Constructibility

Total Page:16

File Type:pdf, Size:1020Kb

Constructibility Appendix A Constructibility This book is dedicated to the synthetic (or axiomatic) approach to geometry, di- rectly inspired and motivated by the work of Greek geometers of antiquity. The Greek geometers achieved great work in geometry; but as we have seen, a few prob- lems resisted all their attempts (and all later attempts) at solution: circle squaring, trisecting the angle, duplicating the cube, constructing all regular polygons, to cite only the most popular ones. We conclude this book by proving why these various problems are insolvable via ruler and compass constructions. However, these proofs concerning ruler and compass constructions completely escape the scope of syn- thetic geometry which motivated them: the methods involved are highly algebraic and use theories such as that of fields and polynomials. This is why we these results are presented as appendices. Moreover, we shall freely use (with precise references) various algebraic results developed in [5], Trilogy II. We first review the theory of the minimal polynomial of an algebraic element in a field extension. Furthermore, since it will be essential for the applications, we prove the Eisenstein criterion for the irreducibility of (such) a (minimal) polynomial over the field of rational numbers. We then show how to associate a field with a given geometric configuration and we prove a formal criterion telling us—in terms of the associated fields—when one can pass from a given geometrical configuration to a more involved one, using only ruler and compass constructions. A.1 The Minimal Polynomial This section requires some familiarity with the theory of polynomials in one variable over a field K. The reader not familiar with this material will find some essential aspects of the theory in Appendix A of [5], Trilogy II. Proposition A.1.1 If K ⊆ L is a field extension, then is a K-vector space. Proof The scalar multiplication of k ∈ K and l ∈ L is their product in L. F. Borceux, An Axiomatic Approach to Geometry, DOI 10.1007/978-3-319-01730-3, 355 © Springer International Publishing Switzerland 2014 356 A Constructibility Under the conditions of Proposition A.1.1, it thus makes sense to speak of the (vectorial) dimension of L over K, which we shall write as dim[L : K]. Proposition A.1.2 Given finite dimensional field extensions K ⊆ L ⊆ M, one has dim[M : K]=dim[M : L]×dim[L : K]. Proof Let l1,...,lr be a basis of L as a K-vector space and m1,...,ms a basis of M as an L-vector space. It suffices to observe that the rs elements limj constitute a ∈ basis of M over K. Indeed an element μ M can be uniquely written as j λj mj , ∈ = with λj L, while each λj can itself be uniquely written as λj i ki,j li with ki,j ∈ K. The conclusion follows at once. Proposition A.1.3 Given a finite dimensional field extension K ⊆ L, every element l ∈ L is a root of a polynomial with coefficients in K. Proof Suppose that dim[L : K]=n. Then the n + 1 elements of L 1,l,l2, ..., ln cannot be linearly independent over K, proving the existence of scalars ki ∈ K such that 2 n k01 + k1l + k2l +···+knl = 0. This proves that l is a root of the polynomial 2 n p(X) = k0 + k1X + k2X +···+knX ∈ K[X]. The situation described in Proposition A.1.3 has been given a name: Definition A.1.4 An element l ∈ L in a field extension K ⊆ L is algebraic over K when it is a root of a polynomial with coefficients in K. When all elements of L are algebraic over K, the extension K ⊆ L itself is called algebraic. The main result of this section is then: Theorem A.1.5 Consider a field extension K ⊆ L and an element l ∈ L which is algebraic over K. There exists a unique polynomial p(X) ∈ K[X] such that 1. p(l) = 0; 2. the leading coefficient of p(X) is 1; 3. p(X) is irreducible in K[X]. Moreover, under these conditions: 1. p(X) divides in K[X] all other polynomials admitting l as a root; 2. the dimension of the subfield K(l) ⊆ L generated by K and l is equal to the degree of the polynomial p(X). A.1 The Minimal Polynomial 357 The polynomial p(X) is called the minimal polynomial of l over K. Proof Among all the polynomials in K[X] admitting l as a root, choose a non-zero one whose degree is minimal. Possibly dividing by the leading coefficient (which does not change the roots), we can assume that this leading coefficient is 1. This is our polynomial p(X). If q(X) ∈ K[X] is such that q(l) = 0, the Euclidean division of q(X) by p(X) (see Theorem A.2.1 in [5], Trilogy II) yields q(X) = p(X)d(X) + r(X), degree r(X)< degree p(X). Since q(l) = 0 = p(l), this implies r(l) = 0. By minimality of the degree of p(X), we conclude that r(X)= 0. Thus p(X) divides q(X). This also proves that p(X) is irreducible in K[X]. Indeed otherwise l would be a root of a proper factor q(X) of p(X), which is a contradiction since by what we have just proved, p(X) would then have to divide q(X), which is of strictly lower degree. The uniqueness of p(X) also follows immediately. Indeed given another irre- ducible polynomial q(X) ∈ K[X] such that q(l) = 0, p(X) divides q(X) which is irreducible, thus q(X) = kp(X) with k ∈ K. Since both have the same leading coefficient 1, necessarily k = 1. It remains to prove the result concerning dimensions. If p(X) has degree n,the sequence of elements − 1,l,l2, ..., ln 1 is linearly independent over K. Indeed otherwise (as in the proof of Proposi- tion A.1.3) there would be a polynomial of degree n − 1 with coefficients in K[X] admitting l as a root; this would contradict the choice of p(X) with minimal degree. It remains to observe that − 1,l,l2, ..., ln 1 generate K(l) as a vector space over K. Writing n n−1 p(X) = X + kn−1X +···+k1X + k0,ki ∈ K we get at once n n−1 l =−kn−1l −···−k1l − k0. This already proves that the subset n−1 M = α0 + α1l +···+αn−1l |αi ∈ K ⊆ L is not only stable under addition and subtraction, but also under multiplication, since each power ln after multiplication can be replaced by a combination of strictly lower powers; repeating this operation as many times as needed, one ends up with an expression where all powers of l are at most n − 1, thus with an element of M. 358 A Constructibility Moreover, the inverse in L of every element m ∈ M is still in M, proving that M is in fact a subfield of L; and then trivially, M = K(l). When m ∈ K, this is trivial. Otherwise, m = q(l) for a non-constant polynomial n−1 q(X) = β0 + β1(X) +···+βn−1X ,βi ∈ K. But q(X) and p(X) do not have a common non-constant factor (they are “relatively prime”), because p(X) is irreducible and has a larger degree than q(X).BytheBe- zout theorem (see Theorem A.3.2 in [5], Trilogy II), there exist polynomials r(X), s(X) in K[X] such that r(X)p(X) + s(X)q(X) = 1 with moreover degree r(X)< degree q(X), degree s(X) < degree p(X) = n. Taking the values at l we find s(l)q(l) = 1, proving that s(l) is the inverse of m = q(l). Indeed, s(l) ∈ M since degree s(X) < n. Let us conclude with the classical terminology for “non-algebraic” elements: Definition A.1.6 An element l ∈ L in a field extension K ⊆ L which is not alge- braic over K is said to be transcendental over K. As an immediate consequence of Proposition A.1.3 we have Proposition A.1.7 If a field extension K ⊆ L contains a transcendental element over K, its dimension is infinite. A.2 The Eisenstein Criterion Most impossibility proofs that we shall consider in Appendices B and C will be in terms of algebraic elements over of the field of rational numbers. Therefore, in order to easily identify the corresponding minimal polynomials, it is important to have an efficient criterion telling us when a polynomial in Q[X] is irreducible (see Theorem A.1.5). Of course, multiplying all the coefficients of a polynomial in Q[X] by a common multiple of their denominators, we obtain a polynomial with coefficients in Z, which still has the same roots. But more amazingly: Proposition A.2.1 Let p(X) ∈ Z[X] be a polynomial which is irreducible in Z[X]. Then p(X) is also irreducible in Q[X]. A.2 The Eisenstein Criterion 359 Proof It is equivalent to prove that when p[X]∈Z[X] is reducible in Q[X],itis reducible in Z[X]. Suppose therefore that p(X) = r(X)s(X) with r(X) and s(X) two non-constant polynomials in Q[X]. Multiplying by a common multiple n of the denominators of the coefficients of r(X) and s(X), we obtain np(X) = r(X)s(X), where r(X) and s(X) now have their coefficients in Z.
Recommended publications
  • A Genetic Context for Understanding the Trigonometric Functions Danny Otero Xavier University, [email protected]
    Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Pre-calculus and Trigonometry Mathematics via Primary Historical Sources (TRIUMPHS) Spring 3-2017 A Genetic Context for Understanding the Trigonometric Functions Danny Otero Xavier University, [email protected] Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_precalc Part of the Curriculum and Instruction Commons, Educational Methods Commons, Higher Education Commons, and the Science and Mathematics Education Commons Click here to let us know how access to this document benefits oy u. Recommended Citation Otero, Danny, "A Genetic Context for Understanding the Trigonometric Functions" (2017). Pre-calculus and Trigonometry. 1. https://digitalcommons.ursinus.edu/triumphs_precalc/1 This Course Materials is brought to you for free and open access by the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) at Digital Commons @ Ursinus College. It has been accepted for inclusion in Pre-calculus and Trigonometry by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact [email protected]. A Genetic Context for Understanding the Trigonometric Functions Daniel E. Otero∗ July 22, 2019 Trigonometry is concerned with the measurements of angles about a central point (or of arcs of circles centered at that point) and quantities, geometrical and otherwise, that depend on the sizes of such angles (or the lengths of the corresponding arcs). It is one of those subjects that has become a standard part of the toolbox of every scientist and applied mathematician. It is the goal of this project to impart to students some of the story of where and how its central ideas first emerged, in an attempt to provide context for a modern study of this mathematical theory.
    [Show full text]
  • Letter from Descartes to Desargues 1 (19 June 1639)
    Appendix 1 Letter from Descartes to Desargues 1 (19 June 1639) Sir, The openness I have observed in your temperament, and my obligations to you, invite me to write to you freely what I can conjecture of the Treatise on Conic Sections, of which the R[everend] F[ather] M[ersenne] sent me the Draft. 2 You may have two designs, which are very good and very praiseworthy, but which do not both require the same course of action. One is to write for the learned, and to instruct them about some new properties of conics with which they are not yet familiar; the other is to write for people who are interested but not learned, and make this subject, which until now has been understood by very few people, but which is nevertheless very useful for Perspective, Architecture etc., accessible to the common people and easily understood by anyone who studies it from your book. If you have the first of these designs, it does not seem to me that you have any need to use new terms: for the learned, being already accustomed to the terms used by Apollonius, will not easily exchange them for others, even better ones, and thus your terms will only have the effect of making your proofs more difficult for them and discourage them from reading them. If you have the second design, your terms, being French, and showing wit and elegance in their invention, will certainly be better received than those of the Ancients by people who have no preconceived ideas; and they might even serve to attract some people to read your work, as they read works on Heraldry, Hunting, Architecture etc., without any wish to become hunters or architects but only to learn to talk about them correctly.
    [Show full text]
  • Geometric Exercises in Paper Folding
    MATH/STAT. T. SUNDARA ROW S Geometric Exercises in Paper Folding Edited and Revised by WOOSTER WOODRUFF BEMAN PROFESSOR OF MATHEMATICS IN THE UNIVERSITY OF MICHIGAK and DAVID EUGENE SMITH PROFESSOR OF MATHEMATICS IN TEACHERS 1 COLLEGE OF COLUMBIA UNIVERSITY WITH 87 ILLUSTRATIONS THIRD EDITION CHICAGO ::: LONDON THE OPEN COURT PUBLISHING COMPANY 1917 & XC? 4255 COPYRIGHT BY THE OPEN COURT PUBLISHING Co, 1901 PRINTED IN THE UNITED STATES OF AMERICA hn HATH EDITORS PREFACE. OUR attention was first attracted to Sundara Row s Geomet rical Exercises in Paper Folding by a reference in Klein s Vor- lesungen iiber ausgezucihlte Fragen der Elementargeometrie. An examination of the book, obtained after many vexatious delays, convinced us of its undoubted merits and of its probable value to American teachers and students of geometry. Accordingly we sought permission of the author to bring out an edition in this country, wnich permission was most generously granted. The purpose of the book is so fully set forth in the author s introduction that we need only to say that it is sure to prove of interest to every wide-awake teacher of geometry from the graded school to the college. The methods are so novel and the results so easily reached that they cannot fail to awaken enthusiasm. Our work as editors in this revision has been confined to some slight modifications of the proofs, some additions in the way of references, and the insertion of a considerable number of half-tone reproductions of actual photographs instead of the line-drawings of the original. W. W.
    [Show full text]
  • Read Book Advanced Euclidean Geometry Ebook
    ADVANCED EUCLIDEAN GEOMETRY PDF, EPUB, EBOOK Roger A. Johnson | 336 pages | 30 Nov 2007 | Dover Publications Inc. | 9780486462370 | English | New York, United States Advanced Euclidean Geometry PDF Book As P approaches nearer to A , r passes through all values from one to zero; as P passes through A , and moves toward B, r becomes zero and then passes through all negative values, becoming —1 at the mid-point of AB. Uh-oh, it looks like your Internet Explorer is out of date. In Elements Angle bisector theorem Exterior angle theorem Euclidean algorithm Euclid's theorem Geometric mean theorem Greek geometric algebra Hinge theorem Inscribed angle theorem Intercept theorem Pons asinorum Pythagorean theorem Thales's theorem Theorem of the gnomon. It might also be so named because of the geometrical figure's resemblance to a steep bridge that only a sure-footed donkey could cross. Calculus Real analysis Complex analysis Differential equations Functional analysis Harmonic analysis. This article needs attention from an expert in mathematics. Facebook Twitter. On any line there is one and only one point at infinity. This may be formulated and proved algebraically:. When we have occasion to deal with a geometric quantity that may be regarded as measurable in either of two directions, it is often convenient to regard measurements in one of these directions as positive, the other as negative. Logical questions thus become completely independent of empirical or psychological questions For example, proposition I. This volume serves as an extension of high school-level studies of geometry and algebra, and He was formerly professor of mathematics education and dean of the School of Education at The City College of the City University of New York, where he spent the previous 40 years.
    [Show full text]
  • Lecture 2 : Algebraic Extensions I Objectives
    Lecture 2 : Algebraic Extensions I Objectives (1) Main examples of fields to be studied. (2) The minimal polynomial of an algebraic element. (3) Simple field extensions and their degree. Key words and phrases: Number field, function field, algebraic element, transcendental element, irreducible polynomial of an algebraic element, al- gebraic extension. The main examples of fields that we consider are : (1) Number fields: A number field F is a subfield of C. Any such field contains the field Q of rational numbers. (2) Finite fields : If K is a finite field, we consider : Z ! K; (1) = 1. Since K is finite, ker 6= 0; hence it is a prime ideal of Z, say generated by a prime number p. Hence Z=pZ := Fp is isomorphic to a subfield of K. The finite field Fp is called the prime field of K: (3) Function fields: Let x be an indeteminate and C(x) be the field of rational functions, i.e. it consists of p(x)=q(x) where p(x); q(x) are poly- nomials and q(x) 6= 0. Let f(x; y) 2 C[x; y] be an irreducible polynomial. Suppose f(x; y) is not a polynomial in x alone and write n n−1 f(x; y) = y + a1(x)y + ··· + an(x); ai(x) 2 C[x]: By Gauss' lemma f(x; y) 2 C(x)[y] is an irreducible polynomial. Thus (f(x; y)) is a maximal ideal of C(x)[y]=(f(x; y)) is a field. K is called the 2 function field of the curve defined by f(x; y) = 0 in C .
    [Show full text]
  • Thales of Miletus Sources and Interpretations Miletli Thales Kaynaklar Ve Yorumlar
    Thales of Miletus Sources and Interpretations Miletli Thales Kaynaklar ve Yorumlar David Pierce October , Matematics Department Mimar Sinan Fine Arts University Istanbul http://mat.msgsu.edu.tr/~dpierce/ Preface Here are notes of what I have been able to find or figure out about Thales of Miletus. They may be useful for anybody interested in Thales. They are not an essay, though they may lead to one. I focus mainly on the ancient sources that we have, and on the mathematics of Thales. I began this work in preparation to give one of several - minute talks at the Thales Meeting (Thales Buluşması) at the ruins of Miletus, now Milet, September , . The talks were in Turkish; the audience were from the general popu- lation. I chose for my title “Thales as the originator of the concept of proof” (Kanıt kavramının öncüsü olarak Thales). An English draft is in an appendix. The Thales Meeting was arranged by the Tourism Research Society (Turizm Araştırmaları Derneği, TURAD) and the office of the mayor of Didim. Part of Aydın province, the district of Didim encompasses the ancient cities of Priene and Miletus, along with the temple of Didyma. The temple was linked to Miletus, and Herodotus refers to it under the name of the family of priests, the Branchidae. I first visited Priene, Didyma, and Miletus in , when teaching at the Nesin Mathematics Village in Şirince, Selçuk, İzmir. The district of Selçuk contains also the ruins of Eph- esus, home town of Heraclitus. In , I drafted my Miletus talk in the Math Village. Since then, I have edited and added to these notes.
    [Show full text]
  • The Golden Ratio and the Diagonal of the Square
    Bridges Finland Conference Proceedings The Golden Ratio and the Diagonal of the Square Gabriele Gelatti Genoa, Italy [email protected] www.mosaicidiciottoli.it Abstract An elegant geometric 4-step construction of the Golden Ratio from the diagonals of the square has inspired the pattern for an artwork applying a general property of nested rotated squares to the Golden Ratio. A 4-step Construction of the Golden Ratio from the Diagonals of the Square For convenience, we work with the reciprocal of the Golden Ratio that we define as: φ = √(5/4) – (1/2). Let ABCD be a unit square, O being the intersection of its diagonals. We obtain O' by symmetry, reflecting O on the line segment CD. Let C' be the point on BD such that |C'D| = |CD|. We now consider the circle centred at O' and having radius |C'O'|. Let C" denote the intersection of this circle with the line segment AD. We claim that C" cuts AD in the Golden Ratio. B C' C' O O' O' A C'' C'' E Figure 1: Construction of φ from the diagonals of the square and demonstration. Demonstration In Figure 1 since |CD| = 1, we have |C'D| = 1 and |O'D| = √(1/2). By the Pythagorean Theorem: |C'O'| = √(3/2) = |C''O'|, and |O'E| = 1/2 = |ED|, so that |DC''| = √(5/4) – (1/2) = φ. Golden Ratio Pattern from the Diagonals of Nested Squares The construction of the Golden Ratio from the diagonal of the square has inspired the research of a pattern of squares where the Golden Ratio is generated only by the diagonals.
    [Show full text]
  • Chapter 12, Lesson 1
    i8o Chapter 12, Lesson 1 Chapter 12, Lesson 1 •14. They are perpendicular. 15. The longest chord is always a diameter; so Set I (pages 486-487) its length doesn't depend on the location of According to Matthys Levy and Mario Salvador! the point. The length of the shortest chord in their book titled \Nhy Buildings Fall Down depends on how far away from the center (Norton, 1992), the Romans built semicircular the point is; the greater the distance, the arches of the type illustrated in exercises 1 through shorter the chord. 5 that spanned as much as 100 feet. These arches Theorem 56. were used in the bridges of 50,000 miles of roads that the Romans built all the way from Baghdad 16. Perpendicular lines form right angles. to London! • 17. Two points determine a line. The conclusions of exercises 13 through 15 are supported by the fact that a diameter of a circle is •18. All radii of a circle are equal. its longest chord and by symmetry considerations. 19. Reflexive. As the second chord rotates away from the diameter in either direction about the point of 20. HL. intersection, it becomes progressively shorter. 21. Corresponding parts of congruent triangles are equal. Roman Arch. •22. If a line divides a line segment into two 1. Radii. equal parts, it bisects the segment. •2. Chords. Theorem 57. •3. A diameter. 23. If a line bisects a line segment, it divides the 4. Isosceles. Each has two equal sides because segment into two equal parts. the radii of a circle are equal.
    [Show full text]
  • IJR-1, Mathematics for All ... Syed Samsul Alam
    January 31, 2015 [IISRR-International Journal of Research ] MATHEMATICS FOR ALL AND FOREVER Prof. Syed Samsul Alam Former Vice-Chancellor Alaih University, Kolkata, India; Former Professor & Head, Department of Mathematics, IIT Kharagpur; Ch. Md Koya chair Professor, Mahatma Gandhi University, Kottayam, Kerala , Dr. S. N. Alam Assistant Professor, Department of Metallurgical and Materials Engineering, National Institute of Technology Rourkela, Rourkela, India This article briefly summarizes the journey of mathematics. The subject is expanding at a fast rate Abstract and it sometimes makes it essential to look back into the history of this marvelous subject. The pillars of this subject and their contributions have been briefly studied here. Since early civilization, mathematics has helped mankind solve very complicated problems. Mathematics has been a common language which has united mankind. Mathematics has been the heart of our education system right from the school level. Creating interest in this subject and making it friendlier to students’ right from early ages is essential. Understanding the subject as well as its history are both equally important. This article briefly discusses the ancient, the medieval, and the present age of mathematics and some notable mathematicians who belonged to these periods. Mathematics is the abstract study of different areas that include, but not limited to, numbers, 1.Introduction quantity, space, structure, and change. In other words, it is the science of structure, order, and relation that has evolved from elemental practices of counting, measuring, and describing the shapes of objects. Mathematicians seek out patterns and formulate new conjectures. They resolve the truth or falsity of conjectures by mathematical proofs, which are arguments sufficient to convince other mathematicians of their validity.
    [Show full text]
  • FIELD EXTENSION REVIEW SHEET 1. Polynomials and Roots Suppose
    FIELD EXTENSION REVIEW SHEET MATH 435 SPRING 2011 1. Polynomials and roots Suppose that k is a field. Then for any element x (possibly in some field extension, possibly an indeterminate), we use • k[x] to denote the smallest ring containing both k and x. • k(x) to denote the smallest field containing both k and x. Given finitely many elements, x1; : : : ; xn, we can also construct k[x1; : : : ; xn] or k(x1; : : : ; xn) analogously. Likewise, we can perform similar constructions for infinite collections of ele- ments (which we denote similarly). Notice that sometimes Q[x] = Q(x) depending on what x is. For example: Exercise 1.1. Prove that Q[i] = Q(i). Now, suppose K is a field, and p(x) 2 K[x] is an irreducible polynomial. Then p(x) is also prime (since K[x] is a PID) and so K[x]=hp(x)i is automatically an integral domain. Exercise 1.2. Prove that K[x]=hp(x)i is a field by proving that hp(x)i is maximal (use the fact that K[x] is a PID). Definition 1.3. An extension field of k is another field K such that k ⊆ K. Given an irreducible p(x) 2 K[x] we view K[x]=hp(x)i as an extension field of k. In particular, one always has an injection k ! K[x]=hp(x)i which sends a 7! a + hp(x)i. We then identify k with its image in K[x]=hp(x)i. Exercise 1.4. Suppose that k ⊆ E is a field extension and α 2 E is a root of an irreducible polynomial p(x) 2 k[x].
    [Show full text]
  • Subject : MATHEMATICS
    Subject : MATHEMATICS Paper 1 : ABSTRACT ALGEBRA Chapter 8 : Field Extensions Module 2 : Minimal polynomials Anjan Kumar Bhuniya Department of Mathematics Visva-Bharati; Santiniketan West Bengal 1 Minimal polynomials Learning Outcomes: 1. Algebraic and transcendental elements. 2. Minimal polynomial of an algebraic element. 3. Degree of the simple extension K(c)=K. In the previous module we defined degree [F : K] of a field extension F=K to be the dimension of F as a vector space over K. Though we have results ensuring existence of basis of every vector space, but there is no for finding a basis in general. In this module we set the theory a step forward to find [F : K]. The degree of a simple extension K(c)=K is finite if and only if c is a root of some nonconstant polynomial f(x) over K. Here we discuss how to find a basis and dimension of such simple extensions K(c)=K. Definition 0.1. Let F=K be a field extension. Then c 2 F is called an algebraic element over K, if there is a nonconstant polynomial f(x) 2 K[x] such that f(c) = 0, i.e. if there exists k0; k1; ··· ; kn 2 K not all zero such that n k0 + k1c + ··· + knc = 0: Otherwise c is called a transcendental element over K. p p Example 0.2. 1. 1; 2; 3 5; i etc are algebraic over Q. 2. e; π; ee are transcendental over Q. [For a proof that e is transcendental over Q we refer to the classic text Topics in Algebra by I.
    [Show full text]
  • Geometry, the Common Core, and Proof
    Geometry, the Common Core, and Proof John T. Baldwin, Andreas Mueller Geometry, the Common Core, and Proof Overview From Geometry to Numbers John T. Baldwin, Andreas Mueller Proving the field axioms Interlude on Circles December 14, 2012 An Area function Side-splitter Pythagorean Theorem Irrational Numbers Outline Geometry, the Common Core, and Proof 1 Overview John T. Baldwin, 2 From Geometry to Numbers Andreas Mueller 3 Proving the field axioms Overview From Geometry to 4 Interlude on Circles Numbers Proving the 5 An Area function field axioms Interlude on Circles 6 Side-splitter An Area function 7 Pythagorean Theorem Side-splitter Pythagorean 8 Irrational Numbers Theorem Irrational Numbers Agenda Geometry, the Common Core, and Proof John T. Baldwin, Andreas 1 G-SRT4 { Context. Proving theorems about similarity Mueller 2 Proving that there is a field Overview 3 Areas of parallelograms and triangles From Geometry to Numbers 4 lunch/Discussion: Is it rational to fixate on the irrational? Proving the 5 Pythagoras, similarity and area field axioms Interlude on 6 reprise irrational numbers and Golden ratio Circles 7 resolving the worries about irrationals An Area function Side-splitter Pythagorean Theorem Irrational Numbers Logistics Geometry, the Common Core, and Proof John T. Baldwin, Andreas Mueller Overview From Geometry to Numbers Proving the field axioms Interlude on Circles An Area function Side-splitter Pythagorean Theorem Irrational Numbers Common Core Geometry, the Common Core, and Proof John T. Baldwin, G-SRT: Prove theorems involving similarity Andreas Mueller 4. Prove theorems about triangles. Theorems include: a line Overview parallel to one side of a triangle divides the other two From proportionally, and conversely; the Pythagorean Theorem Geometry to Numbers proved using triangle similarity.
    [Show full text]