A Powerful Tool for Solving Geometric Problems in Visual Computing

Total Page:16

File Type:pdf, Size:1020Kb

A Powerful Tool for Solving Geometric Problems in Visual Computing Geometric Algebra: A powerful tool for solving geometric problems in visual computing Leandro A. F. Fernandes, and Manuel M. Oliveira Instituto de Informática, UFRGS Porto Alegre, RS, Brazil Email: {laffernandes,oliveira}@inf.ufrgs.br Abstract—Geometric problems in visual computing (com- two planes is computed using a different solution than puter graphics, computer vision, and image processing) are the intersection between a line and a plane, or any other typically modeled and solved using linear algebra (LA). Thus, combination of elements. Also, each possible output must vectors are used to represent directions and points in space, while matrices are used to model transformations. LA, however, be handled on a case-by-case basis (e.g., a plane-plane presents some well-known limitations for performing geometric intersection can result in an empty set, a straight line, or computations. As a result, one often needs to aggregate dif- a plane). Alternatively, one can use Plücker coordinates to ferent formalisms (e.g., quaternions and Plücker coordinates) represent points, lines and planes as elementary types in to obtain complete solutions. Unfortunately, such extensions order to operate on them [4]. However, defining a matrix are not fully compatible among themselves, and one has to get used to jumping back and forth between formalisms, for transforming geometric elements represented by Plücker filling in the gaps between them. Geometric algebra (GA), on coordinates is not straightforward. the other hand, is a mathematical framework that naturally It is well known that, under projective geometry, matrices generalizes and integrates useful formalisms such as complex can be used to encode a sequence of projective transfor- numbers, quaternions and Plücker coordinates into a high- mations into a single representation. However, it is also level specification language for geometric operations. Due to its consistent structure, GA equations are often universal and known that matrices are not the best way to handle rotations, generally applicable. They extend the same solution to higher because they are not suitable for interpolation, and they dimensions and to all kinds of geometric elements, without encode the rotation axis and rotation angle in a costly having to handle special cases, as it happens in conventional way (i.e., they require several coefficients). In such a case, techniques. This tutorial aims at introducing the fundamental quaternions offer an alternative and efficient solution [5], concepts of GA as a powerful mathematical tool to describe and solve geometric problems in visual computing. [6]. But this extension is not automatically well-connected to other transformations in linear algebra, or to Plücker Keywords-geometric algebra; geometric computing; applied coordinates. Also, quaternions are defined only in 3-D. mathematics; Plücker coordinates; quaternion; subspaces Geometric algebra [7]–[10] provides an alternative to conventional geometric techniques based on linear algebra. I. MOTIVATION With geometric algebra one can compute directly on geo- Visual computing practitioners often use linear algebra metric elements (e.g., direction, points, lines, planes, circles, to represent geometric elements and transformations [1], [2]. and spheres) as primitives. Also, it naturally generalizes For instance, vectors represent directions and, by introducing and integrates useful frameworks such as Plücker coordi- an origin to the underlying space, they can also be used nates, quaternions and complex numbers into a high-level to represents points. But the semantic difference between a specification language for geometric operations. Because direction vector and a point vector is not encoded in the of its consistent structure, geometric algebra equations are vector type itself, and one must be aware that point vectors often universal and generally applicable, extending the same should be transformed differently than direction vectors [3]. solution to higher dimensions and to all kinds of geometric In linear algebra, geometric elements of higher dimension- elements. ality (e.g., lines and planes) must be assembled from points, Geometric algebra, however, is still mostly unknown in directions and scalar values. This way, a line in 3-D can be the computer science community. Only in the past few represented by a point and a direction vector, or by the inter- years it became accessible in specialized literature [8]–[10]. section of two planes. A plane, on the other hand, is usually This tutorial aims at providing a gentle introduction to the described by a normal vector and a distance from the origin. fundamental concepts of geometric algebra and discussing Such a representation of geometric elements prevents their its great potential as a tool for representing and solving use as computing primitives. As a result, geometric problems problems in computer graphics, computer vision, and image must be solved considering the particular type of geometric processing. object being handled. For instance, the intersection between This tutorial is organized as follows: Sections II to VI present theoretical concepts of geometric algebra. In these sections, geometric primitives, transformations, and alge- braic operations are presented in a more abstract level. For sake of simplicity, we kept the mathematical formalisms to a minimum, and illustrate the geometrical intuition with examples whenever possible. Section VII discusses how one can assume a model of geometry in order to give practical geometric interpretation to the elements discussed in previous sections. Geometric algebra implementations are enumerated in Section VIII. Section IX concludes the tutorial with some observations and directions for research opportunities involving geometric algebra. (a) (b) Figure 1. Graphical representation of subspace in R3.(a)A1-D subspace a II. ORIENTED SUBSPACES AS PRIMITIVES is drawn as an arrow, where the arrow’s length and the arrow’s tip represent, Rn respectively, the weight and the orientation of a.(b)A2-D subspace C2, By definition, a vector space consists of a set of a b { }n spanned from vectors and , is drawn as a disk. Its weight is represented elements called vectors. By assuming a basis ei i=1 for by the radius of the disk, while the orientation is the curved arrow. The n e 3 R , an arbitrary vector (i.e., a 1-D subspace) is written as basis vectors {ei}i=1 are not shown in this image for sake of clarity. a linear combination of the basis vectors. Fig. 1a illustrates 3 a vector aa=α1 e1 + α2 e2 + α3 e3 in R . In this graphical representation, the 1-D subspace is the oriented straight line In fact, k-blades are “concrete” primitives by themselves, that passes through the origin and supports the arrow. The spanned from k vectors. Therefore, one needs a new basis arrow’s length represents the weight of the subspace, while for representing k-blades, because the basis vectors from n the arrow’s tip indicates its orientation. R , by definition, support only 1-D subspaces. In geometric n In geometric algebra, a 2-D subspace is spanned as the algebra, R is the multivector space built from a vector outer product of two vectors. The outer product is formally space Rn.The2n basis elements of Rn are defined n defined in Section II-B. Fig. 1b shows a 2-D subspace as thek-combinations of vectors from the set {ei}i=1 n n n computed as: (i.e., k=0 k =2 ). A linear combination of such basis C2 =aa ∧ b,(1)elements is called a multivector. As an example, the basis of R3 is presented in Fig. 2 (top) and its multivector structure ∧ where (the wedge symbol) denotes the outer product, and is shown at the bottom. By combining zero elements out a and b are two vectors (1-D subspaces). In Fig. 1b, C2 is 3 of the set {ei}i=1, one takes the basis blade “1”for0-D the oriented supporting plane for the disk. The disk’s radius subspaces, i.e., values in R. As one would expect, the basis and the curved arrow are used to illustrate, respectively, blades for 1-D subspaces are the three basis vectors defining 2 the weight and orientation of the subspace. Note that the R3.For2-D subspaces in R3, the three basis blades are orientation of C2 respects the order of the terms in the computed by combining two elements out of the set of three outer product, i.e., from a to b. basis vectors. Finally, the outer product of all basis vectors k Using the outer product one can span -D oriented define the basis blade for 3-D subspaces. Note that blades ≤ k ≤ n 3 subspaces, for 0 . In geometric algebra, such sub- in R3 are a scaled version of the whole 3-D space. Such k spaces are called -blades (the terms blade and subspace blades are often called pseudoscalar, and the unit positive k are used interchangeably), and is said to be the grade pseudoscalar is typically denoted by: of the blade (the terms grade and dimensionality are also used interchangeably). An arbitrary blade Bk presents the In =ee1 ∧ e2 ∧···∧en.(2) following properties: The order of the vectors defining each basis blade attitude The equivalence class αBk,foranyα ∈ R. (e.g., use e1 ∧ e2 or e2 ∧ e1 for the fifth basis blade in weight The value of α in Bk = αJk,whereJk Fig. 2) is a matter of convention. Fortunately, converting is a reference blade with the same attitude between different conventions is easy, and relies on applying as Bk. the properties of the outer product. orientation The sign of the weight relative to Jk. direction The combination of attitude and orientation. B. The outer product Formally, the outer product is a mapping: A. A basis for k-D subspaces r s r+s n n n In contrast to linear algebra, geometric algebra does ∧ : R × R → R .(3) not represent k-D subspaces as a collection of k vectors.
Recommended publications
  • Geometric Algebra for Vector Fields Analysis and Visualization: Mathematical Settings, Overview and Applications Chantal Oberson Ausoni, Pascal Frey
    Geometric algebra for vector fields analysis and visualization: mathematical settings, overview and applications Chantal Oberson Ausoni, Pascal Frey To cite this version: Chantal Oberson Ausoni, Pascal Frey. Geometric algebra for vector fields analysis and visualization: mathematical settings, overview and applications. 2014. hal-00920544v2 HAL Id: hal-00920544 https://hal.sorbonne-universite.fr/hal-00920544v2 Preprint submitted on 18 Sep 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Geometric algebra for vector field analysis and visualization: mathematical settings, overview and applications Chantal Oberson Ausoni and Pascal Frey Abstract The formal language of Clifford’s algebras is attracting an increasingly large community of mathematicians, physicists and software developers seduced by the conciseness and the efficiency of this compelling system of mathematics. This contribution will suggest how these concepts can be used to serve the purpose of scientific visualization and more specifically to reveal the general structure of complex vector fields. We will emphasize the elegance and the ubiquitous nature of the geometric algebra approach, as well as point out the computational issues at stake. 1 Introduction Nowadays, complex numerical simulations (e.g. in climate modelling, weather fore- cast, aeronautics, genomics, etc.) produce very large data sets, often several ter- abytes, that become almost impossible to process in a reasonable amount of time.
    [Show full text]
  • Quaternions and Cli Ord Geometric Algebras
    Quaternions and Cliord Geometric Algebras Robert Benjamin Easter First Draft Edition (v1) (c) copyright 2015, Robert Benjamin Easter, all rights reserved. Preface As a rst rough draft that has been put together very quickly, this book is likely to contain errata and disorganization. The references list and inline citations are very incompete, so the reader should search around for more references. I do not claim to be the inventor of any of the mathematics found here. However, some parts of this book may be considered new in some sense and were in small parts my own original research. Much of the contents was originally written by me as contributions to a web encyclopedia project just for fun, but for various reasons was inappropriate in an encyclopedic volume. I did not originally intend to write this book. This is not a dissertation, nor did its development receive any funding or proper peer review. I oer this free book to the public, such as it is, in the hope it could be helpful to an interested reader. June 19, 2015 - Robert B. Easter. (v1) [email protected] 3 Table of contents Preface . 3 List of gures . 9 1 Quaternion Algebra . 11 1.1 The Quaternion Formula . 11 1.2 The Scalar and Vector Parts . 15 1.3 The Quaternion Product . 16 1.4 The Dot Product . 16 1.5 The Cross Product . 17 1.6 Conjugates . 18 1.7 Tensor or Magnitude . 20 1.8 Versors . 20 1.9 Biradials . 22 1.10 Quaternion Identities . 23 1.11 The Biradial b/a .
    [Show full text]
  • Exploring Physics with Geometric Algebra, Book II., , C December 2016 COPYRIGHT
    peeter joot [email protected] EXPLORINGPHYSICSWITHGEOMETRICALGEBRA,BOOKII. EXPLORINGPHYSICSWITHGEOMETRICALGEBRA,BOOKII. peeter joot [email protected] December 2016 – version v.1.3 Peeter Joot [email protected]: Exploring physics with Geometric Algebra, Book II., , c December 2016 COPYRIGHT Copyright c 2016 Peeter Joot All Rights Reserved This book may be reproduced and distributed in whole or in part, without fee, subject to the following conditions: • The copyright notice above and this permission notice must be preserved complete on all complete or partial copies. • Any translation or derived work must be approved by the author in writing before distri- bution. • If you distribute this work in part, instructions for obtaining the complete version of this document must be included, and a means for obtaining a complete version provided. • Small portions may be reproduced as illustrations for reviews or quotes in other works without this permission notice if proper citation is given. Exceptions to these rules may be granted for academic purposes: Write to the author and ask. Disclaimer: I confess to violating somebody’s copyright when I copied this copyright state- ment. v DOCUMENTVERSION Version 0.6465 Sources for this notes compilation can be found in the github repository https://github.com/peeterjoot/physicsplay The last commit (Dec/5/2016), associated with this pdf was 595cc0ba1748328b765c9dea0767b85311a26b3d vii Dedicated to: Aurora and Lance, my awesome kids, and Sofia, who not only tolerates and encourages my studies, but is also awesome enough to think that math is sexy. PREFACE This is an exploratory collection of notes containing worked examples of more advanced appli- cations of Geometric Algebra (GA), also known as Clifford Algebra.
    [Show full text]
  • Geometric-Algebra Adaptive Filters Wilder B
    1 Geometric-Algebra Adaptive Filters Wilder B. Lopes∗, Member, IEEE, Cassio G. Lopesy, Senior Member, IEEE Abstract—This paper presents a new class of adaptive filters, namely Geometric-Algebra Adaptive Filters (GAAFs). They are Faces generated by formulating the underlying minimization problem (a deterministic cost function) from the perspective of Geometric Algebra (GA), a comprehensive mathematical language well- Edges suited for the description of geometric transformations. Also, (directed lines) differently from standard adaptive-filtering theory, Geometric Calculus (the extension of GA to differential calculus) allows Fig. 1. A polyhedron (3-dimensional polytope) can be completely described for applying the same derivation techniques regardless of the by the geometric multiplication of its edges (oriented lines, vectors), which type (subalgebra) of the data, i.e., real, complex numbers, generate the faces and hypersurfaces (in the case of a general n-dimensional quaternions, etc. Relying on those characteristics (among others), polytope). a deterministic quadratic cost function is posed, from which the GAAFs are devised, providing a generalization of regular adaptive filters to subalgebras of GA. From the obtained update rule, it is shown how to recover the following least-mean squares perform calculus with hypercomplex quantities, i.e., elements (LMS) adaptive filter variants: real-entries LMS, complex LMS, that generalize complex numbers for higher dimensions [2]– and quaternions LMS. Mean-square analysis and simulations in [10]. a system identification scenario are provided, showing very good agreement for different levels of measurement noise. GA-based AFs were first introduced in [11], [12], where they were successfully employed to estimate the geometric Index Terms—Adaptive filtering, geometric algebra, quater- transformation (rotation and translation) that aligns a pair of nions.
    [Show full text]
  • Finite Projective Geometries 243
    FINITE PROJECTÎVEGEOMETRIES* BY OSWALD VEBLEN and W. H. BUSSEY By means of such a generalized conception of geometry as is inevitably suggested by the recent and wide-spread researches in the foundations of that science, there is given in § 1 a definition of a class of tactical configurations which includes many well known configurations as well as many new ones. In § 2 there is developed a method for the construction of these configurations which is proved to furnish all configurations that satisfy the definition. In §§ 4-8 the configurations are shown to have a geometrical theory identical in most of its general theorems with ordinary projective geometry and thus to afford a treatment of finite linear group theory analogous to the ordinary theory of collineations. In § 9 reference is made to other definitions of some of the configurations included in the class defined in § 1. § 1. Synthetic definition. By a finite projective geometry is meant a set of elements which, for sugges- tiveness, are called points, subject to the following five conditions : I. The set contains a finite number ( > 2 ) of points. It contains subsets called lines, each of which contains at least three points. II. If A and B are distinct points, there is one and only one line that contains A and B. HI. If A, B, C are non-collinear points and if a line I contains a point D of the line AB and a point E of the line BC, but does not contain A, B, or C, then the line I contains a point F of the line CA (Fig.
    [Show full text]
  • New Foundations for Geometric Algebra1
    Text published in the electronic journal Clifford Analysis, Clifford Algebras and their Applications vol. 2, No. 3 (2013) pp. 193-211 New foundations for geometric algebra1 Ramon González Calvet Institut Pere Calders, Campus Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain E-mail : [email protected] Abstract. New foundations for geometric algebra are proposed based upon the existing isomorphisms between geometric and matrix algebras. Each geometric algebra always has a faithful real matrix representation with a periodicity of 8. On the other hand, each matrix algebra is always embedded in a geometric algebra of a convenient dimension. The geometric product is also isomorphic to the matrix product, and many vector transformations such as rotations, axial symmetries and Lorentz transformations can be written in a form isomorphic to a similarity transformation of matrices. We collect the idea Dirac applied to develop the relativistic electron equation when he took a basis of matrices for the geometric algebra instead of a basis of geometric vectors. Of course, this way of understanding the geometric algebra requires new definitions: the geometric vector space is defined as the algebraic subspace that generates the rest of the matrix algebra by addition and multiplication; isometries are simply defined as the similarity transformations of matrices as shown above, and finally the norm of any element of the geometric algebra is defined as the nth root of the determinant of its representative matrix of order n. The main idea of this proposal is an arithmetic point of view consisting of reversing the roles of matrix and geometric algebras in the sense that geometric algebra is a way of accessing, working and understanding the most fundamental conception of matrix algebra as the algebra of transformations of multiple quantities.
    [Show full text]
  • Università Degli Studi Di Trieste a Gentle Introduction to Clifford Algebra
    Università degli Studi di Trieste Dipartimento di Fisica Corso di Studi in Fisica Tesi di Laurea Triennale A Gentle Introduction to Clifford Algebra Laureando: Relatore: Daniele Ceravolo prof. Marco Budinich ANNO ACCADEMICO 2015–2016 Contents 1 Introduction 3 1.1 Brief Historical Sketch . 4 2 Heuristic Development of Clifford Algebra 9 2.1 Geometric Product . 9 2.2 Bivectors . 10 2.3 Grading and Blade . 11 2.4 Multivector Algebra . 13 2.4.1 Pseudoscalar and Hodge Duality . 14 2.4.2 Basis and Reciprocal Frames . 14 2.5 Clifford Algebra of the Plane . 15 2.5.1 Relation with Complex Numbers . 16 2.6 Clifford Algebra of Space . 17 2.6.1 Pauli algebra . 18 2.6.2 Relation with Quaternions . 19 2.7 Reflections . 19 2.7.1 Cross Product . 21 2.8 Rotations . 21 2.9 Differentiation . 23 2.9.1 Multivectorial Derivative . 24 2.9.2 Spacetime Derivative . 25 3 Spacetime Algebra 27 3.1 Spacetime Bivectors and Pseudoscalar . 28 3.2 Spacetime Frames . 28 3.3 Relative Vectors . 29 3.4 Even Subalgebra . 29 3.5 Relative Velocity . 30 3.6 Momentum and Wave Vectors . 31 3.7 Lorentz Transformations . 32 3.7.1 Addition of Velocities . 34 1 2 CONTENTS 3.7.2 The Lorentz Group . 34 3.8 Relativistic Visualization . 36 4 Electromagnetism in Clifford Algebra 39 4.1 The Vector Potential . 40 4.2 Electromagnetic Field Strength . 41 4.3 Free Fields . 44 5 Conclusions 47 5.1 Acknowledgements . 48 Chapter 1 Introduction The aim of this thesis is to show how an approach to classical and relativistic physics based on Clifford algebras can shed light on some hidden geometric meanings in our models.
    [Show full text]
  • Notices of the American Mathematical Society 35 Monticello Place, Pawtucket, RI 02861 USA American Mathematical Society Distribution Center
    ISSN 0002-9920 Notices of the American Mathematical Society 35 Monticello Place, Pawtucket, RI 02861 USA Society Distribution Center American Mathematical of the American Mathematical Society February 2012 Volume 59, Number 2 Conformal Mappings in Geometric Algebra Page 264 Infl uential Mathematicians: Birth, Education, and Affi liation Page 274 Supporting the Next Generation of “Stewards” in Mathematics Education Page 288 Lawrence Meeting Page 352 Volume 59, Number 2, Pages 257–360, February 2012 About the Cover: MathJax (see page 346) Trim: 8.25" x 10.75" 104 pages on 40 lb Velocity • Spine: 1/8" • Print Cover on 9pt Carolina AMS-Simons Travel Grants TS AN GR EL The AMS is accepting applications for the second RAV T year of the AMS-Simons Travel Grants program. Each grant provides an early career mathematician with $2,000 per year for two years to reimburse travel expenses related to research. Sixty new awards will be made in 2012. Individuals who are not more than four years past the comple- tion of the PhD are eligible. The department of the awardee will also receive a small amount of funding to help enhance its research atmosphere. The deadline for 2012 applications is March 30, 2012. Applicants must be located in the United States or be U.S. citizens. For complete details of eligibility and application instructions, visit: www.ams.org/programs/travel-grants/AMS-SimonsTG Solve the differential equation. t ln t dr + r = 7tet dt 7et + C r = ln t WHO HAS THE #1 HOMEWORK SYSTEM FOR CALCULUS? THE ANSWER IS IN THE QUESTIONS.
    [Show full text]
  • Essential Concepts of Projective Geomtry
    Essential Concepts of Projective Geomtry Course Notes, MA 561 Purdue University August, 1973 Corrected and supplemented, August, 1978 Reprinted and revised, 2007 Department of Mathematics University of California, Riverside 2007 Table of Contents Preface : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : i Prerequisites: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :iv Suggestions for using these notes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :v I. Synthetic and analytic geometry: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :1 1. Axioms for Euclidean geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 2. Cartesian coordinate interpretations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2 3 3. Lines and planes in R and R : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 II. Affine geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7 1. Synthetic affine geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7 2. Affine subspaces of vector spaces : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13 3. Affine bases: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :19 4. Properties of coordinate
    [Show full text]
  • Geometric Reasoning with Invariant Algebras
    Geometric Reasoning with Invariant Algebras Hongbo Li [email protected] Key Laboratory of Mathematics Mechanization Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing 100080, P. R. China Abstract: Geometric reasoning is a common task in Mathematics Education, Computer-Aided Design, Com- puter Vision and Robot Navigation. Traditional geometric reasoning follows either a logical approach in Arti¯cial Intelligence, or a coordinate approach in Computer Algebra, or an approach of basic geometric invariants such as areas, volumes and distances. In algebraic approaches to geometric reasoning, geometric interpretation is needed for the result after algebraic manipulation, but in general this is a di±cult task. It is hoped that more advanced geometric invariants can make some contribution to the problem. In this paper, a hierarchical framework of invariant algebras is introduced for algebraic manipulation of geometric problems. The bottom level is the algebra of basic geometric invariants, and the higher levels are more complicated invariants. High level invariants can keep more geometric nature within algebraic structure. They are bene¯cial to geometric explanation but more di±cult to handle with than low level ones. This paper focuses on geometric computing at high invariant levels, for both automated theorem proving and new theorem discovering. Using the new techniques developed in recent years for hierarchical invariant algebras, better geometric results can be obtained from algebraic computation, in addition to more e±cient algebraic manipulation. 1 Background: Geometric Invariants What is geometric computing? Computing is an algebraic thing. If the objects involved are geometric, then in some suitable algebraic framework, the geometric problem is translated into an algebraic one, and an algebraic result is obtained by computation [18].
    [Show full text]
  • A Guided Tour to the Plane-Based Geometric Algebra PGA
    A Guided Tour to the Plane-Based Geometric Algebra PGA Leo Dorst University of Amsterdam Version 1.15{ July 6, 2020 Planes are the primitive elements for the constructions of objects and oper- ators in Euclidean geometry. Triangulated meshes are built from them, and reflections in multiple planes are a mathematically pure way to construct Euclidean motions. A geometric algebra based on planes is therefore a natural choice to unify objects and operators for Euclidean geometry. The usual claims of `com- pleteness' of the GA approach leads us to hope that it might contain, in a single framework, all representations ever designed for Euclidean geometry - including normal vectors, directions as points at infinity, Pl¨ucker coordinates for lines, quaternions as 3D rotations around the origin, and dual quaternions for rigid body motions; and even spinors. This text provides a guided tour to this algebra of planes PGA. It indeed shows how all such computationally efficient methods are incorporated and related. We will see how the PGA elements naturally group into blocks of four coordinates in an implementation, and how this more complete under- standing of the embedding suggests some handy choices to avoid extraneous computations. In the unified PGA framework, one never switches between efficient representations for subtasks, and this obviously saves any time spent on data conversions. Relative to other treatments of PGA, this text is rather light on the mathematics. Where you see careful derivations, they involve the aspects of orientation and magnitude. These features have been neglected by authors focussing on the mathematical beauty of the projective nature of the algebra.
    [Show full text]
  • Inverse and Determinant in 0 to 5 Dimensional Clifford Algebra
    Clifford Algebra Inverse and Determinant Inverse and Determinant in 0 to 5 Dimensional Clifford Algebra Peruzan Dadbeha) (Dated: March 15, 2011) This paper presents equations for the inverse of a Clifford number in Clifford algebras of up to five dimensions. In presenting these, there are also presented formulas for the determinant and adjugate of a general Clifford number of up to five dimensions, matching the determinant and adjugate of the matrix representations of the algebra. These equations are independent of the metric used. PACS numbers: 02.40.Gh, 02.10.-v, 02.10.De Keywords: clifford algebra, geometric algebra, inverse, determinant, adjugate, cofactor, adjoint I. INTRODUCTION the grade. The possible grades are from the grade-zero scalar and grade-1 vector elements, up to the grade-(d−1) Clifford algebra is one of the more useful math tools pseudovector and grade-d pseudoscalar, where d is the di- for modeling and analysis of geometric relations and ori- mension of Gd. entations. The algebra is structured as the sum of a Structurally, using the 1–dimensional ei’s, or 1-basis, scalar term plus terms of anticommuting products of vec- to represent Gd involves manipulating the products in tors. The algebra itself is independent of the basis used each term of a Clifford number by using the anticom- for computations, and only depends on the grades of muting part of the Clifford product to move the 1-basis the r-vector parts and their relative orientations. It is ei parts around in the product, as well as using the inner- this implementation (demonstrated via the standard or- product to eliminate the ei pairs with their metric equiv- thonormal representation) that will be used in the proofs.
    [Show full text]