PAINTING and PERSPECTIVE 127 the Real World, That the Universe Is Ordered and Explicable Rationally in Terms of Geometry

Total Page:16

File Type:pdf, Size:1020Kb

PAINTING and PERSPECTIVE 127 the Real World, That the Universe Is Ordered and Explicable Rationally in Terms of Geometry PAINTING AND PERSPECTIVE 127 the real world, that the universe is ordered and explicable rationally in terms of geometry. Hence, like the Greek philosopher, he be­ lieved that to penetrate to the underlying significance, that is, the reality of the theme that he sought to display on canvas, he must reduce it to its mathematical content. Very interesting evidence of x the artist's attempt to discover the mathematical essence of his sub­ ject is found in one of Leonardo's studies in proportion. In it he Painting and Perspective tried to fit the structure of the ideal man to the ideal figures, the flquare and circle (plate VI). The sheer utility of mathematics for accurate description and the The world's the book where the eternal sense philosophy that mathematics is the essence of reality are only two Wrote his own thoughts; the living temple where, Painting his very self, with figures fair of the reasons why the Renaissance artist sought to use mathematics. He filled the whole immense circumference. There was another reason. The artist of the late medieval period and T. CAMPANELLA the Renaissance was, also, the architect and engineer of his day and so was necessarily mathematically inclined. Businessmen, secular princes, and ecclesiastical officials assigned all construction problems During the Middle Ages painting, serving somewhat as the hand­ to the artist. He designed and built churches, hospitals, palaces, maiden of the Church, concentrated on embellishing the thoughts cloisters, bridges, fortresses, dams, canals, town walls, and doctrines of Christianity. Toward the end of this period, the and instru­ ments of warfare. Numerous drawings of such engineering projects painters, along with other thinkers in Europe, began to be interested are in da Vinci's notebooks and he, himself, in offering his services in the natural world. Inspired by the new emphasis on man and the to Lodovico Sforza, ruler of Milan, promised to serve as an engineer, universe about him the Renaissance artist dared to confront nature, to study her deeply and searchingly, and to depict her realistically. constructor of military works, and designer of war machines, as well as architect, sculptor, and painter. The artist was even expected to The painters revived the glory and gladness of an alive world and solve problems involving the motion of cannon balls in artillery fire, reproduced beautiful forms which attested to the delightfulness of a task which in those times called for profound mathematical knowl­ physical existence, the inalienable right to satisfy natural wants, edge. It is nr> exaggeration to state that the Renaissance artist was the and the pleasures afforded by earth, sea, and air. best practicing mathematician and that in the fifteenth century he For several reasons the problem of depicting the real world led was also the most learned and accomplished theoretical mathema­ the Renaissance painters to mathematics. The first reason was one tician. that could be operative in any age in which the artist seeks to paint realistically. Stripped of color and substance the objects that painters The specific problem which engaged the mathematical talents of put on canvas are geometrical bodies located in space. The language the Renaissance painters and with which we shall' be concerned here for dealing with these idealized objects, the properties they possess was that of depicting realistically three-dimensional scenes on canvas. as idealizations, and the exact relationships that describe their rela­ The artists solved this problem by creating a totally new system of tive locations in space are all incorporated in Euclidean geometry. mathematical perspective and consequently refashioned the entire style of painting. The artists need only avail themselves of it. The Renaissance artist turned to mathematics not only because he The various schemes employed throughout the history of painting sought to reproduce nature but also because he was influenced by for organizing subjects on plaster and canvas, that is, the various the revived philosophy of the Greeks. He became thoroughly famil­ systems of perspective, can be divided into two major classes, con­ iar and imbued with the doctrine that mathematics is the essence of ceptual and optical. A conceptual system undertakes to organize the 126 128 MATHEMATICS IN WESTERN CULTURE PAINTING AND PERSPECTIVE 129 persons and objects in accordance with some doctrine or principle dominated. An excellent example, indeed one that is regarded as that has little or nothing to do with the actual appearance of the the flower of medieval painting, is 'The Annunciation' (plate VIII) scene itself. For example, Egyptian painting and relief work were by' Simone Martini (1l~85-1344). The background is gold. There is largely conceptual. The sizes of people were often ordered in rela­ no indication of visual perception. The movement in the painting tion to their importance in the politico-religious hierarchy. Pharaoh is from the angel to the Virgin and then back to the angel. Though was usually the most important person and so was the largest. His there is loveliness of color, surface, and sinuous line, the figures wife would be next in size and his servants even smaller. Profile themselves are unemotional and arouse no emotional response in the views and frontal views were used simultaneously even for different onlooker. The effect of the whole is mosaic-like. Perhaps the only parts of the same figure. In order to indicate a series of people or respect in which this painting makes any advance toward realism is animals one behind the other, the same figure was repeated slightly in its use of a ground plane or floor on which objects and figures rest displaced. Modern painting, as well as most Japanese and Chinese and which is distinct from the gilt background. painting, is also conceptual (plate XXVII). Characteristic Renaissance influences which steered the artists An optical system of perspective, on the other hand, attempts to toward realism and mathematics began to be felt near the end of convey the same impression to the eye as would the scene itself. the thirteenth century, the century in which Aristotle became widely Although Greek and Roman painting was primarily optical, the known by means of translations from the Arabic and the Greek. The influence of Christian mysticism turned artists back to a conceptual painters became aware of the lifelessness and unreality of medieval system, which prevailed throughout the Middle Ages. The early painting and consciously sought to modify it. Efforts toward natural­ Christian and medieval artists were content to paint in symbolic ism appeared in the use of real people as subjects of religious themes, terms, that is, their settings and subjects were intended to illustrate in the deliberate use of straight lines, multiple surfaces. and simple religious themes and induce religious feelings rather than to rep­ forms of geometry. in experiments with unorthodox positions of the resent real people in the actual and present world. The people and figures, in attempts to render emotions, and in the depiction of objects were highly stylized and drawn as though they existed in a drapery falling and folding around parts of bodies as it actually does flat, two-dimensional vacuum. Figures that should be behind one rather than in the flat folds of the conventional medieval style. another were usually alongside or above. Stiff draperies and angular The essential difference between medieval and Renaissance art is attitudes were characteristic. The backgrounds of the paintings were the introduction of the third dimension, that is, the rendering of almost always of a solid color, usually gold, as if to emphasize that space, distance, volume, mass, and visual effects. The incorporation the subjects had no connection with the real world. of three-dimensionality could be achieved only by an optical system The early Christian mosaic 'Abraham with Angels' (plate VII), of representation, and conscious efforts in this direction were made a typical example of the Byzantine influence. illustrates the disin­ by Duccio (1255-1319) and Giotto (1276-1336), at the beginning of tegration of ancient perspective. The background is essentially neu­ the fourteenth century. Several devices appeared in their works that traL The earth, tree, and bushes are artificial and lifeless, the tree are at least worth noticing as stages in the development of a mathe­ being shaped peculiarly to fit the border of the picture. There is no matical system. Duccio's 'Madonna in Majesty" (plate IX) has several foreground or base on which the figures and objects stand. The interesting features. The composition, first of all, is severely simple figures are not related to each other and, of course, spatial relations and symmetrical. The lines of the throne are made to converge in are ignored because measures and sizes were deemed unimportant. pairs and thus suggest depth. The figures on either side of the throne The little unity there is in the picture is supplied by the gold back­ are presumably standing on one level but they are painted one above ground and the color of the objects. the other in several layers. This manner of depicting depth is known Though remnants of an optical system used by the Romans were as terraced perspective, a device very common in the fourteenth cen­ sometimes present in medieval painting. this Byzantine style pre- tury. The drapery is somewhat natural as exemplified by the folds r' 180 MATHEMATICS IN WESTERN CULTURE PAINTING AND PERSPEcnvE 131 over the Madonna's knee. Also there is some feeling for solidity and tended toward a photographic copy. His figures possessed mass, vol­ space and some emotion in the faces. The picture as a whole still ume, and vitality. He chose homelike scenes, distributed his figures contains much of the Byzantine tradition. There is a liberal use of in a balanced arrangement, and grouped them in a manner agree­ gold in the background and in the details.
Recommended publications
  • Letter from Descartes to Desargues 1 (19 June 1639)
    Appendix 1 Letter from Descartes to Desargues 1 (19 June 1639) Sir, The openness I have observed in your temperament, and my obligations to you, invite me to write to you freely what I can conjecture of the Treatise on Conic Sections, of which the R[everend] F[ather] M[ersenne] sent me the Draft. 2 You may have two designs, which are very good and very praiseworthy, but which do not both require the same course of action. One is to write for the learned, and to instruct them about some new properties of conics with which they are not yet familiar; the other is to write for people who are interested but not learned, and make this subject, which until now has been understood by very few people, but which is nevertheless very useful for Perspective, Architecture etc., accessible to the common people and easily understood by anyone who studies it from your book. If you have the first of these designs, it does not seem to me that you have any need to use new terms: for the learned, being already accustomed to the terms used by Apollonius, will not easily exchange them for others, even better ones, and thus your terms will only have the effect of making your proofs more difficult for them and discourage them from reading them. If you have the second design, your terms, being French, and showing wit and elegance in their invention, will certainly be better received than those of the Ancients by people who have no preconceived ideas; and they might even serve to attract some people to read your work, as they read works on Heraldry, Hunting, Architecture etc., without any wish to become hunters or architects but only to learn to talk about them correctly.
    [Show full text]
  • Desargues, Girard
    GIRARD DESARGUES (February 21, 1591 – October 1661) by HEINZ KLAUS STRICK, Germany GIRARD DESARGUES came from very wealthy families of lawyers and judges who worked at the Parlement, the highest appellate courts of France in Paris and Lyon. Nothing is known about GIRARD's youth, but it is safe to assume that he and his five siblings received the best possible education. While his two older brothers were admitted to the Parisian Parlement, he was involved in the silk trade in Lyon, as can be seen from a document dating from 1621. In 1626, after a journey through Flanders, he applied to the Paris city council for a licence to drill a well and use the water from the well. His idea was to construct an effective hydraulic pump to supply water to entire districts, but this project did not seem to be successful. After the death of his two older brothers in 1628, he took over the family inheritance and settled in Paris. There he met MARIN MERSENNE and soon became a member of his Academia Parisiensis, a discussion group of scientists including RENÉ DESCARTES, GILLES PERSONNE DE ROBERVAL, ÉTIENNE PASCAL and his son BLAISE. (drawing: © Andreas Strick) The first publication by DESARGUES to attract attention was Une méthode aisée pour apprendre et enseigner à lire et escrire la musique (An easy way to learn and teach to read and write music). In 1634 MERSENNE mentioned in a letter to his acquaintances that DESARGUES was working on a paper on perspective (projection from a point). But it was not until two years later that the work was published: only 12 pages long and in a small edition.
    [Show full text]
  • 1 H-France Forum Volume 14 (2019), Issue 4, #3 Jeffrey N. Peters, The
    1 H-France Forum Volume 14 (2019), Issue 4, #3 Jeffrey N. Peters, The Written World. Space, Literature, and the Chorological Imagination in Early Modern France. Evanston: Northwestern University Press, 2018. vii + 272 pp. Figures, notes, and Copyright index. $34.95 (pb). ISBN 978-0-8101-3697-7; $99.95 (cl). ISBN 978-0- 8101-3698-4; $34.95 (Kindle). ISBN 978-0-8101-3699-1. Review Essay by David L. Sedley, Haverford College The Written World has on its cover an image from La Manière universelle de M. Desargues, pour pratiquer la perspective (1648). This book, written and illustrated by Abraham Bosse and based on the projective geometry of Girard Desargues, extends the theories of perspective codified by Leon Battista Alberti and his followers. [1] Alberti directed painters to pose a central point at the apparent conjunction of parallel lines in order to lend depth and coherence to their compositions. Desargues reinterpreted and renamed Alberti’s central point (and other points like it) as a point at infinity. Consequently, the convergent lines of a visual representation could be taken to indicate the infinite more emphatically than before. As an illustration of the art of putting objects in a perspective that emphasizes their connection to infinity, Bosse’s image suits Peters’ book to a T. Peters represents his objects of study—mainly a series of works of seventeenth-century French literature—with an eye to showing their affinity with the infinite. He frequently discusses infinity through chora, the Ancient Greek term used by Plato and adopted by Jacques Derrida to denote the space underlying all finite places and place- based thought.
    [Show full text]
  • Mathematics and Arts
    Mathematics and Arts All´egoriede la G´eom´etrie A mathematical interpretation Alda Carvalho, Carlos Pereira dos Santos, Jorge Nuno Silva ISEL & Cemapre-ISEG, CEAFEL-UL, University of Lisbon [email protected] [email protected] [email protected] Abstract: In this work, we present a mathematical interpretation for the mas- terpiece All´egoriede la G´eom´etrie (1649), painted by the French baroque artist Laurent de La Hyre (1606{1656). Keywords: Laurent de La Hyre, \All´egoriede la G´eom´etrie",baroque art, mathematical interpretation, perspective. Introduction The main purpose of this text is to present a mathematical interpretation for the masterpiece All´egoriede la G´eom´etrie, from a well-known series of paint- ings, Les 7 arts lib´eraux, by the French baroque artist Laurent de La Hyre (1606{1656). Figure 1: All´egoriede la G´eom´etrie (1649), oil on canvas. Recreational Mathematics Magazine, Number 5, pp. 33{45 DOI 10.1515/rmm{2016{0003 34 allegorie´ de la geom´ etrie´ Laurent de La Hyre painted the series Les 7 arts lib´eraux between 1649 and 1650 to decorate G´ed´eonTallemant's residence. Tallemant was an adviser of Louis xiv (1638{1715). The king was 10 years old at the time of the commission. According to the artist's son, Philippe de La Hire (1640{1718), writing around 1690 [5], (. .) une maison qui appartenoit autrefois a M. Tallemant, maistre des requestes, sept tableaux repres´entant les sept arts liberaux qui font l'ornement d'une chambre. Also, Guillet de Saint-Georges, a historiographer of the Acad´emieRoyale de Peinture et de Sculpture, mentioned that it was Laurent's work for the Ca- puchin church in the Marais which led to the commission for the \Seven Liberal Arts" in a house [2].
    [Show full text]
  • A Tale of the Cycloid in Four Acts
    A Tale of the Cycloid In Four Acts Carlo Margio Figure 1: A point on a wheel tracing a cycloid, from a work by Pascal in 16589. Introduction In the words of Mersenne, a cycloid is “the curve traced in space by a point on a carriage wheel as it revolves, moving forward on the street surface.” 1 This deceptively simple curve has a large number of remarkable and unique properties from an integral ratio of its length to the radius of the generating circle, and an integral ratio of its enclosed area to the area of the generating circle, as can be proven using geometry or basic calculus, to the advanced and unique tautochrone and brachistochrone properties, that are best shown using the calculus of variations. Thrown in to this assortment, a cycloid is the only curve that is its own involute. Study of the cycloid can reinforce the curriculum concepts of curve parameterisation, length of a curve, and the area under a parametric curve. Being mechanically generated, the cycloid also lends itself to practical demonstrations that help visualise these abstract concepts. The history of the curve is as enthralling as the mathematics, and involves many of the great European mathematicians of the seventeenth century (See Appendix I “Mathematicians and Timeline”). Introducing the cycloid through the persons involved in its discovery, and the struggles they underwent to get credit for their insights, not only gives sequence and order to the cycloid’s properties and shows which properties required advances in mathematics, but it also gives a human face to the mathematicians involved and makes them seem less remote, despite their, at times, seemingly superhuman discoveries.
    [Show full text]
  • Projective Geometry Seen in Renaissance Art
    Projective Geometry Seen in Renaissance Art Word Count: 2655 Emily Markowsky ID: 112235642 December 7th, 2020 Abstract: For the West, the Renaissance was a revival of long-forgotten knowledge from classical antiquity. The use of geometric techniques from Greek mathematics led to the development of linear perspective as an artistic technique, a method for projecting three dimensional figures onto a two dimensional plane, i.e. the painting itself. An “image plane” intersects the observer’s line of sight to an object, projecting this point onto the intersection point in the image plane. This method is more mathematically interesting than it seems; we can formalize the notion of a vanishing point as a “point at infinity,” from which the subject of projective geometry was born. This paper outlines the historical process of this development and discusses its mathematical implications, including a proof of Desargues’ Theorem of projective geometry. Outline: I. Introduction A. Historical context; the Middle Ages and medieval art B. How linear perspective contributes to the realism of Renaissance art, incl. a comparison between similar pieces from each period. C. Influence of Euclid II. Geometry of Vision and Projection A. Euclid’s Optics ​ B. Cone of vision and the use of conic sections to model projection of an object onto a picture. Projection of a circle explained intuitively. C. Brunelleschi’s experiments and the invention of his technique for linear perspective D. Notion of points at infinity as a vanishing point III. Projective geometry and Desargues’ Theorem A. Definition of a projective plane and relation to earlier concepts discussed B.
    [Show full text]
  • Girard Desargues, Maître De Pascal Eishi KUKITA
    Girard Desargues, maître de Pascal Eishi KUKITA La vie et l’œuvre de Girard Desargues (1591-1661), savant et ingénieur du XVIIe siècle, sont aujourd’hui presque inconnues1. Pourtant les plus lucides de ses contemporains, dont Descartes et Pascal, tous deux grands géomètres qui ont marqué chacun à sa manière l’aube des sciences naturelles modernes, lui trouvaient une intelligence hors du commun. Une lecture attentive des correspondances de Descartes nous permettra de constater que le philosophe du cogito n’exagérait point en écrivant à Mersenne, au sujet de ses Méditations (1641) : Je serai bien aise que M. Desargues soit aussi un de mes juges, s’il lui plaît d’en prendre la peine, et je me fie plus en lui qu’en trois théologiens2. Quant à Pascal, publiant à l’âge de seize ans son premier article Essai pour les Coniques en 1640, il rendit un hommage vibrant à celui qu’il considérait comme son maître : Nous démontrerons aussi cette propriété, dont le premier inventeur est M. Desargues Lyonnais, un des grands esprits de ce temps et des 1 La littérature sur Desargues est franchement pauvre. Autant que nous le sachions, seuls quatre livres en français ont été publiés depuis XIXe siècle. N.-G. Poudra, Œuvres de Desargues, 2 vol., Léiber, 1864, rééd. fac-similé, Cambridge Univ. Press, 2011 (sigle : Pou). R. Taton, Œuvres mathématiques de G. Desargues, PUF, 1951, 2e éd., Vrin, 1988 (sigle : Tat). J. Dhombres et J. Sakarovitch (dir.), Desargues en son Temps, Blanchard, 1994 (sigle : DS). M. Chaboud, Girard Desargues, Bourgeois de Lyon, Mathématicien, Architecte, Lyon, Aléas, 1996 (sigle : Cha).
    [Show full text]
  • Undergraduate Texts in Mathematics
    Undergraduate Texts in Mathematics Editors S. Axler K.A. Ribet Undergraduate Texts in Mathematics Abbott: Understanding Analysis. Chambert-Loir: A Field Guide to Algebra Anglin: Mathematics: A Concise History Childs: A Concrete Introduction to and Philosophy. Higher Algebra. Second edition. Readings in Mathematics. Chung/AitSahlia: Elementary Probability Anglin/Lambek: The Heritage of Theory: With Stochastic Processes and Thales. an Introduction to Mathematical Readings in Mathematics. Finance. Fourth edition. Apostol: Introduction to Analytic Cox/Little/O’Shea: Ideals, Varieties, Number Theory. Second edition. and Algorithms. Second edition. Armstrong: Basic Topology. Croom: Basic Concepts of Algebraic Armstrong: Groups and Symmetry. Topology. Axler: Linear Algebra Done Right. Cull/Flahive/Robson: Difference Second edition. Equations: From Rabbits to Chaos Beardon: Limits: A New Approach to Curtis: Linear Algebra: An Introductory Real Analysis. Approach. Fourth edition. Bak/Newman: Complex Analysis. Daepp/Gorkin: Reading, Writing, and Second edition. Proving: A Closer Look at Banchoff/Wermer: Linear Algebra Mathematics. Through Geometry. Second edition. Devlin: The Joy of Sets: Fundamentals Berberian: A First Course in Real of Contemporary Set Theory. Second Analysis. edition. Bix: Conics and Cubics: A Dixmier: General Topology. Concrete Introduction to Algebraic Driver: Why Math? Curves. Ebbinghaus/Flum/Thomas: Bre´maud: An Introduction to Mathematical Logic. Second edition. Probabilistic Modeling. Edgar: Measure, Topology, and Fractal Bressoud: Factorization and Primality Geometry. Testing. Elaydi: An Introduction to Difference Bressoud: Second Year Calculus. Equations. Third edition. Readings in Mathematics. Erdo˜s/Sura´nyi: Topics in the Theory of Brickman: Mathematical Introduction Numbers. to Linear Programming and Game Estep: Practical Analysis in One Variable. Theory. Exner: An Accompaniment to Higher Browder: Mathematical Analysis: Mathematics.
    [Show full text]
  • The Historiography of Perspective and Reflexy-Const in Netherlandish
    The Historiography of Perspective and Reflexy-Const in Netherlandish Art Sven Dupré Introduction In The Heritage of Apelles Ernst Gombrich famously drew a distinction between art North and South of the Alps along optical lines. Painters in fifteenth-century Florence, such as Domenico Veneziano, used different optical features than their contemporaries in Bruges, the likes of Jan Van Eyck, to create the illusion of space. Gombrich commented: „We all associate Florentine art with the development of central perspective, and thus with the mathematical method of revealing form in ambient light. The other aspect of optical theory, the reaction of light to various surfaces, was first explored in modern times by painters North of the Alps. It was there that the mastery of lustre, sparkle and glitter was first achieved, permitting the artist to convey the peculiar character of materials. Indeed, for a time, during the first decades of the fifteenth century, the two schools of painting appeared thus to have divided the kingdom of appearances between them.‟1 While Italian painters of the fifteenth century used perspective, Netherlandish artists studied and painted the reflection of light from surfaces of different textures and materials to create the illusion of space. For Gombrich, the point of contact between North and South was Leonardo da Vinci, „the greatest explorer of natural appearances‟, who must have been „a keen student of Northern painting‟.2 Here I am less interested in Gombrich‟s geography of optics, but more in how his juxtaposition of perspective and painterly light reflects and complicates the historiography of perspective. For reasons which fall outside the scope of this paper, since the seminal work of 1 Erwin Panofsky linear perspective has become a locus classicus of the study of artistic practice and science, and the history of perspective, which Panofsky in Die Perspektive als symbolische Form (1927) disconnected from optics, a field of research of its own, independent from the history of science and the history of art.
    [Show full text]
  • TME Volume 6, Number 3
    The Mathematics Enthusiast Volume 6 Number 3 Article 18 7-2009 TME Volume 6, Number 3 Follow this and additional works at: https://scholarworks.umt.edu/tme Part of the Mathematics Commons Let us know how access to this document benefits ou.y Recommended Citation (2009) "TME Volume 6, Number 3," The Mathematics Enthusiast: Vol. 6 : No. 3 , Article 18. Available at: https://scholarworks.umt.edu/tme/vol6/iss3/18 This Full Volume is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in The Mathematics Enthusiast by an authorized editor of ScholarWorks at University of Montana. For more information, please contact [email protected]. TMME, vol6, no.3, p. 295 THE JOURNAL (WHEEL) KEEPS ON TURNING Bharath Sriraman The University of Montana The title of this editorial is a spinoff on the opening lyrics of a famous Lynyrd Skynyrd song (fill in the blank: Sweet Home__________). When the song came out in the 70’s the popular media misunderstood the song and took some of its lyrics to mean support for the (infamous) George Wallace’s governorship of Alabama, when in fact the band sarcastically boo’ed his segregative policies that scarred the South. The song goes In Birmingham, they love the governor (boo boo boo) Now we all did what we could do Now Watergate does not bother me Does your conscience bother you? These lines bring me to the theme of this editorial, which is namely: (1) What does it take to keep the journal’s wheel turning (running, moving, progressing), and (2) “Does your conscience bother you?” Issue #3 brings volume 6 for the year 2009 of the journal to an end.
    [Show full text]
  • Laura Branchetti, Teaching and Learning Mathematics
    Isonomia – Epistemologica Volume 7 TEACHING AND LEARNING MATHEMATICS SOME PAST AND CURRENT APPROACHES TO MATHEMATICS EDUCATION Volume 1 Il realismo scientifico di Evandro Agazzi Mario Alai (ed.) Volume 2 Complessità e riduzionismo Vincenzo Fano, Enrico Giannetto, Giulia Giannini, Pierluigi Graziani (eds.) Volume 3 Oltre la fisica normale Isabella Tassani (ed.) Volume 4 Mettere a fuoco il mondo Elena Casetta, Valeria Giardino (eds.) Volume 5 Metaphor and Argumentation Francesca Ervas, Massimo Sangoi (eds.) Volume 6 Forecasting the Future Stefano Bordoni, Sara Matera (eds.) Volume 7 Teaching and Learning Mathematics Laura Branchetti (ed.) ISONOMIA - Epistemologica Series Editor Gino Tarozzi [email protected] TEACHING AND LEARNING MATHEMATICS SOME PAST AND CURRENT APPROACHES TO MATHEMATICS EDUCATION Edited by Laura Branchetti © ISONOMIA – Epistemologica ISSN 2037-4348 Scientific director: Gino Tarozzi Editor in chief: Pierluigi Graziani Department of Foundation of Sciences P.za della Repubblica, 13 – 61029 Urbino (PU) http://isonomia.uniurb.it/ Design by [email protected] All rights reserved. No part of this publication may be reproduced, stored in a re- trieval system or transmitted in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise without prior permission, in writing, from the publisher. Cover image by Antonello Ghezzi Table of contents LAURA BRANCHETTI, Some Past and Current Approaches to Mathematics Education ............................ 7 GIORGIO BOLONDI, Epistemology and Didactics in Federigo Enriques ............................................... 21 MARCO PANZA, ANDREA SERENI Platonism and Nominalism in Philosophy of Mathematics ................................... 35 JEAN DHOMBRES, A Debate on the Long Term and Reactions in Mathematics Teaching. Is Computation Just a Technique or Can it Be a Way to Learn Mathematics? ...
    [Show full text]
  • Mathematics in the Modern Age - the 19Th Century: Revolution Or Evolution? Transcript
    Mathematics in the modern age - The 19th century: Revolution or evolution? Transcript Date: Wednesday, 25 October 2006 - 12:00AM Location: Barnard's Inn Hall MATHEMATICS IN THE MODERN AGE – THE 19TH CENTURY: REVOLUTION OR EVOLUTION? Professor Robin Wilson Introduction In my last lecture, on the 18th century, we saw the devastating influence of Isaac Newton on British mathematics, holding it back for more than a hundred years while advances were being made on the Continent by such ‘greats’ as the Bernoulli brothers, Leonhard Euler, and Lagrange and Laplace. If you felt that I placed too much emphasis on 18th-century activities in Britain, rather than the Continent, this was partly because I’ll redress the balance in my lectures on the numbers ‘e’ and ‘i’ and on Euler next year, and partly because today’s lecture also focuses on events on the Continent ― mainly in France and Germany. In this lecture I’ll be looking at developments in four main areas – algebra, various types of geometry, calculus, and the foundations of mathematics. For each one I’d like you to consider whether each of these was a revolution in thought or simply a natural evolution from earlier work. But first, let’s go to France. France Out of the turbulent years of the French Revolution and the rise to power of Napoleon Bonaparte came several important developments in mathematics. Napoleon himself was an enthusiast for mathematics and its teaching, and there are even a couple of results in geometry known as ‘Napoleon’s theorem’. One of Napoleon’s greatest supporters was the geometer Gaspard Monge, who accompanied him on the Egyptian expedition of 1798.
    [Show full text]