Exploring Physics with Geometric Algebra, Book II., , C December 2016 COPYRIGHT

Total Page:16

File Type:pdf, Size:1020Kb

Exploring Physics with Geometric Algebra, Book II., , C December 2016 COPYRIGHT peeter joot [email protected] EXPLORINGPHYSICSWITHGEOMETRICALGEBRA,BOOKII. EXPLORINGPHYSICSWITHGEOMETRICALGEBRA,BOOKII. peeter joot [email protected] December 2016 – version v.1.3 Peeter Joot [email protected]: Exploring physics with Geometric Algebra, Book II., , c December 2016 COPYRIGHT Copyright c 2016 Peeter Joot All Rights Reserved This book may be reproduced and distributed in whole or in part, without fee, subject to the following conditions: • The copyright notice above and this permission notice must be preserved complete on all complete or partial copies. • Any translation or derived work must be approved by the author in writing before distri- bution. • If you distribute this work in part, instructions for obtaining the complete version of this document must be included, and a means for obtaining a complete version provided. • Small portions may be reproduced as illustrations for reviews or quotes in other works without this permission notice if proper citation is given. Exceptions to these rules may be granted for academic purposes: Write to the author and ask. Disclaimer: I confess to violating somebody’s copyright when I copied this copyright state- ment. v DOCUMENTVERSION Version 0.6465 Sources for this notes compilation can be found in the github repository https://github.com/peeterjoot/physicsplay The last commit (Dec/5/2016), associated with this pdf was 595cc0ba1748328b765c9dea0767b85311a26b3d vii Dedicated to: Aurora and Lance, my awesome kids, and Sofia, who not only tolerates and encourages my studies, but is also awesome enough to think that math is sexy. PREFACE This is an exploratory collection of notes containing worked examples of more advanced appli- cations of Geometric Algebra (GA), also known as Clifford Algebra. These notes are (dis)organized into the following chapters • Relativity. This is a fairly incoherent chapter, including an attempt to develop the Lorentz transformation by requiring wave equation invariance, Lorentz transformation of the four- vector (STA) gradient, and a look at the relativistic doppler equation. • Electrodynamics. The GA formulation of Maxwell’s equation (singular in GA) is devel- oped here. Various basic topics of electrodynamics are examined using the GA toolbox, including the Biot-Savart law, the covariant form for Maxwell’s equation (Space Time Algebra, or STA), four vectors and potentials, gauge invariance, TEM waves, and some Lienard-Wiechert problems. • Lorentz Force. Here the GA form of the Lorentz force equation and its relation to the usual vectorial representation is explored. This includes some application of boosts to the force equation to examine how it transforms under observe dependent conditions. • Electrodynamic stress energy. This chapter explores concepts of electrodynamic energy and momentum density and the GA representation of the Poynting vector and the stress- energy tensors. • Quantum Mechanics. This chapter includes a look at the Dirac Lagrangian, and how this can be cast into GA form. Properties of the Pauli and Dirac bases are explored, and how various matrix operations map onto their GA equivalents. A bivector form for the angular momentum operator is examined. A multivector form for the first few spherical harmonic eigenfunctions is developed. A multivector factorization of the three and four dimensional Laplacian and the angular momentum operators are derived. • Fourier treatments. Solutions to various PDE equations are attempted using Fourier series and transforms. Much of this chapter was exploring Fourier solutions to the GA form of Maxwell’s equation, but a few other non-geometric algebra Fourier problems were also tackled. I can not promise that I have explained things in a way that is good for anybody else. My audience was essentially myself as I existed at the time of writing (i.e. undergraduate engineer- ing background), but the prerequisites, for both the mathematics and the physics, have evolved continually. xi Peeter Joot [email protected] xii CONTENTS Preface xi i relativity 1 1 wave equation based lorentz transformation derivation 3 1.1 Intro3 1.2 The wave equation for Electrodynamic fields (light)4 1.3 Verifying Lorentz invariance4 1.4 Derive Lorentz Transformation requiring invariance of the wave equation5 1.4.1 Galilean transformation7 1.4.2 Determine the transformation of coordinates that retains the form of the equations of light7 1.5 Light sphere, and relativistic metric 10 1.6 Derive relativistic Doppler shift 10 2 equations of motion given mass variation with spacetime position 11 2.1 11 2.1.1 Summarizing 16 2.2 Examine spatial components for comparison with Newtonian limit 16 3 understanding four velocity transform from rest frame 19 3.1 19 3.1.1 Invariance of relative velocity? 21 3.1.2 General invariance? 22 3.2 Appendix. Omitted details from above 23 3.2.1 exponential of a vector 23 3.2.2 v anticommutes with γ0 24 4 four vector dot product invariance and lorentz rotors 25 4.1 25 4.1.1 Invariance shown with hyperbolic trig functions 26 4.2 Geometric product formulation of Lorentz transform 26 4.2.1 Spatial rotation 27 4.2.2 Validity of the double sided spatial rotor formula 27 4.2.3 Back to time space rotation 29 4.2.4 FIXME 31 4.2.5 Apply to dot product invariance 31 5 lorentz transformation of spacetime gradient 33 xiii xiv contents 5.1 Motivation 33 5.1.1 Lets do it 33 5.1.2 transform the spacetime bivector 35 6 gravitoelectromagnetism 37 6.1 Some rough notes on reading of GravitoElectroMagnetism review 37 6.2 Definitions 37 6.3 STA form 38 6.4 Lagrangians 39 6.4.1 Field Lagrangian 39 6.4.2 Interaction Lagrangian 40 6.5 Conclusion 41 7 relativistic doppler formula 43 7.1 Transform of angular velocity four vector 43 7.2 Application of one dimensional boost 45 8 poincare transformations 47 8.1 Motivation 47 8.2 Incremental transformation in GA form 47 8.3 Consider a specific infinitesimal spatial rotation 50 8.4 Consider a specific infinitesimal boost 53 8.5 In tensor form 54 ii electrodynamics 55 9 maxwell’s equations expressed with geometric algebra 57 9.1 On different ways of expressing Maxwell’s equations 57 9.1.1 Introduction of complex vector electromagnetic field 57 9.1.2 Converting the curls in the pair of Maxwell’s equations for the electro- dynamic field to wedge and geometric products 59 9.1.3 Components of the geometric product Maxwell equation 59 10 back to maxwell’s equations 61 10.1 61 10.1.1 Regrouping terms for dimensional consistency 62 10.1.2 Refactoring the equations with the geometric product 63 10.1.3 Grouping by charge and current density 64 10.1.4 Wave equation for light 64 10.1.5 Charge and current density conservation 65 10.1.6 Electric and Magnetic field dependence on charge and current den- sity 66 10.1.7 Spacetime basis 66 10.1.8 Examining the GA form Maxwell equation in more detail 70 contents xv 10.1.9 Minkowski metric 71 11 macroscopic maxwell’s equation 73 11.1 Motivation 73 11.2 Consolidation attempt 73 11.2.1 Continuity equation 75 12 expressing wave equation exponential solutions using four vectors 77 12.1 Mechanical Wave equation Solutions 77 13 gaussian surface invariance for radial field 81 13.1 Flux independence of surface 81 13.1.1 Suggests dual form of Gauss’s law can be natural 83 14 electrodynamic wave equation solutions 85 14.1 Motivation 85 14.2 Electromagnetic wave equation solutions 85 14.2.1 Separation of variables solution of potential equations 85 14.2.2 Faraday bivector and tensor from the potential solutions 86 14.2.3 Examine the Lorentz gauge constraint 87 14.2.4 Summarizing so far 88 14.3 Looking for more general solutions 89 14.3.1 Using mechanical wave solutions as a guide 89 14.3.2 Back to the electrodynamic case 90 14.4 Take II. A bogus attempt at a less general plane wave like solution 91 14.4.1 curl term 92 14.4.2 divergence term 92 14.5 Summary 93 15 magnetic field between two parallel wires 95 15.1 Student’s guide to Maxwell’s’ equations. problem 4.1 95 15.1.1 95 15.1.2 Original problem 96 16 field due to line charge in arc 99 16.1 Motivation 99 16.2 Just the stated problem 99 16.3 Field at other points 100 16.3.1 On the z-axis 101 17 charge line element 103 17.1 Motivation 103 17.2 Calculation of electric field for non-infinite length line element 103 18 biot savart derivation 107 18.1 Motivation 107 xvi contents 18.2 Do it 107 18.2.1 Setup. Ampere-Maxwell equation for steady state 107 18.2.2 Three vector potential solution 108 18.2.3 Gauge freedom 109 18.2.4 Solution to the vector Poisson equation 109 19 vector forms of maxwell’s equations as projection and rejection oper- ations 111 19.1 Vector form of Maxwell’s equations 111 19.1.1 Gauss’s law for electrostatics 111 19.1.2 Gauss’s law for magnetostatics 112 19.1.3 Faraday’s Law 113 19.1.4 Ampere Maxwell law 114 19.2 Summary of traditional Maxwell’s equations as projective operations on Maxwell Equation 115 20 application of stokes theorem to the maxwell equation 117 20.1 Spacetime domain 117 20.2 Spatial domain 123 21 maxwell equation boundary conditions 127 21.1 Free space 127 21.2 Maxwell equation boundary conditions in media 130 21.3 Problems 133 22 tensor relations from bivector field equation 137 22.1 Motivation 137 22.2 Electrodynamic tensor 137 22.2.1 Tensor components 138 22.2.2 Electromagnetic tensor components 139 22.2.3 reciprocal tensor (name?) 140 22.2.4 Lagrangian density 140 22.2.5 Field equations in tensor form 145 22.2.6 Lagrangian density in terms of potential 147 23 four vector potential 149 23.1 149 23.1.1 150 23.1.2 Dimensions 150 23.1.3 Expansion in terms of components.
Recommended publications
  • Geometric Algebra for Vector Fields Analysis and Visualization: Mathematical Settings, Overview and Applications Chantal Oberson Ausoni, Pascal Frey
    Geometric algebra for vector fields analysis and visualization: mathematical settings, overview and applications Chantal Oberson Ausoni, Pascal Frey To cite this version: Chantal Oberson Ausoni, Pascal Frey. Geometric algebra for vector fields analysis and visualization: mathematical settings, overview and applications. 2014. hal-00920544v2 HAL Id: hal-00920544 https://hal.sorbonne-universite.fr/hal-00920544v2 Preprint submitted on 18 Sep 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Geometric algebra for vector field analysis and visualization: mathematical settings, overview and applications Chantal Oberson Ausoni and Pascal Frey Abstract The formal language of Clifford’s algebras is attracting an increasingly large community of mathematicians, physicists and software developers seduced by the conciseness and the efficiency of this compelling system of mathematics. This contribution will suggest how these concepts can be used to serve the purpose of scientific visualization and more specifically to reveal the general structure of complex vector fields. We will emphasize the elegance and the ubiquitous nature of the geometric algebra approach, as well as point out the computational issues at stake. 1 Introduction Nowadays, complex numerical simulations (e.g. in climate modelling, weather fore- cast, aeronautics, genomics, etc.) produce very large data sets, often several ter- abytes, that become almost impossible to process in a reasonable amount of time.
    [Show full text]
  • Finite Projective Geometries 243
    FINITE PROJECTÎVEGEOMETRIES* BY OSWALD VEBLEN and W. H. BUSSEY By means of such a generalized conception of geometry as is inevitably suggested by the recent and wide-spread researches in the foundations of that science, there is given in § 1 a definition of a class of tactical configurations which includes many well known configurations as well as many new ones. In § 2 there is developed a method for the construction of these configurations which is proved to furnish all configurations that satisfy the definition. In §§ 4-8 the configurations are shown to have a geometrical theory identical in most of its general theorems with ordinary projective geometry and thus to afford a treatment of finite linear group theory analogous to the ordinary theory of collineations. In § 9 reference is made to other definitions of some of the configurations included in the class defined in § 1. § 1. Synthetic definition. By a finite projective geometry is meant a set of elements which, for sugges- tiveness, are called points, subject to the following five conditions : I. The set contains a finite number ( > 2 ) of points. It contains subsets called lines, each of which contains at least three points. II. If A and B are distinct points, there is one and only one line that contains A and B. HI. If A, B, C are non-collinear points and if a line I contains a point D of the line AB and a point E of the line BC, but does not contain A, B, or C, then the line I contains a point F of the line CA (Fig.
    [Show full text]
  • New Foundations for Geometric Algebra1
    Text published in the electronic journal Clifford Analysis, Clifford Algebras and their Applications vol. 2, No. 3 (2013) pp. 193-211 New foundations for geometric algebra1 Ramon González Calvet Institut Pere Calders, Campus Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain E-mail : [email protected] Abstract. New foundations for geometric algebra are proposed based upon the existing isomorphisms between geometric and matrix algebras. Each geometric algebra always has a faithful real matrix representation with a periodicity of 8. On the other hand, each matrix algebra is always embedded in a geometric algebra of a convenient dimension. The geometric product is also isomorphic to the matrix product, and many vector transformations such as rotations, axial symmetries and Lorentz transformations can be written in a form isomorphic to a similarity transformation of matrices. We collect the idea Dirac applied to develop the relativistic electron equation when he took a basis of matrices for the geometric algebra instead of a basis of geometric vectors. Of course, this way of understanding the geometric algebra requires new definitions: the geometric vector space is defined as the algebraic subspace that generates the rest of the matrix algebra by addition and multiplication; isometries are simply defined as the similarity transformations of matrices as shown above, and finally the norm of any element of the geometric algebra is defined as the nth root of the determinant of its representative matrix of order n. The main idea of this proposal is an arithmetic point of view consisting of reversing the roles of matrix and geometric algebras in the sense that geometric algebra is a way of accessing, working and understanding the most fundamental conception of matrix algebra as the algebra of transformations of multiple quantities.
    [Show full text]
  • Notices of the American Mathematical Society 35 Monticello Place, Pawtucket, RI 02861 USA American Mathematical Society Distribution Center
    ISSN 0002-9920 Notices of the American Mathematical Society 35 Monticello Place, Pawtucket, RI 02861 USA Society Distribution Center American Mathematical of the American Mathematical Society February 2012 Volume 59, Number 2 Conformal Mappings in Geometric Algebra Page 264 Infl uential Mathematicians: Birth, Education, and Affi liation Page 274 Supporting the Next Generation of “Stewards” in Mathematics Education Page 288 Lawrence Meeting Page 352 Volume 59, Number 2, Pages 257–360, February 2012 About the Cover: MathJax (see page 346) Trim: 8.25" x 10.75" 104 pages on 40 lb Velocity • Spine: 1/8" • Print Cover on 9pt Carolina AMS-Simons Travel Grants TS AN GR EL The AMS is accepting applications for the second RAV T year of the AMS-Simons Travel Grants program. Each grant provides an early career mathematician with $2,000 per year for two years to reimburse travel expenses related to research. Sixty new awards will be made in 2012. Individuals who are not more than four years past the comple- tion of the PhD are eligible. The department of the awardee will also receive a small amount of funding to help enhance its research atmosphere. The deadline for 2012 applications is March 30, 2012. Applicants must be located in the United States or be U.S. citizens. For complete details of eligibility and application instructions, visit: www.ams.org/programs/travel-grants/AMS-SimonsTG Solve the differential equation. t ln t dr + r = 7tet dt 7et + C r = ln t WHO HAS THE #1 HOMEWORK SYSTEM FOR CALCULUS? THE ANSWER IS IN THE QUESTIONS.
    [Show full text]
  • Essential Concepts of Projective Geomtry
    Essential Concepts of Projective Geomtry Course Notes, MA 561 Purdue University August, 1973 Corrected and supplemented, August, 1978 Reprinted and revised, 2007 Department of Mathematics University of California, Riverside 2007 Table of Contents Preface : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : i Prerequisites: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :iv Suggestions for using these notes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :v I. Synthetic and analytic geometry: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :1 1. Axioms for Euclidean geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 2. Cartesian coordinate interpretations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2 3 3. Lines and planes in R and R : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 II. Affine geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7 1. Synthetic affine geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7 2. Affine subspaces of vector spaces : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13 3. Affine bases: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :19 4. Properties of coordinate
    [Show full text]
  • Geometric Reasoning with Invariant Algebras
    Geometric Reasoning with Invariant Algebras Hongbo Li [email protected] Key Laboratory of Mathematics Mechanization Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing 100080, P. R. China Abstract: Geometric reasoning is a common task in Mathematics Education, Computer-Aided Design, Com- puter Vision and Robot Navigation. Traditional geometric reasoning follows either a logical approach in Arti¯cial Intelligence, or a coordinate approach in Computer Algebra, or an approach of basic geometric invariants such as areas, volumes and distances. In algebraic approaches to geometric reasoning, geometric interpretation is needed for the result after algebraic manipulation, but in general this is a di±cult task. It is hoped that more advanced geometric invariants can make some contribution to the problem. In this paper, a hierarchical framework of invariant algebras is introduced for algebraic manipulation of geometric problems. The bottom level is the algebra of basic geometric invariants, and the higher levels are more complicated invariants. High level invariants can keep more geometric nature within algebraic structure. They are bene¯cial to geometric explanation but more di±cult to handle with than low level ones. This paper focuses on geometric computing at high invariant levels, for both automated theorem proving and new theorem discovering. Using the new techniques developed in recent years for hierarchical invariant algebras, better geometric results can be obtained from algebraic computation, in addition to more e±cient algebraic manipulation. 1 Background: Geometric Invariants What is geometric computing? Computing is an algebraic thing. If the objects involved are geometric, then in some suitable algebraic framework, the geometric problem is translated into an algebraic one, and an algebraic result is obtained by computation [18].
    [Show full text]
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]
  • Fully Homomorphic Encryption Over Exterior Product Spaces
    FULLY HOMOMORPHIC ENCRYPTION OVER EXTERIOR PRODUCT SPACES by DAVID WILLIAM HONORIO ARAUJO DA SILVA B.S.B.A., Universidade Potiguar (Brazil), 2012 A thesis submitted to the Graduate Faculty of the University of Colorado Colorado Springs in partial fulfillment of the requirements for the degree of Master of Science Department of Computer Science 2017 © Copyright by David William Honorio Araujo da Silva 2017 All Rights Reserved This thesis for the Master of Science degree by David William Honorio Araujo da Silva has been approved for the Department of Computer Science by C. Edward Chow, Chair Carlos Paz de Araujo Jonathan Ventura 9 December 2017 Date ii Honorio Araujo da Silva, David William (M.S., Computer Science) Fully Homomorphic Encryption Over Exterior Product Spaces Thesis directed by Professor C. Edward Chow ABSTRACT In this work I propose a new symmetric fully homomorphic encryption powered by Exterior Algebra and Product Spaces, more specifically by Geometric Algebra as a mathematical language for creating cryptographic solutions, which is organized and presented as the En- hanced Data-Centric Homomorphic Encryption - EDCHE, invented by Dr. Carlos Paz de Araujo, Professor and Associate Dean at the University of Colorado Colorado Springs, in the Electrical Engineering department. Given GA as mathematical language, EDCHE is the framework for developing solutions for cryptology, such as encryption primitives and sub-primitives. In 1978 Rivest et al introduced the idea of an encryption scheme able to provide security and the manipulation of encrypted data, without decrypting it. With such encryption scheme, it would be possible to process encrypted data in a meaningful way.
    [Show full text]
  • A Survey of the Development of Geometry up to 1870
    A Survey of the Development of Geometry up to 1870∗ Eldar Straume Department of mathematical sciences Norwegian University of Science and Technology (NTNU) N-9471 Trondheim, Norway September 4, 2014 Abstract This is an expository treatise on the development of the classical ge- ometries, starting from the origins of Euclidean geometry a few centuries BC up to around 1870. At this time classical differential geometry came to an end, and the Riemannian geometric approach started to be developed. Moreover, the discovery of non-Euclidean geometry, about 40 years earlier, had just been demonstrated to be a ”true” geometry on the same footing as Euclidean geometry. These were radically new ideas, but henceforth the importance of the topic became gradually realized. As a consequence, the conventional attitude to the basic geometric questions, including the possible geometric structure of the physical space, was challenged, and foundational problems became an important issue during the following decades. Such a basic understanding of the status of geometry around 1870 enables one to study the geometric works of Sophus Lie and Felix Klein at the beginning of their career in the appropriate historical perspective. arXiv:1409.1140v1 [math.HO] 3 Sep 2014 Contents 1 Euclideangeometry,thesourceofallgeometries 3 1.1 Earlygeometryandtheroleoftherealnumbers . 4 1.1.1 Geometric algebra, constructivism, and the real numbers 7 1.1.2 Thedownfalloftheancientgeometry . 8 ∗This monograph was written up in 2008-2009, as a preparation to the further study of the early geometrical works of Sophus Lie and Felix Klein at the beginning of their career around 1870. The author apologizes for possible historiographic shortcomings, errors, and perhaps lack of updated information on certain topics from the history of mathematics.
    [Show full text]
  • Geometric Algebra for Mathematicians
    Geometric Algebra for Mathematicians Kalle Rutanen 09.04.2013 (this is an incomplete draft) 1 Contents 1 Preface 4 1.1 Relation to other texts . 4 1.2 Acknowledgements . 6 2 Preliminaries 11 2.1 Basic definitions . 11 2.2 Vector spaces . 12 2.3 Bilinear spaces . 21 2.4 Finite-dimensional bilinear spaces . 27 2.5 Real bilinear spaces . 29 2.6 Tensor product . 32 2.7 Algebras . 33 2.8 Tensor algebra . 35 2.9 Magnitude . 35 2.10 Topological spaces . 37 2.11 Topological vector spaces . 39 2.12 Norm spaces . 40 2.13 Total derivative . 44 3 Symmetry groups 50 3.1 General linear group . 50 3.2 Scaling linear group . 51 3.3 Orthogonal linear group . 52 3.4 Conformal linear group . 55 3.5 Affine groups . 55 4 Algebraic structure 56 4.1 Clifford algebra . 56 4.2 Morphisms . 58 4.3 Inverse . 59 4.4 Grading . 60 4.5 Exterior product . 64 4.6 Blades . 70 4.7 Scalar product . 72 4.8 Contraction . 74 4.9 Interplay . 80 4.10 Span . 81 4.11 Dual . 87 4.12 Commutator product . 89 4.13 Orthogonality . 90 4.14 Magnitude . 93 4.15 Exponential and trigonometric functions . 94 2 5 Linear transformations 97 5.1 Determinant . 97 5.2 Pinors and unit-versors . 98 5.3 Spinors and rotors . 104 5.4 Projections . 105 5.5 Reflections . 105 5.6 Adjoint . 107 6 Geometric applications 107 6.1 Cramer’s rule . 108 6.2 Gram-Schmidt orthogonalization . 108 6.3 Alternating forms and determinant .
    [Show full text]
  • Ence Or Authority. the Reviewer Knows of No Published Proof of This
    1958] BOOK REVIEWS 35 ence or authority. The reviewer knows of no published proof of this result,—and believes that in such circumstances, even in an elemen­ tary text, appropriate authority (e.g. "correspondence") or qualifi­ cation should be indicated. Indeed the reviewer would wish for more complete and specific references in general in a work where so much is asserted without proof. Chapter IV. The discussion of the second incompleteness theorem is erroneous: two statements of the forms "'(for all x) [x not proof of ƒ]' is provable" and "(for all x) [lx not proof of ƒ is provable]" are confused. The latter, asserted to be unprovable in Z, can be proved rather simply in Z by considering the alternative cases that Z be consistent or inconsistent. In introducing the proof of Tarski et al., "validity" is used, without definition, in their sense ( = provability) rather than in any sense previously explained by the author. Chapter V. The syntactical role of abstraction is not clear. Con­ textual definition should be earlier and more complete. Definition and use of uy(x)n on p. 95 is inconsistent; the definition is appropriate to a function but not to a general relation. A final comment. The reviewer would have preferred that indication be given of logic-algebra and general recursive function theory as two of the most active research areas in foundations today, though the author might reasonably maintain that this is beyond his an­ nounced historical aims. Among the less trivial typographical errors: p. 45, "Sx" for "x" in last two occurrences in 1.
    [Show full text]
  • Geometric Algebra (GA)
    Geometric Algebra (GA) Werner Benger, 2007 CCT@LSU SciViz 1 Abstract • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford algebra applied to real fields. Hereby the so-called „geometrical product“ allows to expand linear algebra (as used in vector calculus in 3D) by an invertible operation to multiply and divide vectors. In two dimenions, the geometric algebra can be interpreted as the algebra of complex numbers. In extends in a natural way into three dimensions and corresponds to the well-known quaternions there, which are widely used to describe rotations in 3D as an alternative superior to matrix calculus. However, in contrast to quaternions, GA comes with a direct geometrical interpretation of the respective operations and allows a much finer differentation among the involved objects than is achieveable via quaternions. Moreover, the formalism of GA is independent from the dimension of space. For instance, rotations and reflections of objects of arbitrary dimensions can be easily described intuitively and generic in spaces of arbitrary higher dimensions. • Due to the elegance of the GA and its wide applicabililty it is sometimes denoted as a new „fundamental language of mathematics“. Its unified formalism covers domains such as differential geometry (relativity theory), quantum mechanics, robotics and last but not least computer graphics in a natural way. • This talk will present the basics of Geometric Algebra and specifically emphasizes on the visualization of its elementary operations.
    [Show full text]