A Music and Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

A Music and Mathematics A Music and mathematics This appendix covers a topic that is underestimated in its significance by many mathematicians, who do not realize that essential aspects of music are based on applied mathematics. This short treatise is meant to show the fundamentals. It may even pique interest in the laws that govern the sen- suous beauty of music. Additional literature is provided for readers who are particularly interested in this topic. The mathematical proportions of a sounding string were first defined by Py- thagoras, who made his discoveries by subdividing tense strings. This chapter describes changes in scales and tonal systems over the course of musical his- tory. The author of this appendix is Reinhard Amon, a musician and the author of a lexicon on major-minor harmonic systems. The chapter will conclude with exercises in “musical calculation” that show the proximity between music and mathematics. © Springer International Publishing AG 2017 G. Glaeser, Math Tools, https://doi.org/10.1007/978-3-319-66960-1 502 Chapter A: Music and mathematics A.1 Basic approach, fundamentals of natural science The basic building blocks of music are rhythmic structures, certain pitches, and their distances (= intervals). Certain intervals are preferred by average listeners, such as the octave and the fifth. Others tend to be rejected or ex- cluded. If one makes an experimentally-scientific attempt to create a system of such preferred and rejected intervals, one will find a broad correspondence between the preferences of the human ear and the overtone series, which fol- lows from natural laws. Thus, there exists a broad correspondence between quantity (mathematical proportion) and quality (human value judgement). Experiments of this kind have been conducted since the times of Hellenic philosophers – such as Pythagoras of Samos ( 570 480 BC), Archytas of Tarentum ( 380 BC), Aristoxenus ( 330 BC), Eratosthenes (3rd century BC), Didymus ( 30 BC), and Ptolemy ( 150),≈ among− others. Pythagoras≈ founded the religious-political≈ community of the Pythagorean school in Kroton.≈ He was considered to be≈ the incarnation of Apollo and was, even during his lifetime, revered as a god. During such experiments, a string was strung up on a monochord and sub- divided using a measurement scale according to the strict mathematical pro- portions 1 2, 2 3 etc. These parts (their halves, thirds, quarters, etc.) were made to vibrate in relation to the whole. Assuming a base tone C, the following numbererd∶ ∶ tone row is, thus, constructed. The emphasized numbers are “ekmelic tones”. These are prime numbers greater than five. Their exact pitch cannot be represented in the Western classical notation system, whose octaves are only subdivided into twelve separate steps. They are, in fact, a little bit lower than their notation. 1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: 14: 15: 16 ↓ ↓ ↓ ↓ C c g c1 e1 g1 b1 c2 d2 e2 f 2 g2 a2 b 2 b2 c3 ♯ ♭ Fig. A.1 tone row by the subdivision of a tense string This row corresponds to the overtone series or harmonic series,1 which is a physical phenomenon that accompanies every sound process. The points that appears next to the numbers transform the distances between the tones into 1Discovered in 1636 by Marin Mersenne. The associated mathematical rules were discovered in 1702 by Joseph Sauveur. A.1 Basic approach, fundamentals of natural science 503 1:2 octave 5:8 minor sixth 15:16 minor second 2:3 fifth 2:3 fifth 5:9 minor seventh 8:9 major second 5:8 minor sixth 3:4 fourth 8:9 major second 5:6 minor third 3:5 major sixth 3:5 major sixth 8:15 major seventh 4:5 major third 5:9 minor seventh 4:5 major third 15:16 minor second 3:4 fourth 8:15 major seventh 5:6 minor third 32:45 tritone 32:45 tritone 1:2 octave TABLE A.1 intervals sorted by sound consolidation and size proportions (C - c octave = 1:2; c - g fifth = 2:3; etc.). The overtones that sound above the base tone (the lowest tone of the row – the one which is notated in the score) are not perceived by us as precisely discernible partial tones, but as “characteristic sounds”. This phenomenon occurs because the strings or columns of air do not only oscillate as a whole, but also in halves, thirds, quarters, . Thus, strings or columns of air do not only produce a single tone, but a sum of tones that produces the characteristic sound. The most important components of Western music – the intervals – can be des- cribed through mathematical proportions of the length of oscillating strings. This is also true for the oscillating columns of air in woodwind instruments. What is more, this row of pitches following from natural laws contains all important intervals for major-minor tonality. Since modern times, numbers have been used differently in relation to tones – the basis for the description of a pitch now being the frequency, and no longer the length of a string. Here, it is important to understand that frequency is inversely proportional to the length of a sounding string. A ratio of 1:2 with respect to string lengths corresponds to a ratio of 2:1 with respect to frequency, as a string or column of air that is shortened by half oscillates at twice its original frequency. Twelve essential intervals should be given, from consonant intervals (those with a high degree of sound consolidation among both frequencies – from the octave to the minor sixth) to dissonant intervals (those with little or no sound consolidation among both frequencies). Remark: The discovery of the connection between the sensual impression of music and its mathematical fundamentals is described in a story by Pythagoras (Fig. A.2): ⊕ octave 1:2 fifth fifth 2:3 2:3 fourth fourth 3:4 3:4 tempered whole tone 8:9 6 8 9 12 Fig. A.2 Pythagoras’s discovery Fig. A.3 ordering of tonal relationships “One day, during a long walk, Pythagoras pondered the problem of consonance. He wondered whether he would be able to find an aid for his sense of hearing, analogous 504 Chapter A: Music and mathematics to the yardstick or the compass as an aid for the visual sense and to the scale as an aid for the sense of touch. Through a fortunate twist of fate, he passed by a smithy and could clearly hear that several iron hammers striking against anvil, with the exception of one pair of hammers, produced consonant sounds. Full of joy, as if a god supported his plan, he entered the smithy and realized through various experiments that it was the varying weight of the hammers, rather than the blacksmith’s output of energy or the strength of the hammers, that caused the tonal difference. He carefully established the weight of the hammers and their impact, and then returned home. There, he fixed a single nail at a corner of the wall, so that no two nails, each having its specific substance, would falsify the experiment. On the nail, he hung four strings of the same substance, with the same number of wires, the same thickness, and the same rotation, and he attached a weight at the utmost end of each string. All strings had the same length, and by plucking two strings simultaneously, he managed to create the consonances he was looking for, which varied with each pair of strings. With the two weights 12 and 6, he produced an octave and thus determined that the octave is in a ratio of 2 : 1 – something which he had already realized with the weight of the hammers hitting the anvil. With both weights 12 and 8, he received the fifth from which he derived the ratio 3 2. With the weights 12 and 9, he got the fourth and thus the ratio 4 3. When comparing the middle weights 9 and 8, he recognized the interval of the whole tone, which∶ he, then, defined as 9 8. Accordingly, he could define the octave as∶ the union of fifth and fourth, that is, 2 1 3 2 4 3, and the whole tone as the difference of the two intervals, that is 9 ∶8 ~ 3 2 ~ 3 4.”~2 = × The graphical representation (Fig. A.3) of this Pythagorean~ ~ basic~ order of = × ⊕ the tonal ratios shows that, simultaneously with the two fifths (2:3), two quarter intervals (3:4) and a whole tone interval (8:9) are produced. These musical and mathematical rudiments discovered by Pythagoras and his pupils were regarded not as a “primary substance” but as a “primary law”, as it was believed that the the creation of the world and the cosmos was based on invariable numerical proportions. The prevalence of this belief is reflected by the elevated status of mathematics, which is still widely considered as the first of the sciences. This is also due to the influence on a person’s mental balance that is often ascribed to mathematics, as, for instance, in the following quote by the philosopher and mathematician Wilhelm Leibniz (1646–1716): “Music is an unconscious exercise in mathematics in which the mind is unaware that it is dealing with numbers”. 2J. Chailley: Harmonie und Kontrapunkt, p. 7ff. A.2 System formation 505 A.2 System formation Since ancient times, there have been attempts to derive scales and sound systems from the existing tones. To this end, people tried to fill the octave- space with intervals that were preferably of equal size and of harmonious proportions. Remark: The octave – the complete fusion of the two frequencies involved (octave identity) – has a special position among the intervals, as it represents the classifica- tion⊕ framework for all music systems.
Recommended publications
  • Mapping Inter and Transdisciplinary Relationships in Architecture: a First Approach to a Dictionary Under Construction
    Athens Journal of Architecture XY Mapping Inter and Transdisciplinary Relationships in Architecture: A First Approach to a Dictionary under Construction By Clara Germana Gonçalves Maria João Soares† This paper serves as part of the groundwork for the creation of a transdisciplinary dictionary of architecture that will be the result of inter and transdisciplinary research. The body of dictionary entries will be determined through the mapping of interrelating disciplines and concepts that emerge during said research. The aim is to create a dictionary whose entries derive from the scope of architecture as a discipline, some that may be not well defined in architecture but have full meanings in other disciplines. Or, even, define a hybrid disciplinary scope. As a first approach, the main entries – architecture and music, architecture and mathematics, architecture, music and mathematics, architecture and cosmology, architecture and dance, and architecture and cinema – incorporate secondary entries – harmony, matter and sound, full/void, organism and notation – for on the one hand these secondary entries present themselves as independent subjects (thought resulting from the main) and on the other they present themselves as paradigmatic representative concepts of a given conceptual context. It would also be of interest to see which concepts are the basis of each discipline and also those which, while not forming the basis, are essential to a discipline’s operationality. The discussion is focused in the context of history, the varying disciplinary interpretations, the differing implications those disciplinary interpretations have in the context of architecture, and the differing conceptual interpretations. The entries also make reference to important authors and studies in each specific case.
    [Show full text]
  • ACT Resources for Arts A/V Technology
    Career Cluster: Arts, A/V Technology, & Communications Mathematics in Digital Arts and Design III – Addresses standard 11 Question A graphic designer at a bottling company is tasked with designing efficient packaging for soda cans. Two options are being considered. Which of the two arrangements has less unused space in the package and how does the arrangement compare with the alternative? The radius of a soda can is approximately 3.2 cm. Package A Package B A. Package A; Package A has 16.7% less unused space than Package B. B. Package B; Package B has 16.7% less unused space than Package A. C. Package B; Package B has 8.3% less unused space than Package A. D. Neither; The two packages have equal unused space. Source: Adapted from Zordak, S. E. (n.d.). Soda Cans. Retrieved February 24, 2016, from http://illuminations.nctm.org/Lesson.aspx?id=2363 Office of Career and Technical Education • 710 James Robertson Parkway • Nashville, TN 37243 1 | March 2016 Tel: (615) 532-2830 • tn.gov/education/cte Career Cluster: Arts, A/V Technology, & Communications Science in A/V Production I – Addresses Standard 15 Passage I Natural Science: This passage is adapted from the chapter “The Wave Theory of Sound” in Acoustics: An Introduction to Its Physical Principles and Applications by Allan Pierce. (Acoustical Society of America). Acoustics is the science of sound, including 20 ability, of communication via sound, along with the its production, transmission, and effects. In variety of psychological influences sound has on present usage, the term sound implies not only those who hear it.
    [Show full text]
  • Marin Mersenne English Version
    MARIN MERSENNE (September 8, 1588 – September 1, 1648) by HEINZ KLAUS STRICK, Germany Although no stamp with a portrait of the French mathematician MARIN MERSENNE has yet been issued, the postal administration of the Principality of Liechtenstein took the discovery of the 39th MERSENNE prime number = 13,466,917 − M13,466,9 17 2 1 as an opportunity to select this number as the motif for a stamp of a series on science (the graphic on the stamp below shows a logarithmic spiral). (drawings © Andreas Strick) EUCLID had already dealt with numbers of the type 2n −1 and, among other things, proved the theorem: If 2n −1 is a prime number, then 2n1- ⋅ (2 n − 1) is a perfect number. th Until the end of the 16 century it was believed that all numbers of the type 2n −1 were prime numbers if the exponent n was a prime number. In 1603, the Italian mathematician PIETRO CATALDI, who was also the first to write a treatise on continued fractions, proved the following: If the exponent n is not a prime number, i.e. if it can be represented as the product of n a⋅ b= with a b∈ , IN , then 2n −1 is not a prime number either; because then the number can be broken down into at least two factors: ⋅ − ⋅ 2a b − 12112 =( a −) ⋅( +a + 22 a + 23 a + ...2 + (b 1) a ). He also showed by systematic trial and error with all prime divisors up to the root of the number in question that 217 −1 and 219 −1 are prime numbers.
    [Show full text]
  • The 17-Tone Puzzle — and the Neo-Medieval Key That Unlocks It
    The 17-tone Puzzle — And the Neo-medieval Key That Unlocks It by George Secor A Grave Misunderstanding The 17 division of the octave has to be one of the most misunderstood alternative tuning systems available to the microtonal experimenter. In comparison with divisions such as 19, 22, and 31, it has two major advantages: not only are its fifths better in tune, but it is also more manageable, considering its very reasonable number of tones per octave. A third advantage becomes apparent immediately upon hearing diatonic melodies played in it, one note at a time: 17 is wonderful for melody, outshining both the twelve-tone equal temperament (12-ET) and the Pythagorean tuning in this respect. The most serious problem becomes apparent when we discover that diatonic harmony in this system sounds highly dissonant, considerably more so than is the case with either 12-ET or the Pythagorean tuning, on which we were hoping to improve. Without any further thought, most experimenters thus consign the 17-tone system to the discard pile, confident in the knowledge that there are, after all, much better alternatives available. My own thinking about 17 started in exactly this way. In 1976, having been a microtonal experimenter for thirteen years, I went on record, dismissing 17-ET in only a couple of sentences: The 17-tone equal temperament is of questionable harmonic utility. If you try it, I doubt you’ll stay with it for long.1 Since that time I have become aware of some things which have caused me to change my opinion completely.
    [Show full text]
  • Object Oriented Programming
    No. 52 March-A pril'1990 $3.95 T H E M TEe H CAL J 0 URN A L COPIA Object Oriented Programming First it was BASIC, then it was structures, now it's objects. C++ afi<;ionados feel, of course, that objects are so powerful, so encompassing that anything could be so defined. I hope they're not placing bets, because if they are, money's no object. C++ 2.0 page 8 An objective view of the newest C++. Training A Neural Network Now that you have a neural network what do you do with it? Part two of a fascinating series. Debugging C page 21 Pointers Using MEM Keep C fro111 (C)rashing your system. An AT Keyboard Interface Use an AT keyboard with your latest project. And More ... Understanding Logic Families EPROM Programming Speeding Up Your AT Keyboard ((CHAOS MADE TO ORDER~ Explore the Magnificent and Infinite World of Fractals with FRAC LS™ AN ELECTRONIC KALEIDOSCOPE OF NATURES GEOMETRYTM With FracTools, you can modify and play with any of the included images, or easily create new ones by marking a region in an existing image or entering the coordinates directly. Filter out areas of the display, change colors in any area, and animate the fractal to create gorgeous and mesmerizing images. Special effects include Strobe, Kaleidoscope, Stained Glass, Horizontal, Vertical and Diagonal Panning, and Mouse Movies. The most spectacular application is the creation of self-running Slide Shows. Include any PCX file from any of the popular "paint" programs. FracTools also includes a Slide Show Programming Language, to bring a higher degree of control to your shows.
    [Show full text]
  • PYTHAGORAS in LONDON Mathematics ESO 2
    PYTHAGORASPYTHAGORAS inin LONDONLONDON GuiaGuia dede treballtreball Laura, 2103. Jaume Plensa MaterialMaterial elaboratelaborat perper www.mat3.cat Maite Gorriz i Santi Vilches PYTHAGORAS in LONDON Mathematics ESO www.mat3.cat 2 AVATAR An Avatar is a personal icon in a virtual context. We will develop the capacity to program and control the avatar’s movements and we will learn how to use a powerful mathematics tool which is necessary to program an avatar. A. SPECIAL EQUATIONS A.1. Calculate without calculator and memorize the following results: a) 2², 3², 4², 5², 6², 7², 8², 9², 10², 11², 12², 13² i 14² b) √1 , √4 , √9 , √16 , √25 , √36 , √49 , √64 , √81 … A.2. Solve the following quadratic equations: a) x² = 64 b) x² – 6 = 30 c) 10 – x² = 9 d) x² = 2 e) 7² + x² = 2 f) 12 = 1,3 + x² g) 11² + x² = 13² B. A LITTLE BIT OF VOCABULARY AND BASIC CONCEPTS B.1.We need to learn specific vocabulary. Write the definitions of the following words and draw an illustrative picture. a) Equilateral triangle b) Isosceles triangle c) Escalene triangle d) Obtuse triangle e) Rectangle triangle or right triangle f) Acutangle triangle g) Hypotenuse h) Cathetus PYTHAGORAS in LONDON Mathematics ESO www.mat3.cat 3 B.2. Remember that we measure the angles from the horizontal side to the other one in the counterclockwise. Remember also that one turn is 360º (degrees). A Write the measure of each angle: B.3. Try to do the same figure in the Geogebra and add the exercise in the Moodle. (surname_B3_angles_2X.ggb) B.4.
    [Show full text]
  • MATHEMATICS EXTENDED ESSAY Mathematics in Music
    TED ANKARA COLLEGE FOUNDATION PRIVATE HIGH SCHOOL THE INTERNATIONAL BACCALAUREATE PROGRAMME MATHEMATICS EXTENDED ESSAY Mathematics In Music Candidate: Su Güvenir Supervisor: Mehmet Emin ÖZER Candidate Number: 001129‐047 Word Count: 3686 words Research Question: How mathematics and music are related to each other in the way of traditional and patternist perspective? Su Güvenir, 001129 ‐ 047 Abstract Links between music and mathematics is always been an important research topic ever. Serious attempts have been made to identify these links. Researches showed that relationships are much more stronger than it has been anticipated. This paper identifies these relationships between music and various fields of mathematics. In addition to these traditional mathematical investigations to the field of music, a new approach is presented: Patternist perspective. This new perspective yields new important insights into music theory. These insights are explained in a detailed way unraveling some interesting patterns in the chords and scales. The patterns in the underlying the chords are explained with the help of an abstract device named chord wheel which clearly helps to visualize the most essential relationships in the chord theory. After that, connections of music with some fields in mathematics, such as fibonacci numbers and set theory, are presented. Finally concluding that music is an abstraction of mathematics. Word Count: 154 words. 2 Su Güvenir, 001129 ‐ 047 TABLE OF CONTENTS ABSTRACT………………………………………………………………………………………………………..2 CONTENTS PAGE……………………………………………………………………………………………...3
    [Show full text]
  • The Lost Harmonic Law of the Bible
    The Lost Harmonic Law of the Bible Jay Kappraff New Jersey Institute of Technology Newark, NJ 07102 Email: kappraff@verizon.net Abstract The ethnomusicologist Ernest McClain has shown that metaphors based on the musical scale appear throughout the great sacred and philosophical works of the ancient world. This paper will present an introduction to McClain’s harmonic system and how it sheds light on the Old Testament. 1. Introduction Forty years ago the ethnomusicologist Ernest McClain began to study musical metaphors that appeared in the great sacred and philosophical works of the ancient world. These included the Rg Veda, the dialogues of Plato, and most recently, the Old and New Testaments. I have described his harmonic system and referred to many of his papers and books in my book, Beyond Measure (World Scientific; 2001). Apart from its value in providing new meaning to ancient texts, McClain’s harmonic analysis provides valuable insight into musical theory and mathematics both ancient and modern. 2. Musical Fundamentals Figure 1. Tone circle as a Single-wheeled Chariot of the Sun (Rg Veda) Figure 2. The piano has 88 keys spanning seven octaves and twelve musical fifths. The chromatic musical scale has twelve tones, or semitone intervals, which may be pictured on the face of a clock or along the zodiac referred to in the Rg Veda as the “Single-wheeled Chariot of the Sun.” shown in Fig. 1, with the fundamental tone placed atop the tone circle and associated in ancient sacred texts with “Deity.” The tones are denoted by the first seven letters of the alphabet augmented and diminished by and sharps ( ) and flats (b).
    [Show full text]
  • Letter from Descartes to Desargues 1 (19 June 1639)
    Appendix 1 Letter from Descartes to Desargues 1 (19 June 1639) Sir, The openness I have observed in your temperament, and my obligations to you, invite me to write to you freely what I can conjecture of the Treatise on Conic Sections, of which the R[everend] F[ather] M[ersenne] sent me the Draft. 2 You may have two designs, which are very good and very praiseworthy, but which do not both require the same course of action. One is to write for the learned, and to instruct them about some new properties of conics with which they are not yet familiar; the other is to write for people who are interested but not learned, and make this subject, which until now has been understood by very few people, but which is nevertheless very useful for Perspective, Architecture etc., accessible to the common people and easily understood by anyone who studies it from your book. If you have the first of these designs, it does not seem to me that you have any need to use new terms: for the learned, being already accustomed to the terms used by Apollonius, will not easily exchange them for others, even better ones, and thus your terms will only have the effect of making your proofs more difficult for them and discourage them from reading them. If you have the second design, your terms, being French, and showing wit and elegance in their invention, will certainly be better received than those of the Ancients by people who have no preconceived ideas; and they might even serve to attract some people to read your work, as they read works on Heraldry, Hunting, Architecture etc., without any wish to become hunters or architects but only to learn to talk about them correctly.
    [Show full text]
  • The Order of Numbers in the Second Viennese School of Music
    The order of numbers in the Second Viennese School of Music Carlota Sim˜oes Department of Mathematics University of Coimbra Portugal Mathematics and Music seem nowadays independent areas of knowledge. Nevertheless, strong connections exist between them since ancient times. Twentieth-century music is no exception, since in many aspects it admits an obvious mathematical formalization. In this article some twelve-tone music rules, as created by Schoenberg, are presented and translated into math- ematics. The representation obtained is used as a tool in the analysis of some compositions by Schoenberg, Berg, Webern (the Second Viennese School) and also by Milton Babbitt (a contemporary composer born in 1916). The Second Viennese School of Music The 12-tone music was condemned by the Nazis (and forbidden in the occupied Europe) because its author was a Jew; by the Stalinists for having a bourgeois cosmopolitan formalism; by the public for being different from everything else. Roland de Cand´e[2] Arnold Schoenberg (1874-1951) was born in Vienna, in a Jewish family. He lived several years in Vienna and in Berlin. In 1933, forced to leave the Academy of Arts of Berlin, he moved to Paris and short after to the United States. He lived in Los Angeles from 1934 until the end of his life. In 1923 Schoenberg presented the twelve-tone music together with a new composition method, also adopted by Alban Berg (1885-1935) and Anton Webern (1883-1945), his students since 1904. The three composers were so closely associated that they became known as the Second Viennese School of Music.
    [Show full text]
  • Kostka, Stefan
    TEN Classical Serialism INTRODUCTION When Schoenberg composed the first twelve-tone piece in the summer of 192 1, I the "Pre- lude" to what would eventually become his Suite, Op. 25 (1923), he carried to a conclusion the developments in chromaticism that had begun many decades earlier. The assault of chromaticism on the tonal system had led to the nonsystem of free atonality, and now Schoenberg had developed a "method [he insisted it was not a "system"] of composing with twelve tones that are related only with one another." Free atonality achieved some of its effect through the use of aggregates, as we have seen, and many atonal composers seemed to have been convinced that atonality could best be achieved through some sort of regular recycling of the twelve pitch class- es. But it was Schoenberg who came up with the idea of arranging the twelve pitch classes into a particular series, or row, th at would remain essentially constant through- out a composition. Various twelve-tone melodies that predate 1921 are often cited as precursors of Schoenberg's tone row, a famous example being the fugue theme from Richard Strauss's Thus Spake Zararhustra (1895). A less famous example, but one closer than Strauss's theme to Schoenberg'S method, is seen in Example IO-\. Notice that Ives holds off the last pitch class, C, for measures until its dramatic entrance in m. 68. Tn the music of Strauss and rves th e twelve-note theme is a curiosity, but in the mu sic of Schoenberg and his fo ll owers the twelve-note row is a basic shape that can be presented in four well-defined ways, thereby assuring a certain unity in the pitch domain of a composition.
    [Show full text]
  • Optimization of the Manufacturing Process for Sheet Metal Panels Considering Shape, Tessellation and Structural Stability Optimi
    Institute of Construction Informatics, Faculty of Civil Engineering Optimization of the manufacturing process for sheet metal panels considering shape, tessellation and structural stability Optimierung des Herstellungsprozesses von dünnwandigen, profilierten Aussenwandpaneelen by Fasih Mohiuddin Syed from Mysore, India A Master thesis submitted to the Institute of Construction Informatics, Faculty of Civil Engineering, University of Technology Dresden in partial fulfilment of the requirements for the degree of Master of Science Responsible Professor : Prof. Dr.-Ing. habil. Karsten Menzel Second Examiner : Prof. Dr.-Ing. Raimar Scherer Advisor : Dipl.-Ing. Johannes Frank Schüler Dresden, 14th April, 2020 Task Sheet II Task Sheet Declaration III Declaration I confirm that this assignment is my own work and that I have not sought or used the inadmissible help of third parties to produce this work. I have fully referenced and used inverted commas for all text directly quoted from a source. Any indirect quotations have been duly marked as such. This work has not yet been submitted to another examination institution – neither in Germany nor outside Germany – neither in the same nor in a similar way and has not yet been published. Dresden, Place, Date (Signature) Acknowledgement IV Acknowledgement First, I would like to express my sincere gratitude to Prof. Dr.-Ing. habil. Karsten Menzel, Chair of the "Institute of Construction Informatics" for giving me this opportunity to work on my master thesis and believing in my work. I am very grateful to Dipl.-Ing. Johannes Frank Schüler for his encouragement, guidance and support during the course of work. I would like to thank all the staff from "Institute of Construction Informatics " for their valuable support.
    [Show full text]