friedrich-Wilhelms-Universit¨atBerlin (now Humboldt Universit¨at) died in Berlin of pneumonia often cited as the father of modern analysis Karl Theodor Wilhelm Weierstrass 31 October 1815 { 19 February 1897 born in Ostenfelde, Westphalia, Prussia. sent to University of Bonn to prepare for a government position { dropped out. studied mathematics at the M¨unsterAcademy. University of K¨onigsberg gave him an honorary doctor's degree March 31, 1854. 1856 a chair at Gewerbeinstitut (now TU Berlin) professor at Friedrich-Wilhelms-Universit¨atBerlin (now Humboldt Universit¨at) died in Berlin of pneumonia often cited as the father of modern analysis Karl Theodor Wilhelm Weierstraß 31 October 1815 { 19 February 1897 born in Ostenfelde, Westphalia, Prussia. sent to University of Bonn to prepare for a government position { dropped out. studied mathematics at the M¨unsterAcademy. University of K¨onigsberg gave him an honorary doctor's degree March 31, 1854. 1856 a chair at Gewerbeinstitut (now TU Berlin) professor at Friedrich-Wilhelms-Universit¨atBerlin (now Humboldt Universit¨at) died in Berlin of pneumonia often cited as the father of modern analysis Karl Theodor Wilhelm Weierstraß 31 October 1815 { 19 February 1897 sent to University of Bonn to prepare for a government position { dropped out. -
GYRODYNAMICS Introduction to the Dynamics of Rigid Bodies
2 GYRODYNAMICS Introduction to the dynamics of rigid bodies Introduction. Though Newton wrote on many topics—and may well have given thought to the odd behavior of tops—I am not aware that he committed any of that thought to writing. But by Euler was active in the field, and it has continued to bedevil the thought of mathematical physicists. “Extended rigid bodies” are classical abstractions—alien both to relativity and to quantum mechanics—which are revealed to our dynamical imaginations not so much by commonplace Nature as by, in Maxwell’s phrase, the “toys of Youth.” That such toys behave “strangely” is evident to the most casual observer, but the detailed theory of their behavior has become notorious for being elusive, surprising and difficult at every turn. Its formulation has required and inspired work of wonderful genius: it has taught us much of great worth, and clearly has much to teach us still. Early in my own education as a physicist I discovered that I could not understand—or, when I could understand, remained unpersuaded by—the “elementary explanations” of the behavior of tops & gyros which are abundant in the literature. So I fell into the habit of avoiding the field, waiting for the day when I could give to it the time and attention it obviously required and deserved. I became aware that my experience was far from atypical: according to Goldstein it was in fact a similar experience that motivated Klein & Sommerfeld to write their 4-volume classic, Theorie des Kreisels (–). In November I had occasion to consult my Classical Mechanics II students concerning what topic we should take up to finish out the term. -
A Century of Mathematics in America, Peter Duren Et Ai., (Eds.), Vol
Garrett Birkhoff has had a lifelong connection with Harvard mathematics. He was an infant when his father, the famous mathematician G. D. Birkhoff, joined the Harvard faculty. He has had a long academic career at Harvard: A.B. in 1932, Society of Fellows in 1933-1936, and a faculty appointmentfrom 1936 until his retirement in 1981. His research has ranged widely through alge bra, lattice theory, hydrodynamics, differential equations, scientific computing, and history of mathematics. Among his many publications are books on lattice theory and hydrodynamics, and the pioneering textbook A Survey of Modern Algebra, written jointly with S. Mac Lane. He has served as president ofSIAM and is a member of the National Academy of Sciences. Mathematics at Harvard, 1836-1944 GARRETT BIRKHOFF O. OUTLINE As my contribution to the history of mathematics in America, I decided to write a connected account of mathematical activity at Harvard from 1836 (Harvard's bicentennial) to the present day. During that time, many mathe maticians at Harvard have tried to respond constructively to the challenges and opportunities confronting them in a rapidly changing world. This essay reviews what might be called the indigenous period, lasting through World War II, during which most members of the Harvard mathe matical faculty had also studied there. Indeed, as will be explained in §§ 1-3 below, mathematical activity at Harvard was dominated by Benjamin Peirce and his students in the first half of this period. Then, from 1890 until around 1920, while our country was becoming a great power economically, basic mathematical research of high quality, mostly in traditional areas of analysis and theoretical celestial mechanics, was carried on by several faculty members. -
Chasles' Bad Relations
Chasles' bad relations Christophe Ritzenthaler September 10, 2004 Michel Chasles (1793-1880) 1 Introduction We give here a very atypical orientation to Chasles' life. In particular we will not deal with the ordinary aspects of his life and work. This can be found in many places (in particular [1]). We mention only that, as a mathemati- cian, he synthesized and generalized the whole geometric knowledge of his time (projective geometry, conic sections, duality and homography) - even if sometimes, (as he didn't speak German), he merely rediscovered some of these results - ([3]). Also, as a historian of mathematics, he wrote a history of geometry ([5] and two controversial essays ( [2],[4]). The following list of honors should convince us of the seriousness of this character : Membre de l'Institut, professeur de Géométrie supérieure à la faculté des Sciences de Paris, membre de la Société royale de Londres, membre honoraire de la Société royale d'Irlande, de la Société philosophique de Cambridge, de l'Académie impériale des Sciences de Saint-Pétersbourg, associé de l'Académie royale des Sciences de Brux- elles,correspondant de l'académie ponticale des Nuovi Lincei de Rome, membre de lAcadémie royale de Berlin, de l'Académie royale des Sciences de Turin, de l'Académie royale des Sciences de Naples, de l'Académie de Lincei de Rome, de la Société royale danoise des Sciences de Copenhague, de l'Académie royale des Sciences de Stockholm, de l'Académie des Sciences de l'Institut de Bologne, de l'Institut roual lombard de Milan, de la Société italienne des Sciences de Modène, correspondant de l'Académie royale des Sciences de Madrid, de l'Institut vénitien des Sciences, Lettres et Arts, membre honoraire de l'Académie royale des Sciences, Lettres et Arts de Modène, de l'Athénée vénitien des Sciences et Lettres, de l'Université d'Odessa, de l'Académie américaine des Sciences et Arts de Boston, de l'Académie nationale des sciences d'Amérique. -
Two Series Expansions for the Logarithm of the Gamma Function Involving Stirling Numbers and Containing Only Rational −1 Coefficients for Certain Arguments Related to Π
J. Math. Anal. Appl. 442 (2016) 404–434 Contents lists available at ScienceDirect Journal of Mathematical Analysis and Applications www.elsevier.com/locate/jmaa Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational −1 coefficients for certain arguments related to π Iaroslav V. Blagouchine ∗ University of Toulon, France a r t i c l e i n f o a b s t r a c t Article history: In this paper, two new series for the logarithm of the Γ-function are presented and Received 10 September 2015 studied. Their polygamma analogs are also obtained and discussed. These series Available online 21 April 2016 involve the Stirling numbers of the first kind and have the property to contain only Submitted by S. Tikhonov − rational coefficients for certain arguments related to π 1. In particular, for any value of the form ln Γ( 1 n ± απ−1)andΨ ( 1 n ± απ−1), where Ψ stands for the Keywords: 2 k 2 k 1 Gamma function kth polygamma function, α is positive rational greater than 6 π, n is integer and k Polygamma functions is non-negative integer, these series have rational terms only. In the specified zones m −2 Stirling numbers of convergence, derived series converge uniformly at the same rate as (n ln n) , Factorial coefficients where m =1, 2, 3, ..., depending on the order of the polygamma function. Explicit Gregory’s coefficients expansions into the series with rational coefficients are given for the most attracting Cauchy numbers −1 −1 1 −1 −1 1 −1 values, such as ln Γ(π ), ln Γ(2π ), ln Γ( 2 + π ), Ψ(π ), Ψ( 2 + π )and −1 Ψk(π ). -
Augustin-Louis Cauchy - Wikipedia, the Free Encyclopedia 1/6/14 3:35 PM Augustin-Louis Cauchy from Wikipedia, the Free Encyclopedia
Augustin-Louis Cauchy - Wikipedia, the free encyclopedia 1/6/14 3:35 PM Augustin-Louis Cauchy From Wikipedia, the free encyclopedia Baron Augustin-Louis Cauchy (French: [oɡystɛ̃ Augustin-Louis Cauchy lwi koʃi]; 21 August 1789 – 23 May 1857) was a French mathematician who was an early pioneer of analysis. He started the project of formulating and proving the theorems of infinitesimal calculus in a rigorous manner, rejecting the heuristic Cauchy around 1840. Lithography by Zéphirin principle of the Belliard after a painting by Jean Roller. generality of algebra exploited by earlier Born 21 August 1789 authors. He defined Paris, France continuity in terms of Died 23 May 1857 (aged 67) infinitesimals and gave Sceaux, France several important Nationality French theorems in complex Fields Mathematics analysis and initiated the Institutions École Centrale du Panthéon study of permutation École Nationale des Ponts et groups in abstract Chaussées algebra. A profound École polytechnique mathematician, Cauchy Alma mater École Nationale des Ponts et exercised a great Chaussées http://en.wikipedia.org/wiki/Augustin-Louis_Cauchy Page 1 of 24 Augustin-Louis Cauchy - Wikipedia, the free encyclopedia 1/6/14 3:35 PM influence over his Doctoral Francesco Faà di Bruno contemporaries and students Viktor Bunyakovsky successors. His writings Known for See list cover the entire range of mathematics and mathematical physics. "More concepts and theorems have been named for Cauchy than for any other mathematician (in elasticity alone there are sixteen concepts and theorems named for Cauchy)."[1] Cauchy was a prolific writer; he wrote approximately eight hundred research articles and five complete textbooks. He was a devout Roman Catholic, strict Bourbon royalist, and a close associate of the Jesuit order. -
Mathematical Genealogy of the Wellesley College Department Of
Nilos Kabasilas Mathematical Genealogy of the Wellesley College Department of Mathematics Elissaeus Judaeus Demetrios Kydones The Mathematics Genealogy Project is a service of North Dakota State University and the American Mathematical Society. http://www.genealogy.math.ndsu.nodak.edu/ Georgios Plethon Gemistos Manuel Chrysoloras 1380, 1393 Basilios Bessarion 1436 Mystras Johannes Argyropoulos Guarino da Verona 1444 Università di Padova 1408 Cristoforo Landino Marsilio Ficino Vittorino da Feltre 1462 Università di Firenze 1416 Università di Padova Angelo Poliziano Theodoros Gazes Ognibene (Omnibonus Leonicenus) Bonisoli da Lonigo 1477 Università di Firenze 1433 Constantinople / Università di Mantova Università di Mantova Leo Outers Moses Perez Scipione Fortiguerra Demetrios Chalcocondyles Jacob ben Jehiel Loans Thomas à Kempis Rudolf Agricola Alessandro Sermoneta Gaetano da Thiene Heinrich von Langenstein 1485 Université Catholique de Louvain 1493 Università di Firenze 1452 Mystras / Accademia Romana 1478 Università degli Studi di Ferrara 1363, 1375 Université de Paris Maarten (Martinus Dorpius) van Dorp Girolamo (Hieronymus Aleander) Aleandro François Dubois Jean Tagault Janus Lascaris Matthaeus Adrianus Pelope Johann (Johannes Kapnion) Reuchlin Jan Standonck Alexander Hegius Pietro Roccabonella Nicoletto Vernia Johannes von Gmunden 1504, 1515 Université Catholique de Louvain 1499, 1508 Università di Padova 1516 Université de Paris 1472 Università di Padova 1477, 1481 Universität Basel / Université de Poitiers 1474, 1490 Collège Sainte-Barbe -
Poe's Poet-Mathematician: Evariste Galois
III. Where Does Science Come From? Poe’s Poet-Mathematician: Evariste Galois by David Shavin Poe’s Dupin: “As poet and determined from the overall di- mathematician, he would rection discovered by the geo- reason well; as mere mathe- metric overview. It was this matician, he could not have grand manner of considering the reasoned at all.” shapes of nature, which was dis- Poe’s Narrator to Dupin: covered by the students of “You have a quarrel on hand, Monge . .”1 I see,” said I, “with some of the algebraists of Paris . .” I. Dupin, Poe’s Poet- Mathematician Charles Dupin (1819) on Descriptive Geometry Aug. 20—In 1841, Edgar Allan On the “general and purely Poe created the fictional charac- rational geometry, of which de- ter, the poet mathematician C. scriptive geometry is only the Auguste Dupin. He first appears graphic translation . one’s in “The Murders in the Rue mind must be especially trained Morgue” (MRM), in which his in this general geometry. One “descriptive geometry” method must be able to represent the succeeds in solving the crime, shapes of bodies in space, and to Evariste Galois while the detailed and exhaus- ideally combine these shapes by tive methods of Police Prefect the sole power of imagination. The mind learns to see G____ prove hopeless. In the previous year, 1840, Pre- inwardly and with perfect clarity the individual lines fect G____, that is, the Police Prefect of Paris, Henri and surfaces, and families of lines and surfaces; it ac- Louis Gisquet, had issued his Memoires, which in- quires a feeling for the character of these families and cluded a curious dismissal of the violent death of Eva- individuals; it learns to see them, combine them, and riste Galois, one of the poet-mathematician students of foresee the results of their intersections and of their Gauss’ epic, Disquisitiones Arithmeticae.2 The case is more or less intimate contacts, etc. -
A Survey of the Development of Geometry up to 1870
A Survey of the Development of Geometry up to 1870∗ Eldar Straume Department of mathematical sciences Norwegian University of Science and Technology (NTNU) N-9471 Trondheim, Norway September 4, 2014 Abstract This is an expository treatise on the development of the classical ge- ometries, starting from the origins of Euclidean geometry a few centuries BC up to around 1870. At this time classical differential geometry came to an end, and the Riemannian geometric approach started to be developed. Moreover, the discovery of non-Euclidean geometry, about 40 years earlier, had just been demonstrated to be a ”true” geometry on the same footing as Euclidean geometry. These were radically new ideas, but henceforth the importance of the topic became gradually realized. As a consequence, the conventional attitude to the basic geometric questions, including the possible geometric structure of the physical space, was challenged, and foundational problems became an important issue during the following decades. Such a basic understanding of the status of geometry around 1870 enables one to study the geometric works of Sophus Lie and Felix Klein at the beginning of their career in the appropriate historical perspective. arXiv:1409.1140v1 [math.HO] 3 Sep 2014 Contents 1 Euclideangeometry,thesourceofallgeometries 3 1.1 Earlygeometryandtheroleoftherealnumbers . 4 1.1.1 Geometric algebra, constructivism, and the real numbers 7 1.1.2 Thedownfalloftheancientgeometry . 8 ∗This monograph was written up in 2008-2009, as a preparation to the further study of the early geometrical works of Sophus Lie and Felix Klein at the beginning of their career around 1870. The author apologizes for possible historiographic shortcomings, errors, and perhaps lack of updated information on certain topics from the history of mathematics.