A Survey of the Development of Geometry up to 1870

Total Page:16

File Type:pdf, Size:1020Kb

A Survey of the Development of Geometry up to 1870 A Survey of the Development of Geometry up to 1870∗ Eldar Straume Department of mathematical sciences Norwegian University of Science and Technology (NTNU) N-9471 Trondheim, Norway September 4, 2014 Abstract This is an expository treatise on the development of the classical ge- ometries, starting from the origins of Euclidean geometry a few centuries BC up to around 1870. At this time classical differential geometry came to an end, and the Riemannian geometric approach started to be developed. Moreover, the discovery of non-Euclidean geometry, about 40 years earlier, had just been demonstrated to be a ”true” geometry on the same footing as Euclidean geometry. These were radically new ideas, but henceforth the importance of the topic became gradually realized. As a consequence, the conventional attitude to the basic geometric questions, including the possible geometric structure of the physical space, was challenged, and foundational problems became an important issue during the following decades. Such a basic understanding of the status of geometry around 1870 enables one to study the geometric works of Sophus Lie and Felix Klein at the beginning of their career in the appropriate historical perspective. arXiv:1409.1140v1 [math.HO] 3 Sep 2014 Contents 1 Euclideangeometry,thesourceofallgeometries 3 1.1 Earlygeometryandtheroleoftherealnumbers . 4 1.1.1 Geometric algebra, constructivism, and the real numbers 7 1.1.2 Thedownfalloftheancientgeometry . 8 ∗This monograph was written up in 2008-2009, as a preparation to the further study of the early geometrical works of Sophus Lie and Felix Klein at the beginning of their career around 1870. The author apologizes for possible historiographic shortcomings, errors, and perhaps lack of updated information on certain topics from the history of mathematics. Comments or corrections from the reader are most welcome, and may contribute to an improved later edition. 1 1.1.3 The ancient geometry: Its failures and its final algebraiza- tion .............................. 9 1.2 The decline of pure geometry and rise of analytic geometry . 11 1.3 Theadventofthenewgeometries. 13 2 Classicaldifferentialgeometry 16 2.1 Curvesandtheirgeometricinvariants . 16 2.2 Surfacesandtheircurvatureinvariants . 19 2.2.1 TheGaussianapproach . 20 2.2.2 French and Italian response to the Gaussian approach . 25 2.2.3 Curves on a surface and the Gauss-Bonnet theorem . 26 2.3 Surfaces in classical analytic geometry . 28 2.3.1 Ruled and developable surfaces . 28 2.3.2 Minimalsurfaces ....................... 31 2.3.3 Dupin’s cyclides and some related topics . 33 2.3.4 Pseudosphericalsurfaces. 35 2.3.5 Coordinate geometry, triply orthogonal systems, and gen- eralizedcyclides ....................... 36 2.4 Riemann and the birth of modern differential geometry . 38 2.4.1 Riemann’s lecture and his metric approach to geometry . 39 2.4.2 The beginning of modern differential geometry . 42 3 Projective geometry 43 3.1 Theoriginsofprojectivegeometry . 43 3.1.1 Developmentsinthe 16thand17thcentury . 44 3.1.2 Euler’s affine geometry and Monge’s descriptive geometry 46 3.2 The riseofprojectivegeometryin the 19thcentury . 47 3.2.1 Poncelet and the creation of projective geometry . 48 3.2.2 The Principle of Continuity and the Principle of Duality . 50 3.2.3 Thecross-ratioandharmonicsets . 52 3.3 Theanalystandthesynthesist . 54 3.3.1 Poncelet,Gergonne,andChasles . 54 3.3.2 M¨obius,Pl¨ucker,andSteiner . 56 3.3.3 Steiner,vonStaudt,andCremona . 58 3.4 Somebasicanalyticdevelopments. 63 3.4.1 Algebraization and homogeneous coordinates . 64 3.4.2 M¨obius and his approach to duality . 68 3.4.3 Classical algebraic geometry and Pl¨ucker’s formulae for planecurves.......................... 70 3.4.4 “Projective geometry is all geometry” (Cayley 1858) . 74 3.5 Linegeometry............................. 77 3.5.1 Raysystemsandfocalsurfaces . 77 3.5.2 Basic ideas and definitions . 78 3.5.3 Pl¨ucker’snewappoach. 80 2 4 Non-Euclidean geometry 82 4.1 The discoveries of Bolyai, Lobachevsky, and Gauss . 83 4.2 Absolute geometry and the Euclidean parallel postulate . 84 4.3 Attemptedproofsoftheparallelpostulate . 85 4.4 Theemergenceofnon-Euclideangeometry . 88 4.4.1 The trigonometry of Lambert, Schweikart, and Taurinus . 88 4.4.2 OntheworkofBolyaiandLobachevsky . 90 4.4.3 Beltrami and his model of non-Euclidean geometry . 92 5 The classical geometries: Euclidean, spherical, and hyperbolic 94 5.1 A unified view of the three classical geometries . 94 5.2 The conception of higher-dimensional geometry . 96 5.3 Foundations of geometryand the geometryof Space . 98 5.4 Riemann–Helmholtz–Lie space problem . 99 1 Euclidean geometry, the source of all geome- tries At the end of the 18th century, the notion of geometry was largely synony- mous with Euclidean geometry, namely the classical Greek geometry which had prevailed for more than 2000 years. In the 17th century, Kepler, Galileo and Newton were leading figures in the Copernican revolution which had paved the way for the birth of modern science, and moreover, which finally abandoned the long lasting doctrines and the supreme authority of Aristotle among the scholars. Certainly, the 17th century was also a century of great advances in mathematics, such as the rise of calculus, but still the basic role of Euclidean geometry was not challenged. Indeed, in his famous work Principia Mathemat- ica (1687) Newton was careful to recast his demonstrations in geometric terms, and analytical calculations are almost completely missing. In particular, New- ton formulated his basic laws for the universe in the framework of Euclidean geometry. However, during the 18th century another dominating authority had estab- lished himself in the intellectual world, namely the German philosopher Im- manuel Kant (1724–1804). He maintained that Euclidean geometry was the only absolute geometry, known to be true a priori in our mind as an inevitable necessity of thought, and no other geometry was thinkable. Moreover, Kant regarded the Newtonian universe as the true model of the physical space, sup- ported by our endowed intuition about space and time, and independent of experience. In reality, the Kantian doctrine on the nature of space and geom- etry hampered the development of science, until the outburst of the inevitable geometric ”revolution” in the 19th century led to the discovery of non-Euclidean geometries and radically changed geometry as a mathematical science. 3 1.1 Early geometry and the role of the real numbers Geometry is in fact encountered in the first written records of mankind. But what are the origins of the Euclidean geometry? In his truly remarkable work, organized into 13 books usually referred to as Euclid’s Elements, Euclid (325– 265 BC) presented a large part of the geometric and algebraic knowledge of Babylonian, Egyptian and Greek scholars at his time. He did this in a deduc- tive style, which has become known as the axiomatic method of mathematics. Geometry as developed in the Elements is usually referred to as synthetic geom- etry. The basic undefined geometric objects are points, lines, planes, whereas notions such as line segments, angles and circles can be defined, and moreover, the undefined notion of congruence expresses ”equality” among them. Start- ing from five basic postulates and five common notions (or rules of logic), a logical chain consisting of 465 propositions were deduced and presented in the Elements. For the convenience of the reader, let us be more specific and state the postulates — somewhat modernized— as follows: E1 : There is a unique line passing through any two distinct points. E2 : Any segment on a line may be extended by any given segment. E3 : For every point O and every other point P , there is circle with center O and radius OP. E4 : All right angles are congruent to each other. E5 : If a line intersects two other lines so that the two interior angles on one side of it are together less than two right angles, then the two lines will meet at a point somewhere on that side. The ancient geometry flourished for about 1000 years, primarily in Greece and Alexandria in Egypt. Besides Euclid some of the prominent men from this epoch are Thales of Miletus (ca. 600 BC), Pythagoras (585–501 BC), Plato (429–348 BC), Eudoxus of Cnidus (408–355? BC), Aristotle (384–322 BC), Archimedes of Syracuse (287–212 BC), Appolonius of Perga (262–190 BC), and Pappus of Alexandria (290–350 AD). The Pythagorean school played a crucial role, developing number theory which they also linked to geometry, number mystics and music theory. In fact, Pythagoras himself is said to have coined the words ”philosophy” and ”mathematics”. The Platonic Academy in Athens became the mathematical center of the world and, for example, Aristotle and Eudoxus had been students at this academy. Many ot the ancient mathematical texts have been lost, including advanced works by Euclid and Appolonius. For example, Appolonius introduced the names ellipse, parabola and hyperbola in his famous treatise Conic Sections, but some of the volumes are irretrievably lost. Moreover, Euclid’s three-volume work called the Porisms, apparently on advanced geometry, is also lost. However, the Elements of Euclid have survived throught the centuries by manuscript copies which have transmitted the geometric truths to new generations, and with minor 4 changes. Through Euclids’s authority, the Elements teach geometry with a definite approach, but with no motivation even of the most sophisticated terms. Moreover, previous or alternative approaches, which could have filled some of the gaps, are ignored. The first printed edition was in 1482, and over thousand editions have appeared since then. In effect, the Elements have remained in use as a textbook practically unchanged for more than 2000 years, and up to modern times the first six books have served as the student’s usual introduction to geometry. It is somewhat surprising that Euclid did not use numbers in his geome- try. Namely, the geometric objects such as line segments, angles, areas etc.
Recommended publications
  • Geometric Algebra for Vector Fields Analysis and Visualization: Mathematical Settings, Overview and Applications Chantal Oberson Ausoni, Pascal Frey
    Geometric algebra for vector fields analysis and visualization: mathematical settings, overview and applications Chantal Oberson Ausoni, Pascal Frey To cite this version: Chantal Oberson Ausoni, Pascal Frey. Geometric algebra for vector fields analysis and visualization: mathematical settings, overview and applications. 2014. hal-00920544v2 HAL Id: hal-00920544 https://hal.sorbonne-universite.fr/hal-00920544v2 Preprint submitted on 18 Sep 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Geometric algebra for vector field analysis and visualization: mathematical settings, overview and applications Chantal Oberson Ausoni and Pascal Frey Abstract The formal language of Clifford’s algebras is attracting an increasingly large community of mathematicians, physicists and software developers seduced by the conciseness and the efficiency of this compelling system of mathematics. This contribution will suggest how these concepts can be used to serve the purpose of scientific visualization and more specifically to reveal the general structure of complex vector fields. We will emphasize the elegance and the ubiquitous nature of the geometric algebra approach, as well as point out the computational issues at stake. 1 Introduction Nowadays, complex numerical simulations (e.g. in climate modelling, weather fore- cast, aeronautics, genomics, etc.) produce very large data sets, often several ter- abytes, that become almost impossible to process in a reasonable amount of time.
    [Show full text]
  • Exploring Physics with Geometric Algebra, Book II., , C December 2016 COPYRIGHT
    peeter joot [email protected] EXPLORINGPHYSICSWITHGEOMETRICALGEBRA,BOOKII. EXPLORINGPHYSICSWITHGEOMETRICALGEBRA,BOOKII. peeter joot [email protected] December 2016 – version v.1.3 Peeter Joot [email protected]: Exploring physics with Geometric Algebra, Book II., , c December 2016 COPYRIGHT Copyright c 2016 Peeter Joot All Rights Reserved This book may be reproduced and distributed in whole or in part, without fee, subject to the following conditions: • The copyright notice above and this permission notice must be preserved complete on all complete or partial copies. • Any translation or derived work must be approved by the author in writing before distri- bution. • If you distribute this work in part, instructions for obtaining the complete version of this document must be included, and a means for obtaining a complete version provided. • Small portions may be reproduced as illustrations for reviews or quotes in other works without this permission notice if proper citation is given. Exceptions to these rules may be granted for academic purposes: Write to the author and ask. Disclaimer: I confess to violating somebody’s copyright when I copied this copyright state- ment. v DOCUMENTVERSION Version 0.6465 Sources for this notes compilation can be found in the github repository https://github.com/peeterjoot/physicsplay The last commit (Dec/5/2016), associated with this pdf was 595cc0ba1748328b765c9dea0767b85311a26b3d vii Dedicated to: Aurora and Lance, my awesome kids, and Sofia, who not only tolerates and encourages my studies, but is also awesome enough to think that math is sexy. PREFACE This is an exploratory collection of notes containing worked examples of more advanced appli- cations of Geometric Algebra (GA), also known as Clifford Algebra.
    [Show full text]
  • Five-Dimensional Design
    PERIODICA POLYTECHNICA SER. CIV. ENG. VOL. 50, NO. 1, PP. 35–41 (2006) FIVE-DIMENSIONAL DESIGN Elek TÓTH Department of Building Constructions Budapest University of Technology and Economics H–1521 Budapest, POB. 91. Hungary Received: April 3 2006 Abstract The method architectural and engineering design and construction apply for two-dimensional rep- resentation is geometry, the axioms of which were first outlined by Euclid. The proposition of his 5th postulate started on its course a problem of geometry that provoked perhaps the most mistaken demonstrations and that remained unresolved for two thousand years, the question if the axiom of parallels can be proved. The quest for the solution of this problem led Bolyai János to revolutionary conclusions in the wake of which he began to lay the foundations of a new (absolute) geometry in the system of which planes bend and become hyperbolic. It was Einstein’s relativity theory that eventually created the possibility of the recognition of new dimensions by discussing space as well as a curved, non-linear entity. Architectural creations exist in what Kant termed the dual form of intuition, that is in time and space, thus in four dimensions. In this context the fourth dimension is to be interpreted as the current time that may be actively experienced. On the other hand there has been a dichotomy in the concept of time since ancient times. The introduction of a time-concept into the activity of the architectural designer that comprises duration, the passage of time and cyclic time opens up a so-far unknown new direction, a fifth dimension, the perfection of which may be achieved through the comprehension and the synthesis of the coded messages of building diagnostics and building reconstruction.
    [Show full text]
  • Squaring the Circle a Case Study in the History of Mathematics the Problem
    Squaring the Circle A Case Study in the History of Mathematics The Problem Using only a compass and straightedge, construct for any given circle, a square with the same area as the circle. The general problem of constructing a square with the same area as a given figure is known as the Quadrature of that figure. So, we seek a quadrature of the circle. The Answer It has been known since 1822 that the quadrature of a circle with straightedge and compass is impossible. Notes: First of all we are not saying that a square of equal area does not exist. If the circle has area A, then a square with side √A clearly has the same area. Secondly, we are not saying that a quadrature of a circle is impossible, since it is possible, but not under the restriction of using only a straightedge and compass. Precursors It has been written, in many places, that the quadrature problem appears in one of the earliest extant mathematical sources, the Rhind Papyrus (~ 1650 B.C.). This is not really an accurate statement. If one means by the “quadrature of the circle” simply a quadrature by any means, then one is just asking for the determination of the area of a circle. This problem does appear in the Rhind Papyrus, but I consider it as just a precursor to the construction problem we are examining. The Rhind Papyrus The papyrus was found in Thebes (Luxor) in the ruins of a small building near the Ramesseum.1 It was purchased in 1858 in Egypt by the Scottish Egyptologist A.
    [Show full text]
  • Projective Geometry: a Short Introduction
    Projective Geometry: A Short Introduction Lecture Notes Edmond Boyer Master MOSIG Introduction to Projective Geometry Contents 1 Introduction 2 1.1 Objective . .2 1.2 Historical Background . .3 1.3 Bibliography . .4 2 Projective Spaces 5 2.1 Definitions . .5 2.2 Properties . .8 2.3 The hyperplane at infinity . 12 3 The projective line 13 3.1 Introduction . 13 3.2 Projective transformation of P1 ................... 14 3.3 The cross-ratio . 14 4 The projective plane 17 4.1 Points and lines . 17 4.2 Line at infinity . 18 4.3 Homographies . 19 4.4 Conics . 20 4.5 Affine transformations . 22 4.6 Euclidean transformations . 22 4.7 Particular transformations . 24 4.8 Transformation hierarchy . 25 Grenoble Universities 1 Master MOSIG Introduction to Projective Geometry Chapter 1 Introduction 1.1 Objective The objective of this course is to give basic notions and intuitions on projective geometry. The interest of projective geometry arises in several visual comput- ing domains, in particular computer vision modelling and computer graphics. It provides a mathematical formalism to describe the geometry of cameras and the associated transformations, hence enabling the design of computational ap- proaches that manipulates 2D projections of 3D objects. In that respect, a fundamental aspect is the fact that objects at infinity can be represented and manipulated with projective geometry and this in contrast to the Euclidean geometry. This allows perspective deformations to be represented as projective transformations. Figure 1.1: Example of perspective deformation or 2D projective transforma- tion. Another argument is that Euclidean geometry is sometimes difficult to use in algorithms, with particular cases arising from non-generic situations (e.g.
    [Show full text]
  • How Should the College Teach Analytic Geometry?*
    1906.] THE TEACHING OF ANALYTIC GEOMETRY. 493 HOW SHOULD THE COLLEGE TEACH ANALYTIC GEOMETRY?* BY PROFESSOR HENRY S. WHITE. IN most American colleges, analytic geometry is an elective study. This fact, and the underlying causes of this fact, explain the lack of uniformity in content or method of teaching this subject in different institutions. Of many widely diver­ gent types of courses offered, a few are likely to survive, each because it is best fitted for some one purpose. It is here my purpose to advocate for the college of liberal arts a course that shall draw more largely from projective geometry than do most of our recent college text-books. This involves a restriction of the tendency, now quite prevalent, to devote much attention at the outset to miscellaneous graphs of purely statistical nature or of physical significance. As to the subject matter used in a first semester, one may formulate the question : Shall we teach in one semester a few facts about a wide variety of curves, or a wide variety of propositions about conies ? Of these alternatives the latter is to be preferred, for the educational value of a subject is found less in its extension than in its intension ; less in the multiplicity of its parts than in their unification through a few fundamental or climactic princi­ ples. Some teachers advocate the study of a wider variety of curves, either for the sake of correlation wTith physical sci­ ences, or in order to emphasize what they term the analytic method. As to the first, there is a very evident danger of dis­ sipating the student's energy ; while to the second it may be replied that there is no one general method which can be taught, but many particular and ingenious methods for special problems, whose resemblances may be understood only when the problems have been mastered.
    [Show full text]
  • A Comparison of Differential Calculus and Differential Geometry in Two
    1 A Two-Dimensional Comparison of Differential Calculus and Differential Geometry Andrew Grossfield, Ph.D Vaughn College of Aeronautics and Technology Abstract and Introduction: Plane geometry is mainly the study of the properties of polygons and circles. Differential geometry is the study of curves that can be locally approximated by straight line segments. Differential calculus is the study of functions. These functions of calculus can be viewed as single-valued branches of curves in a coordinate system where the horizontal variable controls the vertical variable. In both studies the derivative multiplies incremental changes in the horizontal variable to yield incremental changes in the vertical variable and both studies possess the same rules of differentiation and integration. It seems that the two studies should be identical, that is, isomorphic. And, yet, students should be aware of important differences. In differential geometry, the horizontal and vertical units have the same dimensional units. In differential calculus the horizontal and vertical units are usually different, e.g., height vs. time. There are differences in the two studies with respect to the distance between points. In differential geometry, the Pythagorean slant distance formula prevails, while in the 2- dimensional plane of differential calculus there is no concept of slant distance. The derivative has a different meaning in each of the two subjects. In differential geometry, the slope of the tangent line determines the direction of the tangent line; that is, the angle with the horizontal axis. In differential calculus, there is no concept of direction; instead, the derivative describes a rate of change. In differential geometry the line described by the equation y = x subtends an angle, α, of 45° with the horizontal, but in calculus the linear relation, h = t, bears no concept of direction.
    [Show full text]
  • Greece Part 3
    Greece Chapters 6 and 7: Archimedes and Apollonius SOME ANCIENT GREEK DISTINCTIONS Arithmetic Versus Logistic • Arithmetic referred to what we now call number theory –the study of properties of whole numbers, divisibility, primality, and such characteristics as perfect, amicable, abundant, and so forth. This use of the word lives on in the term higher arithmetic. • Logistic referred to what we now call arithmetic, that is, computation with whole numbers. Number Versus Magnitude • Numbers are discrete, cannot be broken down indefinitely because you eventually came to a “1.” In this sense, any two numbers are commensurable because they could both be measured with a 1, if nothing bigger worked. • Magnitudes are continuous, and can be broken down indefinitely. You can always bisect a line segment, for example. Thus two magnitudes didn’t necessarily have to be commensurable (although of course they could be.) Analysis Versus Synthesis • Synthesis refers to putting parts together to obtain a whole. • It is also used to describe the process of reasoning from the general to the particular, as in putting together axioms and theorems to prove a particular proposition. • Proofs of the kind Euclid wrote are referred to as synthetic. Analysis Versus Synthesis • Analysis refers to taking things apart to see how they work, or so you can understand them. • It is also used to describe reasoning from the particular to the general, as in studying a particular problem to come up with a solution. • This is one general meaning of analysis: a way of solving problems, of finding the answers. Analysis Versus Synthesis • A second meaning for analysis is specific to logic and theorem proving: beginning with what you wish to prove, and reasoning from that point in hopes you can arrive at the hypotheses, and then reversing the logical steps.
    [Show full text]
  • Optimization of the Manufacturing Process for Sheet Metal Panels Considering Shape, Tessellation and Structural Stability Optimi
    Institute of Construction Informatics, Faculty of Civil Engineering Optimization of the manufacturing process for sheet metal panels considering shape, tessellation and structural stability Optimierung des Herstellungsprozesses von dünnwandigen, profilierten Aussenwandpaneelen by Fasih Mohiuddin Syed from Mysore, India A Master thesis submitted to the Institute of Construction Informatics, Faculty of Civil Engineering, University of Technology Dresden in partial fulfilment of the requirements for the degree of Master of Science Responsible Professor : Prof. Dr.-Ing. habil. Karsten Menzel Second Examiner : Prof. Dr.-Ing. Raimar Scherer Advisor : Dipl.-Ing. Johannes Frank Schüler Dresden, 14th April, 2020 Task Sheet II Task Sheet Declaration III Declaration I confirm that this assignment is my own work and that I have not sought or used the inadmissible help of third parties to produce this work. I have fully referenced and used inverted commas for all text directly quoted from a source. Any indirect quotations have been duly marked as such. This work has not yet been submitted to another examination institution – neither in Germany nor outside Germany – neither in the same nor in a similar way and has not yet been published. Dresden, Place, Date (Signature) Acknowledgement IV Acknowledgement First, I would like to express my sincere gratitude to Prof. Dr.-Ing. habil. Karsten Menzel, Chair of the "Institute of Construction Informatics" for giving me this opportunity to work on my master thesis and believing in my work. I am very grateful to Dipl.-Ing. Johannes Frank Schüler for his encouragement, guidance and support during the course of work. I would like to thank all the staff from "Institute of Construction Informatics " for their valuable support.
    [Show full text]
  • The Dual Theorem Relative to the Simson's Line
    THE DUAL THEOREM RELATIVE TO THE SIMSON’S LINE Prof. Ion Pătrașcu Frații Buzești College, Craiova, Romania Translated by Prof. Florentin Smarandache University of New Mexico, Gallup, NM 87301, USA Abstract In this article we elementarily prove some theorems on the poles and polars theory, we present the transformation using duality and we apply this transformation to obtain the dual theorem relative to the Samson’s line. I. POLE AND POLAR IN RAPPORT TO A CIRCLE Definition 1. Considering the circle COR(,), the point P in its plane PO≠ and uuur uuuur the point P ' such that OP⋅= OP' R2 . It is said about the perpendicular p constructed in the point P ' on the line OP that it is the point’s P polar, and about the point P that it is the line’s p pole. Observations M 1. If the point P belongs to the circle, its polar is the tangent in P to the circle U COR(,). uuur uuuur P' Indeed, the relation OP⋅= OP' R2 gives that PP' = . OP 2. If P is interior to the circle, its polar p is a V line exterior to the circle. 3. If P and Q are two points such that p m(POQ )= 90o , and p,q are their polars, from the definition results that p ⊥ q . Fig. 1 Proposition 1. If the point P is external to the circle COR( , ) , its polar is determined by the contact points with the circle of the tangents constructed from P to the circle Proof Let U and V be the contact points of the tangents constructed from P to the circle COR( , ) (see fig.1).
    [Show full text]
  • Lecture 3: Geometry
    E-320: Teaching Math with a Historical Perspective Oliver Knill, 2010-2015 Lecture 3: Geometry Geometry is the science of shape, size and symmetry. While arithmetic dealt with numerical structures, geometry deals with metric structures. Geometry is one of the oldest mathemati- cal disciplines and early geometry has relations with arithmetics: we have seen that that the implementation of a commutative multiplication on the natural numbers is rooted from an inter- pretation of n × m as an area of a shape that is invariant under rotational symmetry. Number systems built upon the natural numbers inherit this. Identities like the Pythagorean triples 32 +42 = 52 were interpreted geometrically. The right angle is the most "symmetric" angle apart from 0. Symmetry manifests itself in quantities which are invariant. Invariants are one the most central aspects of geometry. Felix Klein's Erlanger program uses symmetry to classify geome- tries depending on how large the symmetries of the shapes are. In this lecture, we look at a few results which can all be stated in terms of invariants. In the presentation as well as the worksheet part of this lecture, we will work us through smaller miracles like special points in triangles as well as a couple of gems: Pythagoras, Thales,Hippocrates, Feuerbach, Pappus, Morley, Butterfly which illustrate the importance of symmetry. Much of geometry is based on our ability to measure length, the distance between two points. A modern way to measure distance is to determine how long light needs to get from one point to the other. This geodesic distance generalizes to curved spaces like the sphere and is also a practical way to measure distances, for example with lasers.
    [Show full text]
  • Feb 23 Notes: Definition: Two Lines L and M Are Parallel If They Lie in The
    Feb 23 Notes: Definition: Two lines l and m are parallel if they lie in the same plane and do not intersect. Terminology: When one line intersects each of two given lines, we call that line a transversal. We define alternate interior angles, corresponding angles, alternate exterior angles, and interior angles on the same side of the transversal using various betweeness and half-plane notions. Suppose line l intersects lines m and n at points B and E, respectively, with points A and C on line m and points D and F on line n such that A-B-C and D-E-F, with A and D on the same side of l. Suppose also that G and H are points such that H-E-B- G. Then pABE and pBEF are alternate interior angles, as are pCBE and pDEB. pABG and pFEH are alternate exterior angles, as are pCBG and pDEH. pGBC and pBEF are a pair of corresponding angles, as are pGBA & pBED, pCBE & pFEH, and pABE & pDEH. pCBE and pFEB are interior angles on the same side of the transversal, as are pABE and pDEB. Our Last Theorem in Absolute Geometry: If two lines in the same plane are cut by a transversal so that a pair of alternate interior angles are congruent, the lines are parallel. Proof: Let l intersect lines m and n at points A and B respectively. Let p1 p2. Suppose m and n meet at point C. Then either p1 is exterior to ªABC, or p2 is exterior to ªABC. In the first case, the exterior angle inequality gives p1 > p2; in the second, it gives p2 > p1.
    [Show full text]