The Viscous Catenary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
J-Integral Analysis of the Mixed-Mode Fracture Behaviour of Composite Bonded Joints
J-Integral analysis of the mixed-mode fracture behaviour of composite bonded joints FERNANDO JOSÉ CARMONA FREIRE DE BASTOS LOUREIRO novembro de 2019 J-INTEGRAL ANALYSIS OF THE MIXED-MODE FRACTURE BEHAVIOUR OF COMPOSITE BONDED JOINTS Fernando José Carmona Freire de Bastos Loureiro 1111603 Equation Chapter 1 Section 1 2019 ISEP – School of Engineering Mechanical Engineering Department J-INTEGRAL ANALYSIS OF THE MIXED-MODE FRACTURE BEHAVIOUR OF COMPOSITE BONDED JOINTS Fernando José Carmona Freire de Bastos Loureiro 1111603 Dissertation presented to ISEP – School of Engineering to fulfil the requirements necessary to obtain a Master's degree in Mechanical Engineering, carried out under the guidance of Doctor Raul Duarte Salgueiral Gomes Campilho. 2019 ISEP – School of Engineering Mechanical Engineering Department JURY President Doctor Elza Maria Morais Fonseca Assistant Professor, ISEP – School of Engineering Supervisor Doctor Raul Duarte Salgueiral Gomes Campilho Assistant Professor, ISEP – School of Engineering Examiner Doctor Filipe José Palhares Chaves Assistant Professor, IPCA J-Integral analysis of the mixed-mode fracture behaviour of composite Fernando José Carmona Freire de Bastos bonded joints Loureiro ACKNOWLEDGEMENTS To Doctor Raul Duarte Salgueiral Gomes Campilho, supervisor of the current thesis for his outstanding availability, support, guidance and incentive during the development of the thesis. To my family for the support, comprehension and encouragement given. J-Integral analysis of the mixed-mode fracture behaviour of composite -
The Age of Addiction David T. Courtwright Belknap (2019) Opioids
The Age of Addiction David T. Courtwright Belknap (2019) Opioids, processed foods, social-media apps: we navigate an addictive environment rife with products that target neural pathways involved in emotion and appetite. In this incisive medical history, David Courtwright traces the evolution of “limbic capitalism” from prehistory. Meshing psychology, culture, socio-economics and urbanization, it’s a story deeply entangled in slavery, corruption and profiteering. Although reform has proved complex, Courtwright posits a solution: an alliance of progressives and traditionalists aimed at combating excess through policy, taxation and public education. Cosmological Koans Anthony Aguirre W. W. Norton (2019) Cosmologist Anthony Aguirre explores the nature of the physical Universe through an intriguing medium — the koan, that paradoxical riddle of Zen Buddhist teaching. Aguirre uses the approach playfully, to explore the “strange hinterland” between the realities of cosmic structure and our individual perception of them. But whereas his discussions of time, space, motion, forces and the quantum are eloquent, the addition of a second framing device — a fictional journey from Enlightenment Italy to China — often obscures rather than clarifies these chewy cosmological concepts and theories. Vanishing Fish Daniel Pauly Greystone (2019) In 1995, marine biologist Daniel Pauly coined the term ‘shifting baselines’ to describe perceptions of environmental degradation: what is viewed as pristine today would strike our ancestors as damaged. In these trenchant essays, Pauly trains that lens on fisheries, revealing a global ‘aquacalypse’. A “toxic triad” of under-reported catches, overfishing and deflected blame drives the crisis, he argues, complicated by issues such as the fishmeal industry, which absorbs a quarter of the global catch. -
Optimization of the Manufacturing Process for Sheet Metal Panels Considering Shape, Tessellation and Structural Stability Optimi
Institute of Construction Informatics, Faculty of Civil Engineering Optimization of the manufacturing process for sheet metal panels considering shape, tessellation and structural stability Optimierung des Herstellungsprozesses von dünnwandigen, profilierten Aussenwandpaneelen by Fasih Mohiuddin Syed from Mysore, India A Master thesis submitted to the Institute of Construction Informatics, Faculty of Civil Engineering, University of Technology Dresden in partial fulfilment of the requirements for the degree of Master of Science Responsible Professor : Prof. Dr.-Ing. habil. Karsten Menzel Second Examiner : Prof. Dr.-Ing. Raimar Scherer Advisor : Dipl.-Ing. Johannes Frank Schüler Dresden, 14th April, 2020 Task Sheet II Task Sheet Declaration III Declaration I confirm that this assignment is my own work and that I have not sought or used the inadmissible help of third parties to produce this work. I have fully referenced and used inverted commas for all text directly quoted from a source. Any indirect quotations have been duly marked as such. This work has not yet been submitted to another examination institution – neither in Germany nor outside Germany – neither in the same nor in a similar way and has not yet been published. Dresden, Place, Date (Signature) Acknowledgement IV Acknowledgement First, I would like to express my sincere gratitude to Prof. Dr.-Ing. habil. Karsten Menzel, Chair of the "Institute of Construction Informatics" for giving me this opportunity to work on my master thesis and believing in my work. I am very grateful to Dipl.-Ing. Johannes Frank Schüler for his encouragement, guidance and support during the course of work. I would like to thank all the staff from "Institute of Construction Informatics " for their valuable support. -
Contact Mechanics in Gears a Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears Master’S Thesis in Product Development
Two Contact Mechanics in Gears A Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears Master’s Thesis in Product Development MARCUS SLOGÉN Department of Product and Production Development Division of Product Development CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden, 2013 MASTER’S THESIS IN PRODUCT DEVELOPMENT Contact Mechanics in Gears A Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears Marcus Slogén Department of Product and Production Development Division of Product Development CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2013 Contact Mechanics in Gear A Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears MARCUS SLOGÉN © MARCUS SLOGÉN 2013 Department of Product and Production Development Division of Product Development Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone: + 46 (0)31-772 1000 Cover: The picture on the cover page shows the contact stress distribution over a crowned spur gear tooth. Department of Product and Production Development Göteborg, Sweden 2013 Contact Mechanics in Gears A Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears Master’s Thesis in Product Development MARCUS SLOGÉN Department of Product and Production Development Division of Product Development Chalmers University of Technology ABSTRACT Computer Aided Engineering, CAE, is becoming more and more vital in today's product development. By using reliable and efficient computer based tools it is possible to replace initial physical testing. This will result in cost savings, but it will also reduce the development time and material waste, since the demand of physical prototypes decreases. This thesis shows how a computer program for analyzing contact mechanics in spur and helical gears has been developed at the request of Vicura AB. -
Cookbook for Rheological Models ‒ Asphalt Binders
CAIT-UTC-062 Cookbook for Rheological Models – Asphalt Binders FINAL REPORT May 2016 Submitted by: Offei A. Adarkwa Nii Attoh-Okine PhD in Civil Engineering Professor Pamela Cook Unidel Professor University of Delaware Newark, DE 19716 External Project Manager Karl Zipf In cooperation with Rutgers, The State University of New Jersey And State of Delaware Department of Transportation And U.S. Department of Transportation Federal Highway Administration Disclaimer Statement The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the Department of Transportation, University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof. The Center for Advanced Infrastructure and Transportation (CAIT) is a National UTC Consortium led by Rutgers, The State University. Members of the consortium are the University of Delaware, Utah State University, Columbia University, New Jersey Institute of Technology, Princeton University, University of Texas at El Paso, Virginia Polytechnic Institute, and University of South Florida. The Center is funded by the U.S. Department of Transportation. TECHNICAL REPORT STANDARD TITLE PAGE 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. CAIT-UTC-062 4. Title and Subtitle 5. Report Date Cookbook for Rheological Models – Asphalt Binders May 2016 6. Performing Organization Code CAIT/University of Delaware 7. Author(s) 8. Performing Organization Report No. Offei A. Adarkwa Nii Attoh-Okine CAIT-UTC-062 Pamela Cook 9. Performing Organization Name and Address 10. -
Idealized 3D Auxetic Mechanical Metamaterial: an Analytical, Numerical, and Experimental Study
materials Article Idealized 3D Auxetic Mechanical Metamaterial: An Analytical, Numerical, and Experimental Study Naeim Ghavidelnia 1 , Mahdi Bodaghi 2 and Reza Hedayati 3,* 1 Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran 1591634311, Iran; [email protected] 2 Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; [email protected] 3 Novel Aerospace Materials, Faculty of Aerospace Engineering, Delft University of Technology (TU Delft), Kluyverweg 1, 2629 HS Delft, The Netherlands * Correspondence: [email protected] or [email protected] Abstract: Mechanical metamaterials are man-made rationally-designed structures that present un- precedented mechanical properties not found in nature. One of the most well-known mechanical metamaterials is auxetics, which demonstrates negative Poisson’s ratio (NPR) behavior that is very beneficial in several industrial applications. In this study, a specific type of auxetic metamaterial structure namely idealized 3D re-entrant structure is studied analytically, numerically, and experi- mentally. The noted structure is constructed of three types of struts—one loaded purely axially and two loaded simultaneously flexurally and axially, which are inclined and are spatially defined by angles q and j. Analytical relationships for elastic modulus, yield stress, and Poisson’s ratio of the 3D re-entrant unit cell are derived based on two well-known beam theories namely Euler–Bernoulli and Timoshenko. Moreover, two finite element approaches one based on beam elements and one based on volumetric elements are implemented. Furthermore, several specimens are additively Citation: Ghavidelnia, N.; Bodaghi, manufactured (3D printed) and tested under compression. -
Music: Broken Symmetry, Geometry, and Complexity Gary W
Music: Broken Symmetry, Geometry, and Complexity Gary W. Don, Karyn K. Muir, Gordon B. Volk, James S. Walker he relation between mathematics and Melody contains both pitch and rhythm. Is • music has a long and rich history, in- it possible to objectively describe their con- cluding: Pythagorean harmonic theory, nection? fundamentals and overtones, frequency Is it possible to objectively describe the com- • Tand pitch, and mathematical group the- plexity of musical rhythm? ory in musical scores [7, 47, 56, 15]. This article In discussing these and other questions, we shall is part of a special issue on the theme of math- outline the mathematical methods we use and ematics, creativity, and the arts. We shall explore provide some illustrative examples from a wide some of the ways that mathematics can aid in variety of music. creativity and understanding artistic expression The paper is organized as follows. We first sum- in the realm of the musical arts. In particular, we marize the mathematical method of Gabor trans- hope to provide some intriguing new insights on forms (also known as short-time Fourier trans- such questions as: forms, or spectrograms). This summary empha- sizes the use of a discrete Gabor frame to perform Does Louis Armstrong’s voice sound like his • the analysis. The section that follows illustrates trumpet? the value of spectrograms in providing objec- What do Ludwig van Beethoven, Ben- • tive descriptions of musical performance and the ny Goodman, and Jimi Hendrix have in geometric time-frequency structure of recorded common? musical sound. Our examples cover a wide range How does the brain fool us sometimes • of musical genres and interpretation styles, in- when listening to music? And how have cluding: Pavarotti singing an aria by Puccini [17], composers used such illusions? the 1982 Atlanta Symphony Orchestra recording How can mathematics help us create new of Copland’s Appalachian Spring symphony [5], • music? the 1950 Louis Armstrong recording of “La Vie en Rose” [64], the 1970 rock music introduction to Gary W. -
The Catenary
The Catenary Daniel Gent December 10, 2008 Daniel Gent The Catenary I The shape of the catenary was originally thought to be a parabola by Galileo, but this was proved false by the German mathmatitian Jungius in 1663. It was not until 1691 that the true shape of the catenary was discovered to be the hyperbolic cosine in a joint work by Leibnez, Huygens, and Bernoulli. History of the catenary. I The catenary is defined by the shape formed by a hanging chain under normal conditions. The name catenary comes from the latin word for chain catena. Daniel Gent The Catenary History of the catenary. I The catenary is defined by the shape formed by a hanging chain under normal conditions. The name catenary comes from the latin word for chain catena. I The shape of the catenary was originally thought to be a parabola by Galileo, but this was proved false by the German mathmatitian Jungius in 1663. It was not until 1691 that the true shape of the catenary was discovered to be the hyperbolic cosine in a joint work by Leibnez, Huygens, and Bernoulli. Daniel Gent The Catenary I The forces on the chain at the point (x,y) will be the tension in the chain (T) which is tangent to the chain, the weight of the chain (W), and the horizontal pull (H) at the origin. Now the magnitude of the weight is proportional to the distance (s) from the origin to the point (x,y). I Thus the sum of the forces W and H must be equal to −T , but since T is tangent to the chain the slope of H + W must equal f 0(x). -
Length of a Hanging Cable
Undergraduate Journal of Mathematical Modeling: One + Two Volume 4 | 2011 Fall Article 4 2011 Length of a Hanging Cable Eric Costello University of South Florida Advisors: Arcadii Grinshpan, Mathematics and Statistics Frank Smith, White Oak Technologies Problem Suggested By: Frank Smith Follow this and additional works at: https://scholarcommons.usf.edu/ujmm Part of the Mathematics Commons UJMM is an open access journal, free to authors and readers, and relies on your support: Donate Now Recommended Citation Costello, Eric (2011) "Length of a Hanging Cable," Undergraduate Journal of Mathematical Modeling: One + Two: Vol. 4: Iss. 1, Article 4. DOI: http://dx.doi.org/10.5038/2326-3652.4.1.4 Available at: https://scholarcommons.usf.edu/ujmm/vol4/iss1/4 Length of a Hanging Cable Abstract The shape of a cable hanging under its own weight and uniform horizontal tension between two power poles is a catenary. The catenary is a curve which has an equation defined yb a hyperbolic cosine function and a scaling factor. The scaling factor for power cables hanging under their own weight is equal to the horizontal tension on the cable divided by the weight of the cable. Both of these values are unknown for this problem. Newton's method was used to approximate the scaling factor and the arc length function to determine the length of the cable. A script was written using the Python programming language in order to quickly perform several iterations of Newton's method to get a good approximation for the scaling factor. Keywords Hanging Cable, Newton’s Method, Catenary Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. -
Decagonal and Quasi-Crystalline Tilings in Medieval Islamic Architecture
REPORTS 21. Materials and methods are available as supporting 27. N. Panagia et al., Astrophys. J. 459, L17 (1996). Supporting Online Material material on Science Online. 28. The authors would like to thank L. Nelson for providing www.sciencemag.org/cgi/content/full/315/5815/1103/DC1 22. A. Heger, N. Langer, Astron. Astrophys. 334, 210 (1998). access to the Bishop/Sherbrooke Beowulf cluster (Elix3) Materials and Methods 23. A. P. Crotts, S. R. Heathcote, Nature 350, 683 (1991). which was used to perform the interacting winds SOM Text 24. J. Xu, A. Crotts, W. Kunkel, Astrophys. J. 451, 806 (1995). calculations. The binary merger calculations were Tables S1 and S2 25. B. Sugerman, A. Crotts, W. Kunkel, S. Heathcote, performed on the UK Astrophysical Fluids Facility. References S. Lawrence, Astrophys. J. 627, 888 (2005). T.M. acknowledges support from the Research Training Movies S1 and S2 26. N. Soker, Astrophys. J., in press; preprint available online Network “Gamma-Ray Bursts: An Enigma and a Tool” 16 October 2006; accepted 15 January 2007 (http://xxx.lanl.gov/abs/astro-ph/0610655) during part of this work. 10.1126/science.1136351 be drawn using the direct strapwork method Decagonal and Quasi-Crystalline (Fig. 1, A to D). However, an alternative geometric construction can generate the same pattern (Fig. 1E, right). At the intersections Tilings in Medieval Islamic Architecture between all pairs of line segments not within a 10/3 star, bisecting the larger 108° angle yields 1 2 Peter J. Lu * and Paul J. Steinhardt line segments (dotted red in the figure) that, when extended until they intersect, form three distinct The conventional view holds that girih (geometric star-and-polygon, or strapwork) patterns in polygons: the decagon decorated with a 10/3 star medieval Islamic architecture were conceived by their designers as a network of zigzagging lines, line pattern, an elongated hexagon decorated where the lines were drafted directly with a straightedge and a compass. -
RHEOLOGY and DYNAMIC MECHANICAL ANALYSIS – What They Are and Why They’Re Important
RHEOLOGY AND DYNAMIC MECHANICAL ANALYSIS – What They Are and Why They’re Important Presented for University of Wisconsin - Madison by Gregory W Kamykowski PhD TA Instruments May 21, 2019 TAINSTRUMENTS.COM Rheology: An Introduction Rheology: The study of the flow and deformation of matter. Rheological behavior affects every aspect of our lives. Dynamic Mechanical Analysis is a subset of Rheology TAINSTRUMENTS.COM Rheology: The study of the flow and deformation of matter Flow: Fluid Behavior; Viscous Nature F F = F(v); F ≠ F(x) Deformation: Solid Behavior F Elastic Nature F = F(x); F ≠ F(v) 0 1 2 3 x Viscoelastic Materials: Force F depends on both Deformation and Rate of Deformation and F vice versa. TAINSTRUMENTS.COM 1. ROTATIONAL RHEOLOGY 2. DYNAMIC MECHANICAL ANALYSIS (LINEAR TESTING) TAINSTRUMENTS.COM Rheological Testing – Rotational - Unidirectional 2 Basic Rheological Methods 10 1 10 0 1. Apply Force (Torque)and 10 -1 measure Deformation and/or 10 -2 (rad/s) Deformation Rate (Angular 10 -3 Displacement, Angular Velocity) - 10 -4 Shear Rate Shear Controlled Force, Controlled 10 3 10 4 10 5 Angular Velocity, Velocity, Angular Stress Torque, (µN.m)Shear Stress 2. Control Deformation and/or 10 5 Displacement, Angular Deformation Rate and measure 10 4 10 3 Force needed (Controlled Strain (Pa) ) Displacement or Rotation, 10 2 ( Controlled Strain or Shear Rate) 10 1 Torque, Stress Torque, 10 -1 10 0 10 1 10 2 10 3 s (s) TAINSTRUMENTS.COM Steady Simple Shear Flow Top Plate Velocity = V0; Area = A; Force = F H y Bottom Plate Velocity = 0 x vx = (y/H)*V0 . -
What Engineers Should Know About Bending Steel
bending and rolling What Engineers Should Know About Bending Steel With these tips under your belt, you’ll be ahead of the curve on your next bending or rolling project. BY TODD A. ALWOOD HOW MUCH DO YOU KNOW ABOUT BENDING STRUCTURAL STEEL? Do you know what you need to show on con- struction drawings to transfer the idea of what the result should actually look like? Do you know how tight of a radius you Hcan roll a W12×19, and what to expect it to look like? If you have bending questions, who do you ask? AISC’s bender-roller com- mittee is taking steps to address these ques- tions, which are coming up more and more within the structural steel industry. Bender = Fabricator? Not so! The bender is typically a spe- cialty subcontractor of the fabricator. Benders receive the steel from the fabri- cator (or sometimes furnish it themselves), and then ship the curved steel back to the fabricator. Benders usually have limited fabrication capabilities, such as hole drill- ing and plate welding, but they are gener- ally used for smaller jobs that usually are not structural in nature. Typical fabrication is still carried out through the main project fabricator who organizes the steel package from procurement through delivery to the site for erection. Kottler Metal Products, Inc. Kottler Metal Products, Todd Alwood is the senior advisor for AISC’s Steel Solutions Center and is Secretary of AISC’s Bender-Roller Committee. MODERN STEEL CONSTRUCTION MAY 2006 Common Terminology and Essential Dimensions for Curving Common Hot-Rolled Shapes There’s only one type of bending, right? Nope! There are five typical methods of bending in the industry: roll- ing, incremental bending, hot bending, rotary-draw bending, and induc- tion bending.