The Catenary

Total Page:16

File Type:pdf, Size:1020Kb

The Catenary The Catenary Daniel Gent December 10, 2008 Daniel Gent The Catenary I The shape of the catenary was originally thought to be a parabola by Galileo, but this was proved false by the German mathmatitian Jungius in 1663. It was not until 1691 that the true shape of the catenary was discovered to be the hyperbolic cosine in a joint work by Leibnez, Huygens, and Bernoulli. History of the catenary. I The catenary is defined by the shape formed by a hanging chain under normal conditions. The name catenary comes from the latin word for chain catena. Daniel Gent The Catenary History of the catenary. I The catenary is defined by the shape formed by a hanging chain under normal conditions. The name catenary comes from the latin word for chain catena. I The shape of the catenary was originally thought to be a parabola by Galileo, but this was proved false by the German mathmatitian Jungius in 1663. It was not until 1691 that the true shape of the catenary was discovered to be the hyperbolic cosine in a joint work by Leibnez, Huygens, and Bernoulli. Daniel Gent The Catenary I The forces on the chain at the point (x,y) will be the tension in the chain (T) which is tangent to the chain, the weight of the chain (W), and the horizontal pull (H) at the origin. Now the magnitude of the weight is proportional to the distance (s) from the origin to the point (x,y). I Thus the sum of the forces W and H must be equal to −T , but since T is tangent to the chain the slope of H + W must equal f 0(x). Therefore jjW jj µs f 0(x) = = (where µ is the weight density) jjHjj jjW jj Derivation of the catenary. I The approach used by Leibnez, and his coworkers was as follows. Daniel Gent The Catenary I Thus the sum of the forces W and H must be equal to −T , but since T is tangent to the chain the slope of H + W must equal f 0(x). Therefore jjW jj µs f 0(x) = = (where µ is the weight density) jjHjj jjW jj Derivation of the catenary. I The approach used by Leibnez, and his coworkers was as follows. I The forces on the chain at the point (x,y) will be the tension in the chain (T) which is tangent to the chain, the weight of the chain (W), and the horizontal pull (H) at the origin. Now the magnitude of the weight is proportional to the distance (s) from the origin to the point (x,y). Daniel Gent The Catenary Derivation of the catenary. I The approach used by Leibnez, and his coworkers was as follows. I The forces on the chain at the point (x,y) will be the tension in the chain (T) which is tangent to the chain, the weight of the chain (W), and the horizontal pull (H) at the origin. Now the magnitude of the weight is proportional to the distance (s) from the origin to the point (x,y). I Thus the sum of the forces W and H must be equal to −T , but since T is tangent to the chain the slope of H + W must equal f 0(x). Therefore jjW jj µs f 0(x) = = (where µ is the weight density) jjHjj jjW jj Daniel Gent The Catenary The hanging chain. Daniel Gent The Catenary I This is the same as the second order differetial equation q µ f 00(x) = α 1 + (f 0(t))2(where α = .) jjW jj I This solves to 1 1 f (x) = − + cosh(αx): α α Derivation of the catenary. I Now this may be written. µ Z x q f 0(x) = 1 + (f 0(t))2(by the formula for arc length.) jjW jj 0 Daniel Gent The Catenary I This solves to 1 1 f (x) = − + cosh(αx): α α Derivation of the catenary. I Now this may be written. µ Z x q f 0(x) = 1 + (f 0(t))2(by the formula for arc length.) jjW jj 0 I This is the same as the second order differetial equation q µ f 00(x) = α 1 + (f 0(t))2(where α = .) jjW jj Daniel Gent The Catenary Derivation of the catenary. I Now this may be written. µ Z x q f 0(x) = 1 + (f 0(t))2(by the formula for arc length.) jjW jj 0 I This is the same as the second order differetial equation q µ f 00(x) = α 1 + (f 0(t))2(where α = .) jjW jj I This solves to 1 1 f (x) = − + cosh(αx): α α Daniel Gent The Catenary I First take the first an second derivitives. f 0(x) = sinh(αx) f 00(x) = α cosh(αx) I Now input these to our differential equation. q (α cosh(αx)) = α 1 + (sinh(αx))2 q α cosh(αx) = α cosh2(αx) α cosh(αx) = α cosh(αx) 1 1 I Thus f (x) = − α + α cosh(αx) is a solution. Derivation of the catenary. I Now, although it is difficult to arrive at this solution check to ensure that it holds is an easy matter. Daniel Gent The Catenary I Now input these to our differential equation. q (α cosh(αx)) = α 1 + (sinh(αx))2 q α cosh(αx) = α cosh2(αx) α cosh(αx) = α cosh(αx) 1 1 I Thus f (x) = − α + α cosh(αx) is a solution. Derivation of the catenary. I Now, although it is difficult to arrive at this solution check to ensure that it holds is an easy matter. I First take the first an second derivitives. f 0(x) = sinh(αx) f 00(x) = α cosh(αx) Daniel Gent The Catenary 1 1 I Thus f (x) = − α + α cosh(αx) is a solution. Derivation of the catenary. I Now, although it is difficult to arrive at this solution check to ensure that it holds is an easy matter. I First take the first an second derivitives. f 0(x) = sinh(αx) f 00(x) = α cosh(αx) I Now input these to our differential equation. q (α cosh(αx)) = α 1 + (sinh(αx))2 q α cosh(αx) = α cosh2(αx) α cosh(αx) = α cosh(αx) Daniel Gent The Catenary Derivation of the catenary. I Now, although it is difficult to arrive at this solution check to ensure that it holds is an easy matter. I First take the first an second derivitives. f 0(x) = sinh(αx) f 00(x) = α cosh(αx) I Now input these to our differential equation. q (α cosh(αx)) = α 1 + (sinh(αx))2 q α cosh(αx) = α cosh2(αx) α cosh(αx) = α cosh(αx) 1 1 I Thus f (x) = − α + α cosh(αx) is a solution. Daniel Gent The Catenary I In fact any normal polygon can roll on a series of catenaries. Though a triangle will not work in a real life system even though it should in theory. I A second way to derive the catenary is to trace the vertex of a parabola as it rolls along the x-axis. Properties of the catenary. I A square can roll smoothly without slippage on a series of inverted catenaries. Daniel Gent The Catenary I A second way to derive the catenary is to trace the vertex of a parabola as it rolls along the x-axis. Properties of the catenary. I A square can roll smoothly without slippage on a series of inverted catenaries. I In fact any normal polygon can roll on a series of catenaries. Though a triangle will not work in a real life system even though it should in theory. Daniel Gent The Catenary Properties of the catenary. I A square can roll smoothly without slippage on a series of inverted catenaries. I In fact any normal polygon can roll on a series of catenaries. Though a triangle will not work in a real life system even though it should in theory. I A second way to derive the catenary is to trace the vertex of a parabola as it rolls along the x-axis. Daniel Gent The Catenary ex +e−x I Recall that cosh(x) = 2 . Also recall Euler's equation eiθ = cos θ + i sin θ I (cos θ + i sin θ) + (cos θ − i sin θ) Thus cosh(iθ) = 2 2 cos θ = 2 = cos θ I A similar process will show that sinh iθ = i sin θ. The catenary with complex numbers. I One of the more odd proberties of the catenary is how it behaves when numbers with only an imaginary part are the inputs. Ex: cosh ix Daniel Gent The Catenary I (cos θ + i sin θ) + (cos θ − i sin θ) Thus cosh(iθ) = 2 2 cos θ = 2 = cos θ I A similar process will show that sinh iθ = i sin θ. The catenary with complex numbers. I One of the more odd proberties of the catenary is how it behaves when numbers with only an imaginary part are the inputs. Ex: cosh ix ex +e−x I Recall that cosh(x) = 2 . Also recall Euler's equation eiθ = cos θ + i sin θ Daniel Gent The Catenary I A similar process will show that sinh iθ = i sin θ. The catenary with complex numbers. I One of the more odd proberties of the catenary is how it behaves when numbers with only an imaginary part are the inputs.
Recommended publications
  • Optimization of the Manufacturing Process for Sheet Metal Panels Considering Shape, Tessellation and Structural Stability Optimi
    Institute of Construction Informatics, Faculty of Civil Engineering Optimization of the manufacturing process for sheet metal panels considering shape, tessellation and structural stability Optimierung des Herstellungsprozesses von dünnwandigen, profilierten Aussenwandpaneelen by Fasih Mohiuddin Syed from Mysore, India A Master thesis submitted to the Institute of Construction Informatics, Faculty of Civil Engineering, University of Technology Dresden in partial fulfilment of the requirements for the degree of Master of Science Responsible Professor : Prof. Dr.-Ing. habil. Karsten Menzel Second Examiner : Prof. Dr.-Ing. Raimar Scherer Advisor : Dipl.-Ing. Johannes Frank Schüler Dresden, 14th April, 2020 Task Sheet II Task Sheet Declaration III Declaration I confirm that this assignment is my own work and that I have not sought or used the inadmissible help of third parties to produce this work. I have fully referenced and used inverted commas for all text directly quoted from a source. Any indirect quotations have been duly marked as such. This work has not yet been submitted to another examination institution – neither in Germany nor outside Germany – neither in the same nor in a similar way and has not yet been published. Dresden, Place, Date (Signature) Acknowledgement IV Acknowledgement First, I would like to express my sincere gratitude to Prof. Dr.-Ing. habil. Karsten Menzel, Chair of the "Institute of Construction Informatics" for giving me this opportunity to work on my master thesis and believing in my work. I am very grateful to Dipl.-Ing. Johannes Frank Schüler for his encouragement, guidance and support during the course of work. I would like to thank all the staff from "Institute of Construction Informatics " for their valuable support.
    [Show full text]
  • Length of a Hanging Cable
    Undergraduate Journal of Mathematical Modeling: One + Two Volume 4 | 2011 Fall Article 4 2011 Length of a Hanging Cable Eric Costello University of South Florida Advisors: Arcadii Grinshpan, Mathematics and Statistics Frank Smith, White Oak Technologies Problem Suggested By: Frank Smith Follow this and additional works at: https://scholarcommons.usf.edu/ujmm Part of the Mathematics Commons UJMM is an open access journal, free to authors and readers, and relies on your support: Donate Now Recommended Citation Costello, Eric (2011) "Length of a Hanging Cable," Undergraduate Journal of Mathematical Modeling: One + Two: Vol. 4: Iss. 1, Article 4. DOI: http://dx.doi.org/10.5038/2326-3652.4.1.4 Available at: https://scholarcommons.usf.edu/ujmm/vol4/iss1/4 Length of a Hanging Cable Abstract The shape of a cable hanging under its own weight and uniform horizontal tension between two power poles is a catenary. The catenary is a curve which has an equation defined yb a hyperbolic cosine function and a scaling factor. The scaling factor for power cables hanging under their own weight is equal to the horizontal tension on the cable divided by the weight of the cable. Both of these values are unknown for this problem. Newton's method was used to approximate the scaling factor and the arc length function to determine the length of the cable. A script was written using the Python programming language in order to quickly perform several iterations of Newton's method to get a good approximation for the scaling factor. Keywords Hanging Cable, Newton’s Method, Catenary Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.
    [Show full text]
  • Chapter 9 the Geometrical Calculus
    Chapter 9 The Geometrical Calculus 1. At the beginning of the piece Erdmann entitled On the Universal Science or Philosophical Calculus, Leibniz, in the course of summing up his views on the importance of a good characteristic, indicates that algebra is not the true characteristic for geometry, and alludes to a “more profound analysis” that belongs to geometry alone, samples of which he claims to possess.1 What is this properly geometrical analysis, completely different from algebra? How can we represent geometrical facts directly, without the mediation of numbers? What, finally, are the samples of this new method that Leibniz has left us? The present chapter will attempt to answer these questions.2 An essay concerning this geometrical analysis is found attached to a letter to Huygens of 8 September 1679, which it accompanied. In this letter, Leibniz enumerates his various investigations of quadratures, the inverse method of tangents, the irrational roots of equations, and Diophantine arithmetical problems.3 He boasts of having perfected algebra with his discoveries—the principal of which was the infinitesimal calculus.4 He then adds: “But after all the progress I have made in these matters, I am no longer content with algebra, insofar as it gives neither the shortest nor the most elegant constructions in geometry. That is why... I think we still need another, properly geometrical linear analysis that will directly express for us situation, just as algebra expresses magnitude. I believe I have a method of doing this, and that we can represent figures and even 1 “Progress in the art of rational discovery depends for the most part on the completeness of the characteristic art.
    [Show full text]
  • Fibonacci) Rabbit Hole Goes
    European Scientific Journal May 2016 edition vol.12, No.15 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 Why the Glove of Mathematics Fits the Hand of the Natural Sciences So Well : How Far Down the (Fibonacci) Rabbit Hole Goes David F. Haight Department of History and Philosophy, Plymouth State University Plymouth, New Hampshire, U.S.A. doi: 10.19044/esj.2016.v12n15p1 URL:http://dx.doi.org/10.19044/esj.2016.v12n15p1 Abstract Why does the glove of mathematics fit the hand of the natural sciences so well? Is there a good reason for the good fit? Does it have anything to do with the mystery number of physics or the Fibonacci sequence and the golden proportion? Is there a connection between this mystery (golden) number and Leibniz’s general question, why is there something (one) rather than nothing (zero)? The acclaimed mathematician G.H. Hardy (1877-1947) once observed: “In great mathematics there is a very high degree of unexpectedness, combined with inevitability and economy.” Is this also true of great physics? If so, is there a simple “pre- established harmony” or linchpin between their respective ultimate foundations? The philosopher-mathematician, Gottfried Leibniz, who coined this phrase, believed that he had found that common foundation in calculus, a methodology he independently discovered along with Isaac Newton. But what is the source of the harmonic series of the natural log that is the basis of calculus and also Bernhard Riemann’s harmonic zeta function for prime numbers? On the occasion of the three-hundredth anniversary of Leibniz’s death and the one hundredth-fiftieth anniversary of the death of Bernhard Riemann, this essay is a tribute to Leibniz’s quest and questions in view of subsequent discoveries in mathematics and physics.
    [Show full text]
  • Ecaade 2021 Towards a New, Configurable Architecture, Volume 1
    eCAADe 2021 Towards a New, Configurable Architecture Volume 1 Editors Vesna Stojaković, Bojan Tepavčević, University of Novi Sad, Faculty of Technical Sciences 1st Edition, September 2021 Towards a New, Configurable Architecture - Proceedings of the 39th International Hybrid Conference on Education and Research in Computer Aided Architectural Design in Europe, Novi Sad, Serbia, 8-10th September 2021, Volume 1. Edited by Vesna Stojaković and Bojan Tepavčević. Brussels: Education and Research in Computer Aided Architectural Design in Europe, Belgium / Novi Sad: Digital Design Center, University of Novi Sad. Legal Depot D/2021/14982/01 ISBN 978-94-91207-22-8 (volume 1), Publisher eCAADe (Education and Research in Computer Aided Architectural Design in Europe) ISBN 978-86-6022-358-8 (volume 1), Publisher FTN (Faculty of Technical Sciences, University of Novi Sad, Serbia) ISSN 2684-1843 Cover Design Vesna Stojaković Printed by: GRID, Faculty of Technical Sciences All rights reserved. Nothing from this publication may be produced, stored in computerised system or published in any form or in any manner, including electronic, mechanical, reprographic or photographic, without prior written permission from the publisher. Authors are responsible for all pictures, contents and copyright-related issues in their own paper(s). ii | eCAADe 39 - Volume 1 eCAADe 2021 Towards a New, Configurable Architecture Volume 1 Proceedings The 39th Conference on Education and Research in Computer Aided Architectural Design in Europe Hybrid Conference 8th-10th September
    [Show full text]
  • Research Article Traditional Houses and Projective Geometry: Building Numbers and Projective Coordinates
    Hindawi Journal of Applied Mathematics Volume 2021, Article ID 9928900, 25 pages https://doi.org/10.1155/2021/9928900 Research Article Traditional Houses and Projective Geometry: Building Numbers and Projective Coordinates Wen-Haw Chen 1 and Ja’faruddin 1,2 1Department of Applied Mathematics, Tunghai University, Taichung 407224, Taiwan 2Department of Mathematics, Universitas Negeri Makassar, Makassar 90221, Indonesia Correspondence should be addressed to Ja’faruddin; [email protected] Received 6 March 2021; Accepted 27 July 2021; Published 1 September 2021 Academic Editor: Md Sazzad Hossien Chowdhury Copyright © 2021 Wen-Haw Chen and Ja’faruddin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The natural mathematical abilities of humans have advanced civilizations. These abilities have been demonstrated in cultural heritage, especially traditional houses, which display evidence of an intuitive mathematics ability. Tribes around the world have built traditional houses with unique styles. The present study involved the collection of data from documentation, observation, and interview. The observations of several traditional buildings in Indonesia were based on camera images, aerial camera images, and documentation techniques. We first analyzed the images of some sample of the traditional houses in Indonesia using projective geometry and simple house theory and then formulated the definitions of building numbers and projective coordinates. The sample of the traditional houses is divided into two categories which are stilt houses and nonstilt house. The present article presents 7 types of simple houses, 21 building numbers, and 9 projective coordinates.
    [Show full text]
  • A Survey of the Development of Geometry up to 1870
    A Survey of the Development of Geometry up to 1870∗ Eldar Straume Department of mathematical sciences Norwegian University of Science and Technology (NTNU) N-9471 Trondheim, Norway September 4, 2014 Abstract This is an expository treatise on the development of the classical ge- ometries, starting from the origins of Euclidean geometry a few centuries BC up to around 1870. At this time classical differential geometry came to an end, and the Riemannian geometric approach started to be developed. Moreover, the discovery of non-Euclidean geometry, about 40 years earlier, had just been demonstrated to be a ”true” geometry on the same footing as Euclidean geometry. These were radically new ideas, but henceforth the importance of the topic became gradually realized. As a consequence, the conventional attitude to the basic geometric questions, including the possible geometric structure of the physical space, was challenged, and foundational problems became an important issue during the following decades. Such a basic understanding of the status of geometry around 1870 enables one to study the geometric works of Sophus Lie and Felix Klein at the beginning of their career in the appropriate historical perspective. arXiv:1409.1140v1 [math.HO] 3 Sep 2014 Contents 1 Euclideangeometry,thesourceofallgeometries 3 1.1 Earlygeometryandtheroleoftherealnumbers . 4 1.1.1 Geometric algebra, constructivism, and the real numbers 7 1.1.2 Thedownfalloftheancientgeometry . 8 ∗This monograph was written up in 2008-2009, as a preparation to the further study of the early geometrical works of Sophus Lie and Felix Klein at the beginning of their career around 1870. The author apologizes for possible historiographic shortcomings, errors, and perhaps lack of updated information on certain topics from the history of mathematics.
    [Show full text]
  • A Classroom Investigation Into the Catenary
    A classroom investigation into the catenary Ed Staples Erindale College, ACT <[email protected]> The Catenary is the curve that an idealised hanging chain or cable assumes when supported at its ends and acted on only by its own weight… The word catenary is derived from the Latin word catena, which means “chain”. Huygens first used the term catenaria in a letter to Leibniz in 1690… Hooke discovered that the catenary is the ideal curve for an arch of uniform density and thick- ness which supports only its own weight. (Wikipedia, catenary) he quest to find the equation of a catenary makes an ideal investigation Tfor upper secondary students. In the modelling exercise that follows, no knowledge of calculus is required to gain a fairly good understanding of the nature of the curve. This investigation1 is best described as a scientific investi- 1. I saw a similar inves- gation—a ‘hands on’ experience that examines some of the techniques used tigation conducted with students by by science to find models of natural phenomena. It was Joachim Jungius John Short at the time working at (1587–1657) who proved that the curve followed by a chain was not in fact a Rosny College in 2004. The chain parabola, (published posthumously in 1669, Wikipedia, catenary). Wolfram hung along the length of the wall MathWorld also provides relevant information and interesting interactive some four or five metres, with no demonstrations (see http://mathworld.wolfram.com/Catenary.html). more than a metre vertically from the The investigation, to be described here, is underpinned by the fact that the chain’s vertex to the catenary’s equation can be thought of as a real valued polynomial consisting horizontal line Australian Senior Mathematics Journal 25 (2) 2011 between the two of an infinite number of even-powered terms described as: anchor points.
    [Show full text]
  • Mathematics of the Gateway Arch Page 220
    ISSN 0002-9920 Notices of the American Mathematical Society ABCD springer.com Highlights in Springer’s eBook of the American Mathematical Society Collection February 2010 Volume 57, Number 2 An Invitation to Cauchy-Riemann NEW 4TH NEW NEW EDITION and Sub-Riemannian Geometries 2010. XIX, 294 p. 25 illus. 4th ed. 2010. VIII, 274 p. 250 2010. XII, 475 p. 79 illus., 76 in 2010. XII, 376 p. 8 illus. (Copernicus) Dustjacket illus., 6 in color. Hardcover color. (Undergraduate Texts in (Problem Books in Mathematics) page 208 ISBN 978-1-84882-538-3 ISBN 978-3-642-00855-9 Mathematics) Hardcover Hardcover $27.50 $49.95 ISBN 978-1-4419-1620-4 ISBN 978-0-387-87861-4 $69.95 $69.95 Mathematics of the Gateway Arch page 220 Model Theory and Complex Geometry 2ND page 230 JOURNAL JOURNAL EDITION NEW 2nd ed. 1993. Corr. 3rd printing 2010. XVIII, 326 p. 49 illus. ISSN 1139-1138 (print version) ISSN 0019-5588 (print version) St. Paul Meeting 2010. XVI, 528 p. (Springer Series (Universitext) Softcover ISSN 1988-2807 (electronic Journal No. 13226 in Computational Mathematics, ISBN 978-0-387-09638-4 version) page 315 Volume 8) Softcover $59.95 Journal No. 13163 ISBN 978-3-642-05163-0 Volume 57, Number 2, Pages 201–328, February 2010 $79.95 Albuquerque Meeting page 318 For access check with your librarian Easy Ways to Order for the Americas Write: Springer Order Department, PO Box 2485, Secaucus, NJ 07096-2485, USA Call: (toll free) 1-800-SPRINGER Fax: 1-201-348-4505 Email: [email protected] or for outside the Americas Write: Springer Customer Service Center GmbH, Haberstrasse 7, 69126 Heidelberg, Germany Call: +49 (0) 6221-345-4301 Fax : +49 (0) 6221-345-4229 Email: [email protected] Prices are subject to change without notice.
    [Show full text]
  • The Viscous Catenary
    J. Fluid Mech. (2003), vol. 478, pp. 71–80. c 2003 Cambridge University Press 71 DOI: 10.1017/S0022112002003038 Printed in the United Kingdom The viscous catenary By J. TEICHMAN AND L. MAHADEVAN Hatsopoulos Microfluids Laboratory, Massachusetts Institute of Technology,† 77 Massachusetts Avenue, Cambridge, MA 02139, USA (Received 29 September 2002 and in revised form 21 October 2002) A filament of an incompressible highly viscous fluid that is supported at its ends sags under the influence of gravity. Its instantaneous shape resembles that of a catenary, but evolves with time. At short times, the shape is dominated by bending deformations. At intermediate times, the effects of stretching become dominant everywhere except near the clamping boundaries where bending boundary layers persist. Finally, the filament breaks off in finite time via strain localization and pinch-off. 1. Introduction In 1690, Jacob Bernoulli issued the following challenge: determine the shape of a heavy filament or chain hanging between two points on the same horizontal line. Leibniz, Huygens and Johann Bernoulli independently discovered the equation for the shape of the catenary (derived from the Latin for chain), providing one of the first exact solutions of a nonlinear problem in continuum mechanics. Here we consider the fluid analogue of a catenary, shown in figure 1(a–f ). When a thin filament of an incompressible highly viscous fluid forms a bridge across the gap between two solid vertical walls, it will sag under the influence of gravity. After a very short initial transient when it falls quickly, it slows down in response to the resistance to extension.
    [Show full text]
  • Broadband Terahertz Absorber Based on Dispersion-Engineered Catenary Coupling in Dual Metasurface
    Nanophotonics 2019; 8(1): 117–125 Research article Ming Zhang, Fei Zhang, Yi Ou, Jixiang Cai and Honglin Yu* Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface https://doi.org/10.1515/nanoph-2018-0110 not require center alignment and is easy to be fabricated. Received August 2, 2018; revised September 11, 2018; accepted The results of this work could broaden the application October 2, 2018 areas of THz absorbers. Abstract: Terahertz (THz) absorbers have attracted con- Keywords: metasurfaces; terahertz absorbers; dispersion siderable attention due to their potential applications in management; catenary optics. high-resolution imaging systems, sensing, and imaging. However, the limited bandwidth of THz absorbers limits their further applications. Recently, the dispersion man- agement of metasurfaces has become a simple strategy for 1 Introduction the bandwidth extension of THz devices. In this paper, we In recent years, terahertz (THz) electromagnetic waves used the capability of dispersion management to extend with the frequency range from 0.1 to 10 THz have become the bandwidth of THz absorbers. As a proof-of-concept, a the hotspot of research. Benefiting from the newly emerg- dual metasurface-based reflective device was proposed for ing metamaterials, THz devices have spawned a series of broadband near-unity THz absorber, which was composed significant applications in many kinds of fields such as of two polarization-independent metasurfaces separated imaging spectrum systems communications, and non- from a metallic ground by dielectric layers with differ- destructive sensing [1–5]. Among these applications, THz ent thickness. Benefiting from the fully released disper- absorbers have become the crucial component.
    [Show full text]
  • Integer-Digit Functions : an Example of Math-Art Integration. Mathematical Intelligencer, 40 (1)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Strathclyde Institutional Repository Estrada, Ernesto (2018) Integer-digit functions : an example of math-art integration. Mathematical Intelligencer, 40 (1). pp. 73-78. ISSN 1866- 7414 , http://dx.doi.org/10.1007/s00283-017-9726-x This version is available at https://strathprints.strath.ac.uk/66389/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge. Any correspondence concerning this service should be sent to the Strathprints administrator: [email protected] The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output. Integer-Digit Functions: An Example of Math- Art Integration ERNESTO ESTRADA ‘‘God made the integers, all else is the work of man.’’ L.
    [Show full text]