|||GET||| Geometry Theorems and Constructions 1St Edition

Total Page:16

File Type:pdf, Size:1020Kb

|||GET||| Geometry Theorems and Constructions 1St Edition GEOMETRY THEOREMS AND CONSTRUCTIONS 1ST EDITION DOWNLOAD FREE Allan Berele | 9780130871213 | | | | | Geometry: Theorems and Constructions For readers pursuing a career in mathematics. Angle bisector theorem Exterior angle theorem Euclidean algorithm Euclid's theorem Geometric mean theorem Greek geometric algebra Hinge theorem Inscribed Geometry Theorems and Constructions 1st edition theorem Intercept theorem Pons asinorum Pythagorean theorem Thales's theorem Theorem of the gnomon. Then the 'construction' or 'machinery' follows. For example, propositions I. The Triangulation Lemma. Pythagoras c. More than editions of the Elements are known. Euclidean geometryelementary number theoryincommensurable lines. The Mathematical Intelligencer. A History of Mathematics Second ed. The success of the Elements is due primarily to its logical presentation of most of the mathematical knowledge available to Euclid. Arcs and Angles. Applies and reinforces the ideas in the geometric theory. Scholars believe that the Elements is largely a compilation of propositions based on books by earlier Greek mathematicians. Enscribed Circles. Return for free! Description College Geometry offers readers a deep understanding of the basic results in plane geometry and how they are used. The books cover plane and solid Euclidean geometryelementary number theoryand incommensurable lines. Cyrene Library of Alexandria Platonic Academy. You can find lots of answers to common customer questions in our FAQs View a detailed breakdown of our shipping prices Learn about our return policy Still need help? View a detailed breakdown of our shipping prices. Then, the 'proof' itself follows. Distance between Parallel Lines. By careful analysis of the translations and originals, hypotheses have been made about the contents of the original text copies of which are no longer available. Heath, Thomas L. Ask the provider about this item. It has proven instrumental in the development of logic and modern scienceand its logical rigor was not surpassed until the 19th century. The Klein-Beltrami Disk. Applications to Inequalities. Euclid's "Elements" Redux. The Elements of Euclid. A Geometry Theorems and Constructions 1st edition of Greek Mathematics. Dover Publications. Signed out You have successfully signed out and will be required to sign back in should you need to download more resources. List Price. The Orthocenter. You can find lots of answers to common customer questions in our FAQs. Ancient texts which refer to the Elements itself, and to other mathematical theories that were current at the time it was written, are also important in this process. For example, there was no notion of an angle greater than two right Geometry Theorems and Constructions 1st edition, [17] the number 1 was sometimes treated separately from other positive integers, and as multiplication was treated geometrically he did not use the product of more than 3 different numbers. Additional order info. This book covers topics such as counting the number of edges and solid angles in the regular solids, and finding the measure of dihedral angles of faces Geometry Theorems and Constructions 1st edition meet at an edge. Here, the original figure is extended to forward the proof. A Non-Euclidean Model. Geometry: Theorems and Constructions 1st Edition Selin, Helaine ed. Area of Rectangles and Triangles. In Book I, Euclid lists five postulates, the fifth of which stipulates. Furthermore its logical, axiomatic Geometry Theorems and Constructions 1st edition and rigorous proofs remain the cornerstone of mathematics. Areas of Spherical Triangles. The response will be emailed to you. If you're interested in Geometry Theorems and Constructions 1st edition a cost-saving package for your students, contact your Pearson rep. Although known to, for instance, Cicerono record exists of the text having been translated into Latin prior to Boethius in the fifth or sixth century. Most renters respond to questions in 48 hours or less. Vol 3. In historical context, it has proven enormously influential in many areas of science. Description Reviews 0 Description Description College Geometry offers readers a deep understanding of the basic results in plane geometry and how they are used. Wikimedia Commons has media related to Elements of Euclid. Ancient texts which refer to the Elements itself, and to other mathematical theories that were current at the time it was written, are also important in this process. Heiberg and Sir Thomas Little Heath in their editions of the text. Absolute Geometry. Aristarchus's inequality Crossbar theorem Heron's formula Irrational numbers Menelaus's theorem Pappus's area theorem Ptolemy's inequality Ptolemy's table of chords Ptolemy's theorem Spiral of Theodorus. One of the most notable influences of Euclid on modern mathematics is the discussion of the parallel postulate. Center of Gravity. Coverage of Spherical Geometry in preparation for introduction of non-Euclidean geometry. Reviews There are no reviews yet. In Elements Angle bisector theorem Exterior angle theorem Euclidean algorithm Euclid's theorem Geometric mean theorem Greek geometric algebra Hinge theorem Inscribed angle theorem Intercept theorem Pons asinorum Pythagorean theorem Thales's theorem Theorem of the gnomon. The Life of Abraham Lincoln. Geometry emerged as an indispensable part of the standard education of the English gentleman Geometry Theorems and Constructions 1st edition the eighteenth century; by the Victorian period it was also becoming an important part of the education of artisans, children at Board Schools, colonial subjects and, to a rather lesser degree, women. View a detailed breakdown of our shipping prices. InJohn Dee provided a widely respected "Mathematical Preface", along with copious notes Geometry Theorems and Constructions 1st edition supplementary material, to the first English edition by Henry Billingsley. It has six different parts: First is the 'enunciation', which states the result in general terms i. If you are unsatisfied with your order, please contact us and we will work with you to resolve it to your satisfaction. Wikiquote has quotations related to: Euclid's Elements. Scholars believe that the Elements is largely a compilation of propositions based on books by earlier Greek mathematicians. SKU: qrvlz Category: Ebook. Here, the original figure is extended to forward the proof. Geometry Theorems and Constructions 1st edition for free! Rouse Ball put the criticisms in perspective, remarking that "the fact that for two thousand years [the Elements ] was the usual text-book on the subject raises a strong presumption that it is not unsuitable for that purpose. Elements is the oldest extant large-scale deductive treatment of mathematics. The Thirteen Books of Euclid's Elements. Circles and Tangents. Cyrene Library of Alexandria Platonic Academy. Lines and Planes in Space. From Wikipedia, the free encyclopedia. Cancel Send message. With our dedicated customer support team, day no-questions-asked return policy, and our price match guarantee, you can rest easy knowing that we're doing everything we can to save you time, money, and stress. Add to cart Add to wishlist. Out of print. Furthermore its logical, axiomatic approach and rigorous proofs remain the cornerstone of mathematics. Fagnano's Problem. Heiberg and Sir Thomas Little Heath in their editions of the text. Download instructor resources. Platonic Solids. Existence and Uniqueness. Username Password Forgot your username or password? A strong emphasis on proofs is provided, presented in various levels of Geometry Theorems and Constructions 1st edition and phrased in the manner of present-day mathematicians, helping the reader to focus more on learning to do proofs by keeping the material less abstract. There, the Elements became the foundation of mathematical education. On-line Supplement. A History of Mathematics Second ed. Geometry: Euclid and Beyond 2nd ed. By careful analysis of the translations and originals, hypotheses have been made about the contents of the original text copies of which are no longer available. A strong emphasis on proofs is provided, presented in various levels of difficulty and phrased in the manner of present-day mathematicians, helping the reader to focus more on learning to do proofs by keeping the material less abstract. The geometrical treatment of number theory may have been because the alternative would have been the extremely awkward Alexandrian system of numerals. More than editions of the Elements are known. Euclid's list of axioms in the Elements was not exhaustive, but represented the principles that were the most important. Its unique coverage helps readers master Euclidean geometry, in preparation for non- Euclidean geometry. Signed out You have successfully signed out and Geometry Theorems and Constructions 1st edition be required to sign back in should you need to download more resources. Then comes the 'setting-out', which gives the figure and denotes particular geometrical objects by letters. View a detailed breakdown of our shipping prices. Besides these cases, our store does not accept return or refund due to the nature of our products and the Geometry Theorems and Constructions 1st edition. Distance between Parallel Lines. The manuscripts available are of variable quality, and invariably incomplete. Stuttgart: Franz Steiner Verlag. Copies of the Greek text still exist, some of which can be found in the Vatican Library and the Bodleian Library in Oxford. Euclid's "Elements" Redux. This manuscript, Geometry
Recommended publications
  • A Genetic Context for Understanding the Trigonometric Functions Danny Otero Xavier University, [email protected]
    Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Pre-calculus and Trigonometry Mathematics via Primary Historical Sources (TRIUMPHS) Spring 3-2017 A Genetic Context for Understanding the Trigonometric Functions Danny Otero Xavier University, [email protected] Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_precalc Part of the Curriculum and Instruction Commons, Educational Methods Commons, Higher Education Commons, and the Science and Mathematics Education Commons Click here to let us know how access to this document benefits oy u. Recommended Citation Otero, Danny, "A Genetic Context for Understanding the Trigonometric Functions" (2017). Pre-calculus and Trigonometry. 1. https://digitalcommons.ursinus.edu/triumphs_precalc/1 This Course Materials is brought to you for free and open access by the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) at Digital Commons @ Ursinus College. It has been accepted for inclusion in Pre-calculus and Trigonometry by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact [email protected]. A Genetic Context for Understanding the Trigonometric Functions Daniel E. Otero∗ July 22, 2019 Trigonometry is concerned with the measurements of angles about a central point (or of arcs of circles centered at that point) and quantities, geometrical and otherwise, that depend on the sizes of such angles (or the lengths of the corresponding arcs). It is one of those subjects that has become a standard part of the toolbox of every scientist and applied mathematician. It is the goal of this project to impart to students some of the story of where and how its central ideas first emerged, in an attempt to provide context for a modern study of this mathematical theory.
    [Show full text]
  • If 1+1=2 Then the Pythagorean Theorem Holds, Or One More Proof of the Oldest Theorem of Mathematics
    !"#$%"&"!'()**#%"$'+&'%,#'`.#%/)'01"+/P'3$"4#/5"%6'+&'7/9)'0)/#2 Vol. 10 (XXVII) no. 1, 2013 ISSN-L 1841-9267 (Print), ISSN 2285-438X (Online), ISSN 2286-3184 (CD-ROM) If 1+1=2 then the Pythagorean theorem holds, or one more proof of the oldest theorem of mathematics Alexandru HORVATH´ ”Petru Maior” University of Tg. Mures¸, Romania e-mail: [email protected] ABSTRACT The Pythagorean theorem is one of the oldest theorems of mathematics. It gained dur- ing the time a central position and even today it continues to be a source of inspiration. In this note we try to give a proof which is based on a hopefully new approach. Our treatment will be as intuitive as it can be. Keywords: Pythagorean theorem, geometric transformation, Euclidean geometry MSC 2000: 51M04, 51M05, 51N20 One of the oldest theorems of mathematics – the T T Pythagorean theorem – states that the area of the square drawn on the hypotenuse (the side opposite the right angle) of a right angled triangle, is equal to the sum of the areas of the squares constructed on the other two sides, (the catheti). That is, 2 2 2 a + b = c , if we denote the length of the sides of the triangle by a, b, c respectively. Figure 1. The transformation Loomis ([3]) collected several hundreds of different proofs of this theorem, and classified them in categories. Maor ([4]) traces the evolution of the Pythagorean theorem and its impact on mathematics and on our culture in gen- Let us assume T is such a transformation having a as the eral.
    [Show full text]
  • Letter from Descartes to Desargues 1 (19 June 1639)
    Appendix 1 Letter from Descartes to Desargues 1 (19 June 1639) Sir, The openness I have observed in your temperament, and my obligations to you, invite me to write to you freely what I can conjecture of the Treatise on Conic Sections, of which the R[everend] F[ather] M[ersenne] sent me the Draft. 2 You may have two designs, which are very good and very praiseworthy, but which do not both require the same course of action. One is to write for the learned, and to instruct them about some new properties of conics with which they are not yet familiar; the other is to write for people who are interested but not learned, and make this subject, which until now has been understood by very few people, but which is nevertheless very useful for Perspective, Architecture etc., accessible to the common people and easily understood by anyone who studies it from your book. If you have the first of these designs, it does not seem to me that you have any need to use new terms: for the learned, being already accustomed to the terms used by Apollonius, will not easily exchange them for others, even better ones, and thus your terms will only have the effect of making your proofs more difficult for them and discourage them from reading them. If you have the second design, your terms, being French, and showing wit and elegance in their invention, will certainly be better received than those of the Ancients by people who have no preconceived ideas; and they might even serve to attract some people to read your work, as they read works on Heraldry, Hunting, Architecture etc., without any wish to become hunters or architects but only to learn to talk about them correctly.
    [Show full text]
  • A One-Page Primer the Centers and Circles of a Triangle
    1 The Triangle: A One-Page Primer (Date: March 15, 2004 ) An angle is formed by two intersecting lines. A right angle has 90◦. An angle that is less (greater) than a right angle is called acute (obtuse). Two angles whose sum is 90◦ (180◦) are called complementary (supplementary). Two intersecting perpendicular lines form right angles. The angle bisectors are given by the locus of points equidistant from its two lines. The internal and external angle bisectors are perpendicular to each other. The vertically opposite angles formed by the intersection of two lines are equal. In triangle ABC, the angles are denoted A, B, C; the sides are denoted a = BC, b = AC, c = AB; the semi- 1 ◦ perimeter (s) is 2 the perimeter (a + b + c). A + B + C = 180 . Similar figures are equiangular and their corresponding components are proportional. Two triangles are similar if they share two equal angles. Euclid's VI.19, 2 ∆ABC a the areas of similar triangles are proportional to the second power of their corresponding sides ( ∆A0B0C0 = a02 ). An acute triangle has three acute angles. An obtuse triangle has one obtuse angle. A scalene triangle has all its sides unequal. An isosceles triangle has two equal sides. I.5 (pons asinorum): The angles at the base of an isosceles triangle are equal. An equilateral triangle has all its sides congruent. A right triangle has one right angle (at C). The hypotenuse of a right triangle is the side opposite the 90◦ angle and the catheti are its other legs. In a opp adj opp adj hyp hyp right triangle, sin = , cos = , tan = , cot = , sec = , csc = .
    [Show full text]
  • The Ordered Distribution of Natural Numbers on the Square Root Spiral
    The Ordered Distribution of Natural Numbers on the Square Root Spiral - Harry K. Hahn - Ludwig-Erhard-Str. 10 D-76275 Et Germanytlingen, Germany ------------------------------ mathematical analysis by - Kay Schoenberger - Humboldt-University Berlin ----------------------------- 20. June 2007 Abstract : Natural numbers divisible by the same prime factor lie on defined spiral graphs which are running through the “Square Root Spiral“ ( also named as “Spiral of Theodorus” or “Wurzel Spirale“ or “Einstein Spiral” ). Prime Numbers also clearly accumulate on such spiral graphs. And the square numbers 4, 9, 16, 25, 36 … form a highly three-symmetrical system of three spiral graphs, which divide the square-root-spiral into three equal areas. A mathematical analysis shows that these spiral graphs are defined by quadratic polynomials. The Square Root Spiral is a geometrical structure which is based on the three basic constants: 1, sqrt2 and π (pi) , and the continuous application of the Pythagorean Theorem of the right angled triangle. Fibonacci number sequences also play a part in the structure of the Square Root Spiral. Fibonacci Numbers divide the Square Root Spiral into areas and angle sectors with constant proportions. These proportions are linked to the “golden mean” ( golden section ), which behaves as a self-avoiding-walk- constant in the lattice-like structure of the square root spiral. Contents of the general section Page 1 Introduction to the Square Root Spiral 2 2 Mathematical description of the Square Root Spiral 4 3 The distribution
    [Show full text]
  • The Spiral of Theodorus and Sums of Zeta-Values at the Half-Integers
    The spiral of Theodorus and sums of zeta-values at the half-integers David Brink July 2012 Abstract. The total angular distance traversed by the spiral of Theodorus is governed by the Schneckenkonstante K introduced by Hlawka. The only published estimate of K is the bound K ≤ 0:75. We express K as a sum of Riemann zeta-values at the half-integers and compute it to 100 deci- mal places. We find similar formulas involving the Hurwitz zeta-function for the analytic Theodorus spiral and the Theodorus constant introduced by Davis. 1 Introduction Theodorus of Cyrene (ca. 460{399 B.C.) taught Plato mathematics and was himself a pupil of Protagoras. Plato's dialogue Theaetetus tells that Theodorus was distinguished in the subjects of the quadrivium and also contains the following intriguing passage on irrational square-roots, quoted here from [12]: [Theodorus] was proving to us a certain thing about square roots, I mean of three square feet and of five square feet, namely that these roots are not commensurable in length with the foot-length, and he went on in this way, taking all the separate cases up to the root of 17 square feet, at which point, for some reason, he stopped. It was discussed already in antiquity why Theodorus stopped at seventeen and what his method of proof was. There are at least four fundamentally different theories|not including the suggestion of Hardy and Wright that Theodorus simply became tired!|cf. [11, 12, 16]. One of these theories is due to the German amateur mathematician J.
    [Show full text]
  • Read Book Advanced Euclidean Geometry Ebook
    ADVANCED EUCLIDEAN GEOMETRY PDF, EPUB, EBOOK Roger A. Johnson | 336 pages | 30 Nov 2007 | Dover Publications Inc. | 9780486462370 | English | New York, United States Advanced Euclidean Geometry PDF Book As P approaches nearer to A , r passes through all values from one to zero; as P passes through A , and moves toward B, r becomes zero and then passes through all negative values, becoming —1 at the mid-point of AB. Uh-oh, it looks like your Internet Explorer is out of date. In Elements Angle bisector theorem Exterior angle theorem Euclidean algorithm Euclid's theorem Geometric mean theorem Greek geometric algebra Hinge theorem Inscribed angle theorem Intercept theorem Pons asinorum Pythagorean theorem Thales's theorem Theorem of the gnomon. It might also be so named because of the geometrical figure's resemblance to a steep bridge that only a sure-footed donkey could cross. Calculus Real analysis Complex analysis Differential equations Functional analysis Harmonic analysis. This article needs attention from an expert in mathematics. Facebook Twitter. On any line there is one and only one point at infinity. This may be formulated and proved algebraically:. When we have occasion to deal with a geometric quantity that may be regarded as measurable in either of two directions, it is often convenient to regard measurements in one of these directions as positive, the other as negative. Logical questions thus become completely independent of empirical or psychological questions For example, proposition I. This volume serves as an extension of high school-level studies of geometry and algebra, and He was formerly professor of mathematics education and dean of the School of Education at The City College of the City University of New York, where he spent the previous 40 years.
    [Show full text]
  • On the Standard Lengths of Angle Bisectors and the Angle Bisector Theorem
    Global Journal of Advanced Research on Classical and Modern Geometries ISSN: 2284-5569, pp.15-27 ON THE STANDARD LENGTHS OF ANGLE BISECTORS AND THE ANGLE BISECTOR THEOREM G.W INDIKA SHAMEERA AMARASINGHE ABSTRACT. In this paper the author unveils several alternative proofs for the standard lengths of Angle Bisectors and Angle Bisector Theorem in any triangle, along with some new useful derivatives of them. 2010 Mathematical Subject Classification: 97G40 Keywords and phrases: Angle Bisector theorem, Parallel lines, Pythagoras Theorem, Similar triangles. 1. INTRODUCTION In this paper the author introduces alternative proofs for the standard length of An- gle Bisectors and the Angle Bisector Theorem in classical Euclidean Plane Geometry, on a concise elementary format while promoting the significance of them by acquainting some prominent generalized side length ratios within any two distinct triangles existed with some certain correlations of their corresponding angles, as new lemmas. Within this paper 8 new alternative proofs are exposed by the author on the angle bisection, 3 new proofs each for the lengths of the Angle Bisectors by various perspectives with also 5 new proofs for the Angle Bisector Theorem. 1.1. The Standard Length of the Angle Bisector Date: 1 February 2012 . 15 G.W Indika Shameera Amarasinghe The length of the angle bisector of a standard triangle such as AD in figure 1.1 is AD2 = AB · AC − BD · DC, or AD2 = bc 1 − (a2/(b + c)2) according to the standard notation of a triangle as it was initially proved by an extension of the angle bisector up to the circumcircle of the triangle.
    [Show full text]
  • Thales of Miletus Sources and Interpretations Miletli Thales Kaynaklar Ve Yorumlar
    Thales of Miletus Sources and Interpretations Miletli Thales Kaynaklar ve Yorumlar David Pierce October , Matematics Department Mimar Sinan Fine Arts University Istanbul http://mat.msgsu.edu.tr/~dpierce/ Preface Here are notes of what I have been able to find or figure out about Thales of Miletus. They may be useful for anybody interested in Thales. They are not an essay, though they may lead to one. I focus mainly on the ancient sources that we have, and on the mathematics of Thales. I began this work in preparation to give one of several - minute talks at the Thales Meeting (Thales Buluşması) at the ruins of Miletus, now Milet, September , . The talks were in Turkish; the audience were from the general popu- lation. I chose for my title “Thales as the originator of the concept of proof” (Kanıt kavramının öncüsü olarak Thales). An English draft is in an appendix. The Thales Meeting was arranged by the Tourism Research Society (Turizm Araştırmaları Derneği, TURAD) and the office of the mayor of Didim. Part of Aydın province, the district of Didim encompasses the ancient cities of Priene and Miletus, along with the temple of Didyma. The temple was linked to Miletus, and Herodotus refers to it under the name of the family of priests, the Branchidae. I first visited Priene, Didyma, and Miletus in , when teaching at the Nesin Mathematics Village in Şirince, Selçuk, İzmir. The district of Selçuk contains also the ruins of Eph- esus, home town of Heraclitus. In , I drafted my Miletus talk in the Math Village. Since then, I have edited and added to these notes.
    [Show full text]
  • Advanced Euclidean Geometry
    Advanced Euclidean Geometry Paul Yiu Summer 2016 Department of Mathematics Florida Atlantic University July 18, 2016 Summer 2016 Contents 1 Some Basic Theorems 101 1.1 The Pythagorean Theorem . ............................ 101 1.2 Constructions of geometric mean . ........................ 104 1.3 The golden ratio . .......................... 106 1.3.1 The regular pentagon . ............................ 106 1.4 Basic construction principles ............................ 108 1.4.1 Perpendicular bisector locus . ....................... 108 1.4.2 Angle bisector locus . ............................ 109 1.4.3 Tangency of circles . ......................... 110 1.4.4 Construction of tangents of a circle . ............... 110 1.5 The intersecting chords theorem ........................... 112 1.6 Ptolemy’s theorem . ................................. 114 2 The laws of sines and cosines 115 2.1 The law of sines . ................................ 115 2.2 The orthocenter ................................... 116 2.3 The law of cosines .................................. 117 2.4 The centroid ..................................... 120 2.5 The angle bisector theorem . ............................ 121 2.5.1 The lengths of the bisectors . ........................ 121 2.6 The circle of Apollonius . ............................ 123 3 The tritangent circles 125 3.1 The incircle ..................................... 125 3.2 Euler’s formula . ................................ 128 3.3 Steiner’s porism ................................... 129 3.4 The excircles ....................................
    [Show full text]
  • 9 · the Growth of an Empirical Cartography in Hellenistic Greece
    9 · The Growth of an Empirical Cartography in Hellenistic Greece PREPARED BY THE EDITORS FROM MATERIALS SUPPLIED BY GERMAINE AUJAe There is no complete break between the development of That such a change should occur is due both to po­ cartography in classical and in Hellenistic Greece. In litical and military factors and to cultural developments contrast to many periods in the ancient and medieval within Greek society as a whole. With respect to the world, we are able to reconstruct throughout the Greek latter, we can see how Greek cartography started to be period-and indeed into the Roman-a continuum in influenced by a new infrastructure for learning that had cartographic thought and practice. Certainly the a profound effect on the growth of formalized know­ achievements of the third century B.C. in Alexandria had ledge in general. Of particular importance for the history been prepared for and made possible by the scientific of the map was the growth of Alexandria as a major progress of the fourth century. Eudoxus, as we have seen, center of learning, far surpassing in this respect the had already formulated the geocentric hypothesis in Macedonian court at Pella. It was at Alexandria that mathematical models; and he had also translated his Euclid's famous school of geometry flourished in the concepts into celestial globes that may be regarded as reign of Ptolemy II Philadelphus (285-246 B.C.). And it anticipating the sphairopoiia. 1 By the beginning of the was at Alexandria that this Ptolemy, son of Ptolemy I Hellenistic period there had been developed not only the Soter, a companion of Alexander, had founded the li­ various celestial globes, but also systems of concentric brary, soon to become famous throughout the Mediter­ spheres, together with maps of the inhabited world that ranean world.
    [Show full text]
  • 4 3 E B a C F 2
    See-Saw Geometry and the Method of Mass-Points1 Bobby Hanson February 27, 2008 Give me a place to stand on, and I can move the Earth. — Archimedes. 1. Motivating Problems Today we are going to explore a kind of geometry similar to regular Euclidean Geometry, involving points and lines and triangles, etc. The main difference that we will see is that we are going to give mass to the points in our geometry. We will call such a geometry, See-Saw Geometry (we’ll understand why, shortly). Before going into the details of See-Saw Geometry, let’s look at some problems that might be solved using this different geometry. Note that these problems are perfectly solvable using regular Euclidean Geometry, but we will find See-Saw Geometry to be very fast and effective. Problem 1. Below is the triangle △ABC. Side BC is divided by D in a ratio of 5 : 2, and AB is divided by E in a ration of 3 : 4. Find the ratios in which F divides the line segments AD and CE; i.e., find AF : F D and CF : F E. (Note: in Figure 1, below, only the ratios are shown; the actual lengths are unknown). B 3 E 5 4 F D 2 A C Figure 1 1My notes are shamelessly stolen from notes by Tom Rike, of the Berkeley Math Circle available at http://mathcircle.berkeley.edu/archivedocs/2007 2008/lectures/0708lecturespdf/MassPointsBMC07.pdf . 1 2 Problem 2. In Figure 2, below, D and E divide sides BC and AB, respectively, as before.
    [Show full text]