Letter from Descartes to Desargues 1 (19 June 1639)

Total Page:16

File Type:pdf, Size:1020Kb

Letter from Descartes to Desargues 1 (19 June 1639) Appendix 1 Letter from Descartes to Desargues 1 (19 June 1639) Sir, The openness I have observed in your temperament, and my obligations to you, invite me to write to you freely what I can conjecture of the Treatise on Conic Sections, of which the R[everend] F[ather] M[ersenne] sent me the Draft. 2 You may have two designs, which are very good and very praiseworthy, but which do not both require the same course of action. One is to write for the learned, and to instruct them about some new properties of conics with which they are not yet familiar; the other is to write for people who are interested but not learned, and make this subject, which until now has been understood by very few people, but which is nevertheless very useful for Perspective, Architecture etc., accessible to the common people and easily understood by anyone who studies it from your book. If you have the first of these designs, it does not seem to me that you have any need to use new terms: for the learned, being already accustomed to the terms used by Apollonius, will not easily exchange them for others, even better ones, and thus your terms will only have the effect of making your proofs more difficult for them and discourage them from reading them. If you have the second design, your terms, being French, and showing wit and elegance in their invention, will certainly be better received than those of the Ancients by people who have no preconceived ideas; and they might even serve to attract some people to read your work, as they read works on Heraldry, Hunting, Architecture etc., without any wish to become hunters or architects but only to learn to talk about them correctly. But, if this is your intention, you must steel yourself to writing a thick book, and in it explain everything so fully, so clearly and so distinctly that these gentlemen, who cannot study a book without yawning and cannot exert their imagination to understand a proposition of Geometry, nor tum the page to look at the letters on a figure, will not find anything in your discourse which seems to them to be less easy of understanding than the Letter from Descartes to Desargues (19 June 1639) 177 description of an enchanted palace in a novel. And, to this end, it seems to me that, to make your proofs less heavy, it would not be out of the question to employ the terminology and style of calculation and of Arithmetic, as I did in my Geometry;3 for there are many more people who know what multiplication is than there are who know about compounding ratios, etc. Concerning your treatment of parallel lines as meeting at a butt4 at infinite distance, so as to include them in the same category as lines which meet at a point, this is very good, provided you use it, as I am sure you do, rather as an aid to understanding what is difficult to see in one of the types, by comparing it with the other, where it is clear, and not conversely. I have nothing to add on what you have written about the centre of gravity of a sphere: for I have already expressed my opinion sufficiently fully to the R[everend] F[ather] M[ersenne] and your comment at the end of your corrections shows that you have understood what I said. But I ask your pardon if! have allowed myself to be carried away by my enthusiasm in recounting my thoughts so freely, and I beg you to believe me s, ... Appendix 2 Letter from Beaugrand to Desargues 1 (25 July 1639) Sir, I am astonished that you have not received solutions to your problems from those to whom you addressed yourself before, since I find nothing in them that cannot easily be constructed by the propositions of Apollonius. It must be that they are not familiar with the work of this author since they have assured you that they did not see how they could use it; I want to show you how to do so by using the figures of [proposition] 54 [of book] 3, so that you may be left in no doubt. 2 Let there be three points A, H, C, two of which, that is A, C, you suppose to lie on the straight lines AD, CD, whose position is given; you wish to construct a conic section which passes through the point H and touches the straight lines AD, DC at the points A, C. Divide AC into two equal parts at the point E, and draw the line DE, which will be the diameter of the conic that is to be constructed. Draw the straight lines AF, CG, the first parallel to DC, the other to AD, and also the lines AH, H C which meet these lines at the points F, G. Then find on the infinite straight line DE a point or two such as B, such that the ratio of the square of BF to the square of DB is equal to the ratio of the rectangle AF, CG to the rectangle 4AD, DC. Now, if these four rectangles are equal you will only find one point B between D and E which defines, in relation to these points, two lines in the proportion I have prescribed; in this case the [conic] section you require will be a parabola, which you can construct by proposition 20 [of book] 1. 3 But you will find two such points B, K if the rectangles are unequal, and if rectangle AF, CG is greater than rectangle 4AD, CD the conic section will be a hyperbola, and an ellipse if it [the first rectangle] is smaller. And since you know the size and position of the chord5 BK and one of the ordinates, AE, you can describe the ellipse, by proposition 21 [of book] 1. The other problem was to describe a conic passing through four points so arranged that the infinite straight line drawn through two of these points Letter from Beaugrand to Desargues (25 July 1639) 179 passes through the point of intersection of the straight lines which touch the conic at the other two points. Let the four given points be Q, A, H, C and let the line QH pass through the point of intersection of the lines which will touch the required conic at the points A, C. Construct the points Rand D on the line QH such that the ratio of QR to RH is equal to the ratio of QD to DH; the point D is the point of intersection of the tangents mentioned above.4 Having drawn the tangents, it only remains to describe a conic section which passes through the point H and touches the straight lines AD, DC at the points A, C, [which can be done] in the manner I have explained above. However, since, as you see, the second problem reduces to the first, I shall add a second solution to the first problem, a solution which is short and not very difficult. Having drawn the straight lines AF, CG, CH, AH as above, take on the line AF any point Z, and on the line CG cut off CY, a length such that its ratio to CG is the same as that of FA to AZ; joining the lines AY, CZ [i.e. producing (hem until they intersect] their point of intersection, P, will lie on the required conic section, which you can describe by finding as many more such points as you consider appropriate. I could easily give you other solutions to the same problems, either taken from Apollonius or from my own writings on conics, and I could equally render them more general by making certain changes, but I have solved them in the form in which you proposed them, in order to give you greater satisfaction. I am Sir. [sic] Proof of the second construction of the first problem: ae" {eb" bd"{af ' eg 4ad, de{eb" bd" af, eg 4a"d, de ae" aZ,ey 4ad, de eb" bd" af, eg = az, ey af eg {4ad, de ae" eb" db" af eg 4ad de Your very humble servant De Beaugrand Paris 25 July 1639 Appendix 3 Pascal's Essay on Conics (1640) The original title of Pascal's work is Essay pour les Coniques. ESSA Y ON CONICS By B.P. First Definition When several straight lines meet at one point, or are all parallel to one another, all these lines are said to belong to the same order or ordinance [ordonnance, the word used by Desargues], and the set of lines is called an order of lines or an ordinance of lines. Definition II By the term conic section we mean the circumference of the Circle, the Ellipse, the Hyperbola, the Parabola and the Pair of Straight lines, since a Cone, cut parallel to its base, or through its vertex [sommet] or in the three other ways which give the Ellipse, the Hyperbola and the parabola, produces in the Conical surface either the circumference of a circle, or a pair of straight lines, or the Ellipse, or the Hyperbola, or the parabola. Definition III By the word straight [droite = straight], used alone, we mean straight line [ligne droite]. Lemma I [Figure A3.1] -If in the plane M, S, Q we have two lines M K, M V through the point M and two lines SK, SV through the point S, and K is the point of intersection of the straight lines MK, SK and A the point of intersection of the lines M K, S Vi and p.
Recommended publications
  • Desargues, Girard
    GIRARD DESARGUES (February 21, 1591 – October 1661) by HEINZ KLAUS STRICK, Germany GIRARD DESARGUES came from very wealthy families of lawyers and judges who worked at the Parlement, the highest appellate courts of France in Paris and Lyon. Nothing is known about GIRARD's youth, but it is safe to assume that he and his five siblings received the best possible education. While his two older brothers were admitted to the Parisian Parlement, he was involved in the silk trade in Lyon, as can be seen from a document dating from 1621. In 1626, after a journey through Flanders, he applied to the Paris city council for a licence to drill a well and use the water from the well. His idea was to construct an effective hydraulic pump to supply water to entire districts, but this project did not seem to be successful. After the death of his two older brothers in 1628, he took over the family inheritance and settled in Paris. There he met MARIN MERSENNE and soon became a member of his Academia Parisiensis, a discussion group of scientists including RENÉ DESCARTES, GILLES PERSONNE DE ROBERVAL, ÉTIENNE PASCAL and his son BLAISE. (drawing: © Andreas Strick) The first publication by DESARGUES to attract attention was Une méthode aisée pour apprendre et enseigner à lire et escrire la musique (An easy way to learn and teach to read and write music). In 1634 MERSENNE mentioned in a letter to his acquaintances that DESARGUES was working on a paper on perspective (projection from a point). But it was not until two years later that the work was published: only 12 pages long and in a small edition.
    [Show full text]
  • Read Book Advanced Euclidean Geometry Ebook
    ADVANCED EUCLIDEAN GEOMETRY PDF, EPUB, EBOOK Roger A. Johnson | 336 pages | 30 Nov 2007 | Dover Publications Inc. | 9780486462370 | English | New York, United States Advanced Euclidean Geometry PDF Book As P approaches nearer to A , r passes through all values from one to zero; as P passes through A , and moves toward B, r becomes zero and then passes through all negative values, becoming —1 at the mid-point of AB. Uh-oh, it looks like your Internet Explorer is out of date. In Elements Angle bisector theorem Exterior angle theorem Euclidean algorithm Euclid's theorem Geometric mean theorem Greek geometric algebra Hinge theorem Inscribed angle theorem Intercept theorem Pons asinorum Pythagorean theorem Thales's theorem Theorem of the gnomon. It might also be so named because of the geometrical figure's resemblance to a steep bridge that only a sure-footed donkey could cross. Calculus Real analysis Complex analysis Differential equations Functional analysis Harmonic analysis. This article needs attention from an expert in mathematics. Facebook Twitter. On any line there is one and only one point at infinity. This may be formulated and proved algebraically:. When we have occasion to deal with a geometric quantity that may be regarded as measurable in either of two directions, it is often convenient to regard measurements in one of these directions as positive, the other as negative. Logical questions thus become completely independent of empirical or psychological questions For example, proposition I. This volume serves as an extension of high school-level studies of geometry and algebra, and He was formerly professor of mathematics education and dean of the School of Education at The City College of the City University of New York, where he spent the previous 40 years.
    [Show full text]
  • 1 H-France Forum Volume 14 (2019), Issue 4, #3 Jeffrey N. Peters, The
    1 H-France Forum Volume 14 (2019), Issue 4, #3 Jeffrey N. Peters, The Written World. Space, Literature, and the Chorological Imagination in Early Modern France. Evanston: Northwestern University Press, 2018. vii + 272 pp. Figures, notes, and Copyright index. $34.95 (pb). ISBN 978-0-8101-3697-7; $99.95 (cl). ISBN 978-0- 8101-3698-4; $34.95 (Kindle). ISBN 978-0-8101-3699-1. Review Essay by David L. Sedley, Haverford College The Written World has on its cover an image from La Manière universelle de M. Desargues, pour pratiquer la perspective (1648). This book, written and illustrated by Abraham Bosse and based on the projective geometry of Girard Desargues, extends the theories of perspective codified by Leon Battista Alberti and his followers. [1] Alberti directed painters to pose a central point at the apparent conjunction of parallel lines in order to lend depth and coherence to their compositions. Desargues reinterpreted and renamed Alberti’s central point (and other points like it) as a point at infinity. Consequently, the convergent lines of a visual representation could be taken to indicate the infinite more emphatically than before. As an illustration of the art of putting objects in a perspective that emphasizes their connection to infinity, Bosse’s image suits Peters’ book to a T. Peters represents his objects of study—mainly a series of works of seventeenth-century French literature—with an eye to showing their affinity with the infinite. He frequently discusses infinity through chora, the Ancient Greek term used by Plato and adopted by Jacques Derrida to denote the space underlying all finite places and place- based thought.
    [Show full text]
  • Thales of Miletus Sources and Interpretations Miletli Thales Kaynaklar Ve Yorumlar
    Thales of Miletus Sources and Interpretations Miletli Thales Kaynaklar ve Yorumlar David Pierce October , Matematics Department Mimar Sinan Fine Arts University Istanbul http://mat.msgsu.edu.tr/~dpierce/ Preface Here are notes of what I have been able to find or figure out about Thales of Miletus. They may be useful for anybody interested in Thales. They are not an essay, though they may lead to one. I focus mainly on the ancient sources that we have, and on the mathematics of Thales. I began this work in preparation to give one of several - minute talks at the Thales Meeting (Thales Buluşması) at the ruins of Miletus, now Milet, September , . The talks were in Turkish; the audience were from the general popu- lation. I chose for my title “Thales as the originator of the concept of proof” (Kanıt kavramının öncüsü olarak Thales). An English draft is in an appendix. The Thales Meeting was arranged by the Tourism Research Society (Turizm Araştırmaları Derneği, TURAD) and the office of the mayor of Didim. Part of Aydın province, the district of Didim encompasses the ancient cities of Priene and Miletus, along with the temple of Didyma. The temple was linked to Miletus, and Herodotus refers to it under the name of the family of priests, the Branchidae. I first visited Priene, Didyma, and Miletus in , when teaching at the Nesin Mathematics Village in Şirince, Selçuk, İzmir. The district of Selçuk contains also the ruins of Eph- esus, home town of Heraclitus. In , I drafted my Miletus talk in the Math Village. Since then, I have edited and added to these notes.
    [Show full text]
  • The Golden Ratio and the Diagonal of the Square
    Bridges Finland Conference Proceedings The Golden Ratio and the Diagonal of the Square Gabriele Gelatti Genoa, Italy [email protected] www.mosaicidiciottoli.it Abstract An elegant geometric 4-step construction of the Golden Ratio from the diagonals of the square has inspired the pattern for an artwork applying a general property of nested rotated squares to the Golden Ratio. A 4-step Construction of the Golden Ratio from the Diagonals of the Square For convenience, we work with the reciprocal of the Golden Ratio that we define as: φ = √(5/4) – (1/2). Let ABCD be a unit square, O being the intersection of its diagonals. We obtain O' by symmetry, reflecting O on the line segment CD. Let C' be the point on BD such that |C'D| = |CD|. We now consider the circle centred at O' and having radius |C'O'|. Let C" denote the intersection of this circle with the line segment AD. We claim that C" cuts AD in the Golden Ratio. B C' C' O O' O' A C'' C'' E Figure 1: Construction of φ from the diagonals of the square and demonstration. Demonstration In Figure 1 since |CD| = 1, we have |C'D| = 1 and |O'D| = √(1/2). By the Pythagorean Theorem: |C'O'| = √(3/2) = |C''O'|, and |O'E| = 1/2 = |ED|, so that |DC''| = √(5/4) – (1/2) = φ. Golden Ratio Pattern from the Diagonals of Nested Squares The construction of the Golden Ratio from the diagonal of the square has inspired the research of a pattern of squares where the Golden Ratio is generated only by the diagonals.
    [Show full text]
  • IJR-1, Mathematics for All ... Syed Samsul Alam
    January 31, 2015 [IISRR-International Journal of Research ] MATHEMATICS FOR ALL AND FOREVER Prof. Syed Samsul Alam Former Vice-Chancellor Alaih University, Kolkata, India; Former Professor & Head, Department of Mathematics, IIT Kharagpur; Ch. Md Koya chair Professor, Mahatma Gandhi University, Kottayam, Kerala , Dr. S. N. Alam Assistant Professor, Department of Metallurgical and Materials Engineering, National Institute of Technology Rourkela, Rourkela, India This article briefly summarizes the journey of mathematics. The subject is expanding at a fast rate Abstract and it sometimes makes it essential to look back into the history of this marvelous subject. The pillars of this subject and their contributions have been briefly studied here. Since early civilization, mathematics has helped mankind solve very complicated problems. Mathematics has been a common language which has united mankind. Mathematics has been the heart of our education system right from the school level. Creating interest in this subject and making it friendlier to students’ right from early ages is essential. Understanding the subject as well as its history are both equally important. This article briefly discusses the ancient, the medieval, and the present age of mathematics and some notable mathematicians who belonged to these periods. Mathematics is the abstract study of different areas that include, but not limited to, numbers, 1.Introduction quantity, space, structure, and change. In other words, it is the science of structure, order, and relation that has evolved from elemental practices of counting, measuring, and describing the shapes of objects. Mathematicians seek out patterns and formulate new conjectures. They resolve the truth or falsity of conjectures by mathematical proofs, which are arguments sufficient to convince other mathematicians of their validity.
    [Show full text]
  • Constructibility
    Appendix A Constructibility This book is dedicated to the synthetic (or axiomatic) approach to geometry, di- rectly inspired and motivated by the work of Greek geometers of antiquity. The Greek geometers achieved great work in geometry; but as we have seen, a few prob- lems resisted all their attempts (and all later attempts) at solution: circle squaring, trisecting the angle, duplicating the cube, constructing all regular polygons, to cite only the most popular ones. We conclude this book by proving why these various problems are insolvable via ruler and compass constructions. However, these proofs concerning ruler and compass constructions completely escape the scope of syn- thetic geometry which motivated them: the methods involved are highly algebraic and use theories such as that of fields and polynomials. This is why we these results are presented as appendices. Moreover, we shall freely use (with precise references) various algebraic results developed in [5], Trilogy II. We first review the theory of the minimal polynomial of an algebraic element in a field extension. Furthermore, since it will be essential for the applications, we prove the Eisenstein criterion for the irreducibility of (such) a (minimal) polynomial over the field of rational numbers. We then show how to associate a field with a given geometric configuration and we prove a formal criterion telling us—in terms of the associated fields—when one can pass from a given geometrical configuration to a more involved one, using only ruler and compass constructions. A.1 The Minimal Polynomial This section requires some familiarity with the theory of polynomials in one variable over a field K.
    [Show full text]
  • Mathematics and Arts
    Mathematics and Arts All´egoriede la G´eom´etrie A mathematical interpretation Alda Carvalho, Carlos Pereira dos Santos, Jorge Nuno Silva ISEL & Cemapre-ISEG, CEAFEL-UL, University of Lisbon [email protected] [email protected] [email protected] Abstract: In this work, we present a mathematical interpretation for the mas- terpiece All´egoriede la G´eom´etrie (1649), painted by the French baroque artist Laurent de La Hyre (1606{1656). Keywords: Laurent de La Hyre, \All´egoriede la G´eom´etrie",baroque art, mathematical interpretation, perspective. Introduction The main purpose of this text is to present a mathematical interpretation for the masterpiece All´egoriede la G´eom´etrie, from a well-known series of paint- ings, Les 7 arts lib´eraux, by the French baroque artist Laurent de La Hyre (1606{1656). Figure 1: All´egoriede la G´eom´etrie (1649), oil on canvas. Recreational Mathematics Magazine, Number 5, pp. 33{45 DOI 10.1515/rmm{2016{0003 34 allegorie´ de la geom´ etrie´ Laurent de La Hyre painted the series Les 7 arts lib´eraux between 1649 and 1650 to decorate G´ed´eonTallemant's residence. Tallemant was an adviser of Louis xiv (1638{1715). The king was 10 years old at the time of the commission. According to the artist's son, Philippe de La Hire (1640{1718), writing around 1690 [5], (. .) une maison qui appartenoit autrefois a M. Tallemant, maistre des requestes, sept tableaux repres´entant les sept arts liberaux qui font l'ornement d'une chambre. Also, Guillet de Saint-Georges, a historiographer of the Acad´emieRoyale de Peinture et de Sculpture, mentioned that it was Laurent's work for the Ca- puchin church in the Marais which led to the commission for the \Seven Liberal Arts" in a house [2].
    [Show full text]
  • PAINTING and PERSPECTIVE 127 the Real World, That the Universe Is Ordered and Explicable Rationally in Terms of Geometry
    PAINTING AND PERSPECTIVE 127 the real world, that the universe is ordered and explicable rationally in terms of geometry. Hence, like the Greek philosopher, he be­ lieved that to penetrate to the underlying significance, that is, the reality of the theme that he sought to display on canvas, he must reduce it to its mathematical content. Very interesting evidence of x the artist's attempt to discover the mathematical essence of his sub­ ject is found in one of Leonardo's studies in proportion. In it he Painting and Perspective tried to fit the structure of the ideal man to the ideal figures, the flquare and circle (plate VI). The sheer utility of mathematics for accurate description and the The world's the book where the eternal sense philosophy that mathematics is the essence of reality are only two Wrote his own thoughts; the living temple where, Painting his very self, with figures fair of the reasons why the Renaissance artist sought to use mathematics. He filled the whole immense circumference. There was another reason. The artist of the late medieval period and T. CAMPANELLA the Renaissance was, also, the architect and engineer of his day and so was necessarily mathematically inclined. Businessmen, secular princes, and ecclesiastical officials assigned all construction problems During the Middle Ages painting, serving somewhat as the hand­ to the artist. He designed and built churches, hospitals, palaces, maiden of the Church, concentrated on embellishing the thoughts cloisters, bridges, fortresses, dams, canals, town walls, and doctrines of Christianity. Toward the end of this period, the and instru­ ments of warfare.
    [Show full text]
  • Formalization of the Arithmetization of Euclidean Plane Geometry and Applications Pierre Boutry, Gabriel Braun, Julien Narboux
    Formalization of the Arithmetization of Euclidean Plane Geometry and Applications Pierre Boutry, Gabriel Braun, Julien Narboux To cite this version: Pierre Boutry, Gabriel Braun, Julien Narboux. Formalization of the Arithmetization of Euclidean Plane Geometry and Applications. Journal of Symbolic Computation, Elsevier, 2019, Special Issue on Symbolic Computation in Software Science, 90, pp.149-168. 10.1016/j.jsc.2018.04.007. hal-01483457 HAL Id: hal-01483457 https://hal.inria.fr/hal-01483457 Submitted on 5 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Formalization of the Arithmetization of Euclidean Plane Geometry and Applications Pierre Boutry, Gabriel Braun, Julien Narboux ICube, UMR 7357 CNRS, University of Strasbourg Poleˆ API, Bd Sebastien´ Brant, BP 10413, 67412 Illkirch, France Abstract This paper describes the formalization of the arithmetization of Euclidean plane geometry in the Coq proof assistant. As a basis for this work, Tarski’s system of geometry was chosen for its well-known metamath- ematical properties. This work completes our formalization of the two-dimensional results contained in part one of the book by Schwabhauser¨ Szmielew and Tarski Metamathematische Methoden in der Geome- trie.
    [Show full text]
  • A Tale of the Cycloid in Four Acts
    A Tale of the Cycloid In Four Acts Carlo Margio Figure 1: A point on a wheel tracing a cycloid, from a work by Pascal in 16589. Introduction In the words of Mersenne, a cycloid is “the curve traced in space by a point on a carriage wheel as it revolves, moving forward on the street surface.” 1 This deceptively simple curve has a large number of remarkable and unique properties from an integral ratio of its length to the radius of the generating circle, and an integral ratio of its enclosed area to the area of the generating circle, as can be proven using geometry or basic calculus, to the advanced and unique tautochrone and brachistochrone properties, that are best shown using the calculus of variations. Thrown in to this assortment, a cycloid is the only curve that is its own involute. Study of the cycloid can reinforce the curriculum concepts of curve parameterisation, length of a curve, and the area under a parametric curve. Being mechanically generated, the cycloid also lends itself to practical demonstrations that help visualise these abstract concepts. The history of the curve is as enthralling as the mathematics, and involves many of the great European mathematicians of the seventeenth century (See Appendix I “Mathematicians and Timeline”). Introducing the cycloid through the persons involved in its discovery, and the struggles they underwent to get credit for their insights, not only gives sequence and order to the cycloid’s properties and shows which properties required advances in mathematics, but it also gives a human face to the mathematicians involved and makes them seem less remote, despite their, at times, seemingly superhuman discoveries.
    [Show full text]
  • Projective Geometry Seen in Renaissance Art
    Projective Geometry Seen in Renaissance Art Word Count: 2655 Emily Markowsky ID: 112235642 December 7th, 2020 Abstract: For the West, the Renaissance was a revival of long-forgotten knowledge from classical antiquity. The use of geometric techniques from Greek mathematics led to the development of linear perspective as an artistic technique, a method for projecting three dimensional figures onto a two dimensional plane, i.e. the painting itself. An “image plane” intersects the observer’s line of sight to an object, projecting this point onto the intersection point in the image plane. This method is more mathematically interesting than it seems; we can formalize the notion of a vanishing point as a “point at infinity,” from which the subject of projective geometry was born. This paper outlines the historical process of this development and discusses its mathematical implications, including a proof of Desargues’ Theorem of projective geometry. Outline: I. Introduction A. Historical context; the Middle Ages and medieval art B. How linear perspective contributes to the realism of Renaissance art, incl. a comparison between similar pieces from each period. C. Influence of Euclid II. Geometry of Vision and Projection A. Euclid’s Optics ​ B. Cone of vision and the use of conic sections to model projection of an object onto a picture. Projection of a circle explained intuitively. C. Brunelleschi’s experiments and the invention of his technique for linear perspective D. Notion of points at infinity as a vanishing point III. Projective geometry and Desargues’ Theorem A. Definition of a projective plane and relation to earlier concepts discussed B.
    [Show full text]