A Tale of the Cycloid in Four Acts

Total Page:16

File Type:pdf, Size:1020Kb

A Tale of the Cycloid in Four Acts A Tale of the Cycloid In Four Acts Carlo Margio Figure 1: A point on a wheel tracing a cycloid, from a work by Pascal in 16589. Introduction In the words of Mersenne, a cycloid is “the curve traced in space by a point on a carriage wheel as it revolves, moving forward on the street surface.” 1 This deceptively simple curve has a large number of remarkable and unique properties from an integral ratio of its length to the radius of the generating circle, and an integral ratio of its enclosed area to the area of the generating circle, as can be proven using geometry or basic calculus, to the advanced and unique tautochrone and brachistochrone properties, that are best shown using the calculus of variations. Thrown in to this assortment, a cycloid is the only curve that is its own involute. Study of the cycloid can reinforce the curriculum concepts of curve parameterisation, length of a curve, and the area under a parametric curve. Being mechanically generated, the cycloid also lends itself to practical demonstrations that help visualise these abstract concepts. The history of the curve is as enthralling as the mathematics, and involves many of the great European mathematicians of the seventeenth century (See Appendix I “Mathematicians and Timeline”). Introducing the cycloid through the persons involved in its discovery, and the struggles they underwent to get credit for their insights, not only gives sequence and order to the cycloid’s properties and shows which properties required advances in mathematics, but it also gives a human face to the mathematicians involved and makes them seem less remote, despite their, at times, seemingly superhuman discoveries. The History of the Cycloid: A Who’s Who of Seventeenth Century European Mathematics This intellectually rewarding, and mathematically beautiful curve led to such heated disputes, that the cycloid has been called the “Helen of geometers,” or the “Apple of discord” 10, both references to the epic poems the Iliad and the Odyssey, in which Helen’s beauty “launched a thousand ships” and led to years of war. Act 1: Early history and Galileo’s influence. There are differing opinions as to who first discovered or invented the cycloid, and some authors believe that the curve must have been known to ancient Greek geometers seeing Archimedes, among others, describes mechanically generated curves such as his spiral. Also Hipparchus used an epicycle, the curve traced by a point on a circle that rolls around the circumference of another circle, to describe the motion of the Moon. There is, however, no surviving evidence that the Greeks explicitly knew of the cycloid. Over 1700 years later, Albrecht Dürer, the German artist, also studied an epicycle5, but did not generalise this to a regular cycloid. Dürer, whose interests were mainly geometric, did not have the mathematical background required to investigate the epicycle deeply. Figure 2: (Left) Dürer’s epicycle drawing compass2. (Right) An epicycloid. Charles de Bovelles described an actual cycloid in 150110, but he considered it to be merely a circle with five-fourths the radius of the generating circle13. Galileo Galilei gave the cycloid its name, from the Greek for circle-like, and was the first to draw widespread attention to it. He wrote to Cavalieri in 1640 that he had been thinking about the curve for over fifty years. In 1599, to estimate the area of the cycloid, Galileo cut the shape of the curve out of sheet metal and compared the weight of the cycloid to the weight of the generating circle. He came to the conclusion that the cycloid area was a little less than three times the area of the generating circle13. A teaching activity in Appendices II and IV allows students to draw a cycloid using a compass and ruler, and then reproduces Galileo’s experiment with cardboard shapes. Figure 3: (Left) A mobile phone light attached to a bicycle wheel. (Right) Cycloid traced using a time-exposure photograph3. A cycloid can also be generated by taking a time exposure photograph of a light attached to the rim of a wheel. An activity for lower grades using this technique is described in Appendix III. Galileo also suggested that the cycloid would be a suitable shape for the arch of a bridge10. Galileo’s disciple, Vincenzo Viviani, used a cycloid in his design for the arch of a bridge over the River Arzana in Sardinia11. This bridge is no longer standing, but below is shown some modern day architecture using cycloids. Figure 4: (Top) Cycloidal arches at the Kimbell Art Museum, Forth Worth, Texas8. (Bottom) Stone bridge in Skopje. Two other disciples of Galileo, Bonaventura Cavalieri and Evangelista Torricelli, also studied the cycloid. Torricelli found the area under the curve and published his derivation in his 1644 book on geometry. He wrote, “One now asks what proportion the cycloidal space has to its generating circle. We demonstrate (and may thanks be given to God) that it is triple4”. His thanks perhaps were tempered somewhat when this publication led to a savage literary attack from Gille de Roberval, as we will soon see. Act 2: The French connection. Marin Mersenne, was born a peasant but trained at a Jesuit college. He likely heard of the cycloid from Galileo, with whom he corresponded. Mersenne hosted a small gathering of mathematicians twice weekly at his home, and at one such meeting in 1628, he put to Roberval the problem of finding the area under the arch of a cycloid13. Roberval accomplished this in 1634 by finding the companion curve shown in Figure 5. The companion curve AQD divides rectangle BDCA in two equal parts. Using Cavalieri’s principle, the shaded area APDQ has the same area as the half circle AEBF because horizontal cross-sections of both shapes are always of the same length. Cavalieri’s principle can be visualised in three dimensions by picturing a vertical stack of coins. The volume of the stack will be unchanged if it is skewed to one side. So looking again at Roberval’s diagram, AC is half the circle circumference because it is traversed by one half rotation. Using, as is customary, a for the radius of generating circle, the area enclosed by half of the cycloid arch is half the area of rectangle BDAC, πa2, plus half the area of the generating circle, 0.5 πa2; a total of 1.5 πa2. Therefore the whole arch has and area of 3πa2, three times the area of the generating circle. Figure 5: (Left) Roberval’s companion curve4. (Right) Visualisation of Cavalieri’s principle3. Roberval, being secretive, did not publish his result, but communicated it privately to some French colleagues. Descartes on receiving Roberval’s proof said somewhat dismissively, “Roberval has laboured overmuch to produce so small a result.” 10 As mentioned, Torricelli in 1644 published his also correct determination of the area under a cycloid, ten years after Roberval found the result. Even though Roberval had gone to great lengths to keep his method secret, he was convinced that Torricelli had stolen the proof, and Roberval savagely attacked Torricelli in a widely circulated letter. Torricelli set about collecting documents to clear his name, but unfortunately he died of typhoid in 1647 before he could publish them. His dying request was that the documents be published, but frustratingly, possibly because of the infectious disease, his wish was not honoured and many of the documents were lost. Other documents, however, came to light around 1900 that seem bear out Torricelli’s claim7. Descartes, after ridiculing Roberval, went on to find the tangent by a beautifully simple construct. Figure 6: A pentagon rolled along a line13. Descartes intriguing proof starts by showing that when rolling a pentagon on a line, the curve traced by a fixed point at a vertex, is always tangent to the line joining the vertex and the point where the pentagon touches the base line. He reasoned that by letting the number of sides approach infinity, the polygon would approach a circle, and the curve traced by the fixed point on the circle would still be tangent to the line joining this fixed point and the point at which the circle makes contact with the base line. Figure 7: Descartes tangent method13. Desarte challenged Fermat and Roberval to also find the tangent. Fermat succeeded; Roberval failed. Viviani, you may recall, also found the tangent to the cycloid, possibly using the alternative method of combining velocities. Descartes was of the opinion that the length of a cycloid could never be known.12 The cycloid, it seemed, had little more to offer, but Pascal had other ideas. Act 3: Enter fleet-footed Pascal. In 1654 Blaise Pascal had a religious vision and withdrew from secular society to Port Royal, where he made seminal contributions to theological literature, and to the ideals of serving those in need, but he largely abandoned science and mathematics. In the Iliad metaphor, Pascal is Achilles: a sometimes unwilling warrior with such lavish natural talent that when he entered the fray, the course of the battle turned. And so one evening in 1658, Pascal, suffering from a particularly bad toothache, turned his mind to the cycloid to avoid thinking of the pain. He took it as a sign of approval from God that the pain abated, and so spent the next eight days discovering nearly all the remaining geometric properties of the cycloid including its centre of mass, and volume of revolution. He circulated his results in the form of a contest with a cash prize. There were only two entrants, John Wallis and Père Lalouère, but their work was judged insufficiently complete to win the prize.
Recommended publications
  • Engineering Curves – I
    Engineering Curves – I 1. Classification 2. Conic sections - explanation 3. Common Definition 4. Ellipse – ( six methods of construction) 5. Parabola – ( Three methods of construction) 6. Hyperbola – ( Three methods of construction ) 7. Methods of drawing Tangents & Normals ( four cases) Engineering Curves – II 1. Classification 2. Definitions 3. Involutes - (five cases) 4. Cycloid 5. Trochoids – (Superior and Inferior) 6. Epic cycloid and Hypo - cycloid 7. Spiral (Two cases) 8. Helix – on cylinder & on cone 9. Methods of drawing Tangents and Normals (Three cases) ENGINEERING CURVES Part- I {Conic Sections} ELLIPSE PARABOLA HYPERBOLA 1.Concentric Circle Method 1.Rectangle Method 1.Rectangular Hyperbola (coordinates given) 2.Rectangle Method 2 Method of Tangents ( Triangle Method) 2 Rectangular Hyperbola 3.Oblong Method (P-V diagram - Equation given) 3.Basic Locus Method 4.Arcs of Circle Method (Directrix – focus) 3.Basic Locus Method (Directrix – focus) 5.Rhombus Metho 6.Basic Locus Method Methods of Drawing (Directrix – focus) Tangents & Normals To These Curves. CONIC SECTIONS ELLIPSE, PARABOLA AND HYPERBOLA ARE CALLED CONIC SECTIONS BECAUSE THESE CURVES APPEAR ON THE SURFACE OF A CONE WHEN IT IS CUT BY SOME TYPICAL CUTTING PLANES. OBSERVE ILLUSTRATIONS GIVEN BELOW.. Ellipse Section Plane Section Plane Hyperbola Through Generators Parallel to Axis. Section Plane Parallel to end generator. COMMON DEFINATION OF ELLIPSE, PARABOLA & HYPERBOLA: These are the loci of points moving in a plane such that the ratio of it’s distances from a fixed point And a fixed line always remains constant. The Ratio is called ECCENTRICITY. (E) A) For Ellipse E<1 B) For Parabola E=1 C) For Hyperbola E>1 Refer Problem nos.
    [Show full text]
  • Brief Information on the Surfaces Not Included in the Basic Content of the Encyclopedia
    Brief Information on the Surfaces Not Included in the Basic Content of the Encyclopedia Brief information on some classes of the surfaces which cylinders, cones and ortoid ruled surfaces with a constant were not picked out into the special section in the encyclo- distribution parameter possess this property. Other properties pedia is presented at the part “Surfaces”, where rather known of these surfaces are considered as well. groups of the surfaces are given. It is known, that the Plücker conoid carries two-para- At this section, the less known surfaces are noted. For metrical family of ellipses. The straight lines, perpendicular some reason or other, the authors could not look through to the planes of these ellipses and passing through their some primary sources and that is why these surfaces were centers, form the right congruence which is an algebraic not included in the basic contents of the encyclopedia. In the congruence of the4th order of the 2nd class. This congru- basis contents of the book, the authors did not include the ence attracted attention of D. Palman [8] who studied its surfaces that are very interesting with mathematical point of properties. Taking into account, that on the Plücker conoid, view but having pure cognitive interest and imagined with ∞2 of conic cross-sections are disposed, O. Bottema [9] difficultly in real engineering and architectural structures. examined the congruence of the normals to the planes of Non-orientable surfaces may be represented as kinematics these conic cross-sections passed through their centers and surfaces with ruled or curvilinear generatrixes and may be prescribed a number of the properties of a congruence of given on a picture.
    [Show full text]
  • Leibniz's Differential Calculus Applied to the Catenary
    Leibniz’s differential calculus applied to the catenary Olivier Keller, agrégé in mathematics, PhD (EHESS) Study of the catenary was a response to a challenge laid down by Jacques Bernoulli, and which was successfully met by Leibniz as well as by Jean Bernoulli and Huygens: to find the curve described by a piece of strung suspended from its two ends. Stimulated by the success of this initial research, Jean Bernoulli put forward and solved similar problems: the form taken by a horizontal blade immobilised on one side, with a weight attached to the other; the form taken by a piece of linen filled with liqueur; the curve of a sail. Challenges among scholars In the 17th century, it was customary for scholars to set each other challenges in alternate issues of journals. Leibniz, for example, challenged the Cartesians – as part of the controversy surrounding the laws of collision, known as the “querelle des forces vives” (vis viva controversy) – to find the curve down which a body falls at constant vertical velocity (isochrone curve). Put forward in the Nouvelle République des Lettres of September 1687, this problem received Huygens’ solution in October of the same year, while Leibniz’s appeared in 1689 in the journal he had created, the Acta Eruditorum. Another famous example is that of the brachistochrone, or the “curve of the fastest descent”, which, thanks to the new differential calculus, proved to be not a circle, as Galileo had believed, but a cycloid: the challenge had been set by Jean Bernoulli in the Acta Eruditorum in June 1696, and was resolved by Leibniz in May 1697.
    [Show full text]
  • Letter from Descartes to Desargues 1 (19 June 1639)
    Appendix 1 Letter from Descartes to Desargues 1 (19 June 1639) Sir, The openness I have observed in your temperament, and my obligations to you, invite me to write to you freely what I can conjecture of the Treatise on Conic Sections, of which the R[everend] F[ather] M[ersenne] sent me the Draft. 2 You may have two designs, which are very good and very praiseworthy, but which do not both require the same course of action. One is to write for the learned, and to instruct them about some new properties of conics with which they are not yet familiar; the other is to write for people who are interested but not learned, and make this subject, which until now has been understood by very few people, but which is nevertheless very useful for Perspective, Architecture etc., accessible to the common people and easily understood by anyone who studies it from your book. If you have the first of these designs, it does not seem to me that you have any need to use new terms: for the learned, being already accustomed to the terms used by Apollonius, will not easily exchange them for others, even better ones, and thus your terms will only have the effect of making your proofs more difficult for them and discourage them from reading them. If you have the second design, your terms, being French, and showing wit and elegance in their invention, will certainly be better received than those of the Ancients by people who have no preconceived ideas; and they might even serve to attract some people to read your work, as they read works on Heraldry, Hunting, Architecture etc., without any wish to become hunters or architects but only to learn to talk about them correctly.
    [Show full text]
  • Desargues, Girard
    GIRARD DESARGUES (February 21, 1591 – October 1661) by HEINZ KLAUS STRICK, Germany GIRARD DESARGUES came from very wealthy families of lawyers and judges who worked at the Parlement, the highest appellate courts of France in Paris and Lyon. Nothing is known about GIRARD's youth, but it is safe to assume that he and his five siblings received the best possible education. While his two older brothers were admitted to the Parisian Parlement, he was involved in the silk trade in Lyon, as can be seen from a document dating from 1621. In 1626, after a journey through Flanders, he applied to the Paris city council for a licence to drill a well and use the water from the well. His idea was to construct an effective hydraulic pump to supply water to entire districts, but this project did not seem to be successful. After the death of his two older brothers in 1628, he took over the family inheritance and settled in Paris. There he met MARIN MERSENNE and soon became a member of his Academia Parisiensis, a discussion group of scientists including RENÉ DESCARTES, GILLES PERSONNE DE ROBERVAL, ÉTIENNE PASCAL and his son BLAISE. (drawing: © Andreas Strick) The first publication by DESARGUES to attract attention was Une méthode aisée pour apprendre et enseigner à lire et escrire la musique (An easy way to learn and teach to read and write music). In 1634 MERSENNE mentioned in a letter to his acquaintances that DESARGUES was working on a paper on perspective (projection from a point). But it was not until two years later that the work was published: only 12 pages long and in a small edition.
    [Show full text]
  • L'arithmétique De Pierre Fermat Dans Le Contexte De La Correspondance
    ANNALES DE LA FACULTÉ DES SCIENCES Mathématiques CATHERINE GOLDSTEIN L’arithmétique de Pierre Fermat dans le contexte de la correspondance de Mersenne : une approche microsociale Tome XVIII, no S2 (2009), p. 25-57. <http://afst.cedram.org/item?id=AFST_2009_6_18_S2_25_0> © Université Paul Sabatier, Toulouse, 2009, tous droits réservés. L’accès aux articles de la revue « Annales de la faculté des sciences de Toulouse Mathématiques » (http://afst.cedram.org/), implique l’ac- cord avec les conditions générales d’utilisation (http://afst.cedram.org/ legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement person- nelle du copiste est constitutive d’une infraction pénale. Toute copie ou im- pression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Annales de la Facult´e des Sciences de Toulouse Vol. XVIII, n◦ Sp´ecial, 2009 pp. 25–57 L’arithm´etique de Pierre Fermat dans le contexte de la correspondance de Mersenne : une approche microsociale Catherine Goldstein(∗) Les paradoxes de Pierre Fermat Un loup solitaire. ayant commerce de tous cˆot´es avec les savants1. Un magistrat concentr´e sur ses devoirs publics, notant ses observations math´ematiques comme s’il « s’occupa[i]t d’autre chose et se hˆata[i]t vers de plus hautes tˆaches », mais prˆet `a mobiliser tout Paris pour connaˆıtre les questions arithm´etiques qui y circulent etad´ ` efier l’Europe enti`ere avec les siennes2.
    [Show full text]
  • Introduction to the Modern Calculus of Variations
    MA4G6 Lecture Notes Introduction to the Modern Calculus of Variations Filip Rindler Spring Term 2015 Filip Rindler Mathematics Institute University of Warwick Coventry CV4 7AL United Kingdom [email protected] http://www.warwick.ac.uk/filiprindler Copyright ©2015 Filip Rindler. Version 1.1. Preface These lecture notes, written for the MA4G6 Calculus of Variations course at the University of Warwick, intend to give a modern introduction to the Calculus of Variations. I have tried to cover different aspects of the field and to explain how they fit into the “big picture”. This is not an encyclopedic work; many important results are omitted and sometimes I only present a special case of a more general theorem. I have, however, tried to strike a balance between a pure introduction and a text that can be used for later revision of forgotten material. The presentation is based around a few principles: • The presentation is quite “modern” in that I use several techniques which are perhaps not usually found in an introductory text or that have only recently been developed. • For most results, I try to use “reasonable” assumptions, not necessarily minimal ones. • When presented with a choice of how to prove a result, I have usually preferred the (in my opinion) most conceptually clear approach over more “elementary” ones. For example, I use Young measures in many instances, even though this comes at the expense of a higher initial burden of abstract theory. • Wherever possible, I first present an abstract result for general functionals defined on Banach spaces to illustrate the general structure of a certain result.
    [Show full text]
  • ON the BRACHISTOCHRONE PROBLEM 1. Introduction. The
    ON THE BRACHISTOCHRONE PROBLEM OLEG ZUBELEVICH STEKLOV MATHEMATICAL INSTITUTE OF RUSSIAN ACADEMY OF SCIENCES DEPT. OF THEORETICAL MECHANICS, MECHANICS AND MATHEMATICS FACULTY, M. V. LOMONOSOV MOSCOW STATE UNIVERSITY RUSSIA, 119899, MOSCOW, MGU [email protected] Abstract. In this article we consider different generalizations of the Brachistochrone Problem in the context of fundamental con- cepts of classical mechanics. The correct statement for the Brachis- tochrone problem for nonholonomic systems is proposed. It is shown that the Brachistochrone problem is closely related to vako- nomic mechanics. 1. Introduction. The Statement of the Problem The article is organized as follows. Section 3 is independent on other text and contains an auxiliary ma- terial with precise definitions and proofs. This section can be dropped by a reader versed in the Calculus of Variations. Other part of the text is less formal and based on Section 3. The Brachistochrone Problem is one of the classical variational prob- lems that we inherited form the past centuries. This problem was stated by Johann Bernoulli in 1696 and solved almost simultaneously by him and by Christiaan Huygens and Gottfried Wilhelm Leibniz. Since that time the problem was discussed in different aspects nu- merous times. We do not even try to concern this long and celebrated history. 2000 Mathematics Subject Classification. 70G75, 70F25,70F20 , 70H30 ,70H03. Key words and phrases. Brachistochrone, vakonomic mechanics, holonomic sys- tems, nonholonomic systems, Hamilton principle. The research was funded by a grant from the Russian Science Foundation (Project No. 19-71-30012). 1 2 OLEG ZUBELEVICH This article is devoted to comprehension of the Brachistochrone Problem in terms of the modern Lagrangian formalism and to the gen- eralizations which such a comprehension involves.
    [Show full text]
  • Evolute-Involute Partner Curves According to Darboux Frame in the Euclidean 3-Space E3
    Fundamentals of Contemporary Mathematical Sciences (2020) 1(2) 63 { 70 Evolute-Involute Partner Curves According to Darboux Frame in the Euclidean 3-space E3 Abdullah Yıldırım 1,∗ Feryat Kaya 2 1 Harran University, Faculty of Arts and Sciences, Department of Mathematics S¸anlıurfa, T¨urkiye 2 S¸ehit Abdulkadir O˘guzAnatolian Imam Hatip High School S¸anlıurfa, T¨urkiye, [email protected] Received: 29 February 2020 Accepted: 29 June 2020 Abstract: In this study, evolute-involute curves are researched. Characterization of evolute-involute curves lying on the surface are examined according to Darboux frame and some curves are obtained. Keywords: Curve, surface, geodesic, curvature, frame. 1. Introduction The interest of special curves has increased recently. Some of these are associated curves. They are curves where one of the Frenet vectors at opposite points is linearly dependent to the other curve. One of the best examples of these curves is the evolute-involute partner curves. An involute thought known to have been used in his optical work came up in 1658 by C. Huygens. C. Huygens discovered involute curves while trying to make more accurate measurement studies [5]. Many researches have been conducted about evolute-involute partner curves. Some of them conducted recently are Bilici and C¸alı¸skan [4], Ozyılmaz¨ and Yılmaz [9], As and Sarıo˘glugil[2]. Bekta¸sand Y¨uceconsider the notion of the involute-evolute curves lying on the surfaces for a special situation. They determine the special involute-evolute partner D−curves in E3: By using the Darboux frame of the curves they obtain the necessary and sufficient conditions between κg , ∗ − ∗ ∗ τg; κn and κn for a curve to be the special involute partner D curve.
    [Show full text]
  • Computer-Aided Design and Kinematic Simulation of Huygens's
    applied sciences Article Computer-Aided Design and Kinematic Simulation of Huygens’s Pendulum Clock Gloria Del Río-Cidoncha 1, José Ignacio Rojas-Sola 2,* and Francisco Javier González-Cabanes 3 1 Department of Engineering Graphics, University of Seville, 41092 Seville, Spain; [email protected] 2 Department of Engineering Graphics, Design, and Projects, University of Jaen, 23071 Jaen, Spain 3 University of Seville, 41092 Seville, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-953-212452 Received: 25 November 2019; Accepted: 9 January 2020; Published: 10 January 2020 Abstract: This article presents both the three-dimensional modelling of the isochronous pendulum clock and the simulation of its movement, as designed by the Dutch physicist, mathematician, and astronomer Christiaan Huygens, and published in 1673. This invention was chosen for this research not only due to the major technological advance that it represented as the first reliable meter of time, but also for its historical interest, since this timepiece embodied the theory of pendular movement enunciated by Huygens, which remains in force today. This 3D modelling is based on the information provided in the only plan of assembly found as an illustration in the book Horologium Oscillatorium, whereby each of its pieces has been sized and modelled, its final assembly has been carried out, and its operation has been correctly verified by means of CATIA V5 software. Likewise, the kinematic simulation of the pendulum has been carried out, following the approximation of the string by a simple chain of seven links as a composite pendulum. The results have demonstrated the exactitude of the clock.
    [Show full text]
  • 1 H-France Forum Volume 14 (2019), Issue 4, #3 Jeffrey N. Peters, The
    1 H-France Forum Volume 14 (2019), Issue 4, #3 Jeffrey N. Peters, The Written World. Space, Literature, and the Chorological Imagination in Early Modern France. Evanston: Northwestern University Press, 2018. vii + 272 pp. Figures, notes, and Copyright index. $34.95 (pb). ISBN 978-0-8101-3697-7; $99.95 (cl). ISBN 978-0- 8101-3698-4; $34.95 (Kindle). ISBN 978-0-8101-3699-1. Review Essay by David L. Sedley, Haverford College The Written World has on its cover an image from La Manière universelle de M. Desargues, pour pratiquer la perspective (1648). This book, written and illustrated by Abraham Bosse and based on the projective geometry of Girard Desargues, extends the theories of perspective codified by Leon Battista Alberti and his followers. [1] Alberti directed painters to pose a central point at the apparent conjunction of parallel lines in order to lend depth and coherence to their compositions. Desargues reinterpreted and renamed Alberti’s central point (and other points like it) as a point at infinity. Consequently, the convergent lines of a visual representation could be taken to indicate the infinite more emphatically than before. As an illustration of the art of putting objects in a perspective that emphasizes their connection to infinity, Bosse’s image suits Peters’ book to a T. Peters represents his objects of study—mainly a series of works of seventeenth-century French literature—with an eye to showing their affinity with the infinite. He frequently discusses infinity through chora, the Ancient Greek term used by Plato and adopted by Jacques Derrida to denote the space underlying all finite places and place- based thought.
    [Show full text]
  • Around and Around ______
    Andrew Glassner’s Notebook http://www.glassner.com Around and around ________________________________ Andrew verybody loves making pictures with a Spirograph. The result is a pretty, swirly design, like the pictures Glassner EThis wonderful toy was introduced in 1966 by Kenner in Figure 1. Products and is now manufactured and sold by Hasbro. I got to thinking about this toy recently, and wondered The basic idea is simplicity itself. The box contains what might happen if we used other shapes for the a collection of plastic gears of different sizes. Every pieces, rather than circles. I wrote a program that pro- gear has several holes drilled into it, each big enough duces Spirograph-like patterns using shapes built out of to accommodate a pen tip. The box also contains some Bezier curves. I’ll describe that later on, but let’s start by rings that have gear teeth on both their inner and looking at traditional Spirograph patterns. outer edges. To make a picture, you select a gear and set it snugly against one of the rings (either inside or Roulettes outside) so that the teeth are engaged. Put a pen into Spirograph produces planar curves that are known as one of the holes, and start going around and around. roulettes. A roulette is defined by Lawrence this way: “If a curve C1 rolls, without slipping, along another fixed curve C2, any fixed point P attached to C1 describes a roulette” (see the “Further Reading” sidebar for this and other references). The word trochoid is a synonym for roulette. From here on, I’ll refer to C1 as the wheel and C2 as 1 Several the frame, even when the shapes Spirograph- aren’t circular.
    [Show full text]